A New Family in the Stable Homotopy Groups of Spheres II

ShichiróOKA
(Received December 27, 1975)

Statement of Results

This paper is a continuation of [5] with the same title. We shall use all notations defined in Part I [5].

In Theorem A, we constructed nonzero elements $\rho_{t, r}, t \geqq 1,1 \leqq r \leqq p-1$, of order p in \boldsymbol{G}_{*}, the stable homotopy group of spheres. Here p denotes always a fixed prime integer with $p \geqq 5$. The following result is a sequel to Theorem A. We put $q=2(p-1)$.

THEOREM AII. There exist nonzero elements

$$
\operatorname{Pr}, 0 \in G_{(t p t-1) p q-2}, \quad t=2
$$

of order p such that

$$
\rho_{t, 1} \in\left\langle\rho_{t, 0}, p, \alpha_{1}\right\rangle
$$

REMARK. For $t=1$, there is no element $\rho_{1,0}$ with $\rho_{1,1} \in\left\langle\rho_{1,0}, p, \alpha_{1}\right\rangle$ This fact is equivalent to the nontriviality of the differential on $E_{2 p-1}^{2, p^{2} q}$, proved by H. Toda [8], in the Adams spectral sequence. The first element $\rho_{2,0}$ coincides with the element ρ_{0} constructed in [2].

We recall the stable homotopy rings $\mathscr{A}_{*}(M)$ and $\mathscr{A}_{*}(X(r)), r \geqq 1$, of M $=S^{1} U_{p} e^{2}$ and $X(r)=S^{2} M U_{\alpha^{r}} C S^{r q+2} M ; \alpha$ being the generator of $\mathscr{A}_{q}(M)=Z_{p}$ (see Definition 1.1). We consider elements in $\mathscr{A}_{*}(M)$ and $\mathscr{A}_{*}(X(p)$ corresponding to the ones in Theorem A II, and obtain the following two results as sequels to Theorems B and C.

THEOREM BII. There exist nonzero elements

$$
\rho_{0}(t) \in \mathscr{A}_{(t p+t-1) p q-1}(M), \quad t \geqq 2,
$$

such that $\rho_{0}(t) \alpha=\rho(t), \quad \rho_{0}(t) \alpha^{p-1}=\alpha^{p-1} \rho_{0}(t)=\beta_{(t p)}, \quad \rho_{0}(t) \alpha^{p}=\alpha^{p} \rho_{0}(t)=0 \quad$ and $\pi_{*} i^{*} \rho_{0}(t)=\mathrm{Pf}, 0$

Here $\rho(t)$ and $\beta_{(t)}$ are the elements in $\mathscr{A}_{*}(M)$ introduced in Theorem B
and [9], respectively, and we denote the cofiberings for M and $X(r)$ by $S^{1} \xrightarrow{i}$ $M \xrightarrow{\pi} S^{2}$ and $S^{2} M \xrightarrow{j_{r}} X(r) \xrightarrow{k_{r}} S^{r q+3} M$. Recall also the natural $\operatorname{map} A$: $S^{q} X(r-1) \rightarrow X(r)$.

THEOREM CII. There exist nonzero elements

$$
R(p)^{(t)} \in \mathscr{A}_{t(p+1) p q}(X(p)), \quad t \geqq 2,
$$

such that $R(p)^{(t)} A=A R(p-1)^{t}$ and $k_{p *} j_{p}^{*} R(p)^{(t)}=\rho_{0}(t)$, where $R(p-1)^{t}$ is the t-times composition of the element $R(p-1)$ constructed in Theorem C.

A sequel to Theorem D is given as follows:
THEOREM DII. The element $R(p)^{(t)}$ induces the multiplication by an element congruent to $[V]^{p t}$ modulo $[C P(p-1)]^{p-1}$ on the complex bordism theory, where $[V] \in \Omega_{*}^{U}$ is the class of the Milnor manifold for the prime p with $\operatorname{dim} V$ $=2\left(p^{2}-1\right)$. Hence the mapping cone of $R(p)^{(t)}$ realizes a cyclic Ω_{*}^{U}-module

$$
\Omega_{*}^{U} /\left(p,[C P(p-1)]^{p},[V]^{p t}+\left[N_{t}\right]\right)
$$

for some $\left[N_{t}\right] \in\left([C P(p-1)]^{p-1}\right)$ with $\operatorname{dim} N_{t}=2 t\left(p^{2}-1\right)$.
The rings $\mathscr{A}_{*}(M)$ and $\mathscr{A}_{*}(X(r))$ form differential algebras over Z_{p} with differentials D and θ defined in [1] and [9], respectively.

PROPOSITION E. For even t, the elements $\rho_{0}(t)$ and $R(p)^{(t)}$ can be chosen so that $D\left(\rho_{0}(t)\right)=0$ and $\theta\left(R(p)^{(t)}\right)=0$.

In §8, we shall compute $\mathscr{A}_{*}(M)$ completely in degree $<\left(2 p^{2}+p\right) q-4$ (Theorem 8.10) and partially in higher degree (Proposition 8.11), by the same techniques as [4]. In $\S 9$, Theorems AII-DII and Proposition E will be proved. From Proposition E, we shall, in § 10 , slightly generalize Theorems $\mathbf{A}^{\prime}-\mathbf{D}^{\prime}$ for even t. The results are Theorems $\mathbf{A}^{\prime} \mathbf{I I}-\mathbf{D}^{\prime} \mathbf{I I}$.

§8. Some results on $\mathscr{A}_{*}(M)$

We recall the structure of the ring $\mathscr{A}_{*}(M), M=\boldsymbol{S}^{1} \mathrm{U}_{\boldsymbol{p}} \boldsymbol{e}^{2}$, from [4], (cf. [1]). This is a differential graded algebra over Z_{p} with differential D of degree +1 [4; (1.6)]. The subalgebra

$$
K_{*}=\Sigma_{k} K_{k}=\operatorname{Ker} D
$$

is commutative $[4 ;(1.11)]$, and there are direct sum decompositions

$$
\begin{equation*}
\mathscr{A}_{k}(M)=K_{k}+\delta^{*} K_{k+1}=K_{k}+\delta_{*} K_{k+1}, \tag{8.1}
\end{equation*}
$$

where the right and the left translations δ^{*} and δ_{*} by the element $\delta=i \pi \in \mathscr{A}_{-1}(M)$ are monomorphic on $K_{*}[1 ;$ Th. A (c) $]$. For any $\gamma \in G_{k}$, the smash product $\gamma \wedge 1_{M}$ lies in K_{k} [4; Lemma 3.1], and the subgroup $G_{k} \wedge 1_{M}$ of K_{k} is naturally isomorphic to $G_{k} \otimes Z_{p}\left[4\right.$; Lemma 3.3]. For any $\gamma \in G_{k-1}$ of order p, there is an element $[\gamma] \in K_{k}$ such that $\pi_{*} i^{*}[\gamma]=\gamma\left[4\right.$; Lemma 3.2], where $S^{1}-\xrightarrow{\boldsymbol{i}} M$ $-\xrightarrow{\pi} S^{2}$ is the cofibering for M. This element $[\gamma]$ is determined up to the subgroup $G_{k} \Lambda 1_{M}$ The subgroup [$G_{k-1} * Z_{p}$] of K_{k}, which consists of those elements $[\gamma]$ for $\gamma \in G_{k-1} * Z_{p}$, is isomorphic to $G_{k-1} * Z_{p}$ by the homomorphism $\pi_{*} i^{*}[4$; Lemma 3.3], and there is a direct sum decomposition

$$
\begin{equation*}
K_{k}=\left[G_{k-1} * Z_{p}\right]+G_{k} \Lambda 1_{M}\left(\approx G_{k-1} * Z_{p}+G_{k} ® Z_{p}\right) . \tag{8.2}
\end{equation*}
$$

The equalities (8.1) and (8.2) provide that $\mathscr{A}_{k}(M)$ is computed from G_{k-1}, G_{k} and $G_{k+1}\left[4 ;\right.$ Th. 3.5]. If $\gamma \in G_{k-1} * Z_{p}$, then there is a relation [4; (3.5)]

$$
\begin{equation*}
\gamma \wedge 1_{M}=[\gamma] \delta-(-1)^{k} \delta[\gamma] . \tag{8.3}
\end{equation*}
$$

Let $A_{*}(\alpha, \delta)$ be the subalgebra generated by the element $\alpha \in \mathscr{A}_{q}(M), q=2(p-$ 1), and δ. Then a Z_{p}-basis for $A_{k}=A_{k}(\alpha, \delta)$ is given as follows [4; Th. 4.1]:

$$
\begin{align*}
& A_{r q}=Z_{p}\left\{\alpha^{r}\right\}^{*)}, \quad A_{r q-1}=Z_{p}\left\{\alpha^{r} \delta, \alpha^{r-1} \delta \alpha\right\}, \tag{8.4}\\
& A_{r q-2}=Z_{p}\left\{\alpha^{r-1} \delta \alpha \delta\right\} \quad \text { for } \quad r \geqq 1 ; \\
& A_{0}=Z_{p}\left\{1_{M}\right\}, \quad A_{-1}=Z_{p}\{\delta\}, \quad A_{k}=0 \quad \text { for other } \quad k,
\end{align*}
$$

and hence,
(8.5) for fe^ ${ }^{\wedge}$ and $r \geqq 1, \alpha_{*}^{r}$ and $\alpha^{r *}: A_{k}(\alpha, \delta) \rightarrow A_{k+r q}(\alpha, \delta)$ are isomorphic. We have also [4; pp. 648-651]

$$
\begin{align*}
& {\left[\alpha_{r}\right]=\alpha^{r}, \quad \alpha_{r} \Lambda 1_{M}=r\left(\alpha^{r} \delta-\alpha^{r-1} \delta \alpha\right),} \tag{8.6}\\
& \alpha_{r p}^{\prime} \wedge 1_{M}=r\left(\alpha^{r p} \delta-\alpha^{r p-1} \delta \alpha\right), \quad \alpha_{r p^{2}}^{\prime \prime} \Lambda 1_{M}=r\left(\alpha^{r p^{2}} \delta-\alpha^{r p^{2}-1} \delta \alpha\right)
\end{align*}
$$

In [4; Th. 0.1] we computed the algebra $\mathscr{A}_{*}(M)$ up to degree $\left(p^{2}+3 p+1\right) q$ -6 from our results on $G_{*}[3 ; \mathrm{Th} . \mathrm{A}]$. We have recently determined $\boldsymbol{G}_{\boldsymbol{*}}$ in higher degrees ($[6 ; \mathrm{Th} . \mathrm{C}]$, [2; Th. 4.1]), and so we can easily continue to compute $\mathscr{A}_{*}(M)$.

LEMMA 8.7. There exists an element $\kappa_{(s)} \in K_{k(s)}, 1 \leqq s \leqq p-3$, such that $\pi_{*} i^{*} \kappa_{(s)}=\kappa_{s}$, the generator of the p-component of $G_{k(s)-1}[6]$, where $\mathrm{fc}(\mathrm{s})=$ $\left(p^{2}+(s+2) p+s+1\right) q-4$. For $1 \leqq s \leqq p-4, \kappa_{(s)}$ is unique and satisfies $\alpha \kappa_{(s)}$ $=\beta_{(1)} \kappa_{(s)}=0$.

[^0]PROOF. Since $K_{k(s)}=Z_{p}$, generated by $\left[\kappa_{s}\right]$, and $K_{k(s)+q}=K_{k(s)+p q-1}=0$ ($s \leqq p-4$), we have the result by setting $\kappa_{(s)}=\left[\kappa_{s}\right] . \quad$ q.e.d.

We defined the elements $\beta_{(s)}=\left[\beta_{s}\right](s \geqq 1, s \not \equiv 0 \bmod p), \varepsilon=\left[\varepsilon^{\prime}\right]$ and $\lambda=\left[\lambda_{1}\right]$ in $K_{*}([4 ; \S 5],[6 ; \S 22])$, where $\beta_{s}, \varepsilon^{\prime}$ and λ_{1} are the generators of $G_{*}([3 ; \mathrm{Th}$. $\mathrm{A}]$, $[6 ; \mathrm{Th} . \mathrm{C}]$). For the generators λ^{\prime} and μ of G_{*}, we also define the following two elements

$$
\begin{gather*}
\bar{\lambda}=\left[\quad\left(2 p^{2}+1\right) q-4,\right. \tag{8.8}\\
\mu=\mu \Lambda 1_{M} \in K_{\left(2 p^{2}+p-1\right) q-5} . \tag{8.9}
\end{gather*}
$$

Now let y be any element in the p-component of $G_{k},\left(p^{2}+3 p+1\right) q-7 \leqq k$ $\leqq\left(2 p^{2}+p\right) q-4$. For y of order greater than p, i.e., $\mathrm{y}=\alpha_{r p}^{\prime}, \alpha_{r p^{2}}^{\prime \prime}$ or μ, the element y $\Lambda 1_{M}$ is given by (8.6) or (8.9). For y of order p, it suffices by (8.3) to determine $[\gamma]$. Furthermore, by [4; Prop. 3.8], it suffices to do for indecomposable y, i.e., $\gamma=\alpha_{r}, \beta_{s}, \kappa_{s}, \lambda^{\prime}, \lambda_{i}$, for which we have $[y]=\alpha^{r}, \beta_{(s)}, \kappa_{(s)}, \mathrm{I}, \lambda \alpha^{i-1}$ by (8.6), [4; (5.9)], Lemma 8.7, (8.8), [6; Th. 22.2], respectively. Thus, from Theorem C of [6], we have obtained the following result.

THEOREM 8.10. The following elements give a Z_{p}-basis for $\mathscr{A}_{k}(M),\left(p^{2}\right.$ $+3 p+1) q-6 \leqq k \leqq\left(2 p^{2}+p\right) q-5,(a$, fee $\{0,1\}, 0 \leqq r<p$ and $s \geqq 1$ unless otherwise stated):

$$
\begin{aligned}
& \alpha^{t} \delta^{a}, \alpha^{t-1} \delta \alpha \delta^{a} \text { for } p^{2}+3 p+1 \leqq t \leqq 2 p^{2}+p-1 ; \\
& \delta^{a}\left(\beta_{(1)} \delta\right)^{t-1} \beta_{(1)} \delta^{b} \quad \text { for } p+4 \leqq t \leqq 2 p+1 ; \\
& \delta^{a}\left(\beta_{(1)} \delta\right)^{r} \beta_{(s)} \delta^{b} \quad \text { for } \quad 4 \leqq s \leqq 2 p-1, s \neq p, p+3 \leqq r+s \leqq 2 p-1 \\
& \text { andfor }(\mathrm{r}, \mathrm{~s})=(p-1, p+1) ; \\
& \delta^{a} \alpha \delta\left(\beta_{(1)} \delta\right)^{r} \beta_{(s)} \delta^{b} \quad \text { for } \quad 4 \leqq \mathrm{~s} \leqq p-1, \text { for } r=0, p+1 \leqq \mathrm{~s} \leqq 2 p-2 \\
& \\
& \text { andfor } r=1, \mathrm{~s}=2 p-2 ; \\
& \delta^{a}(\alpha \delta)^{c}\left(\beta_{(1)} \delta\right)^{r} \beta_{(2)} \delta \beta_{(1)} \delta^{b} \quad \text { for } \quad c \in\{0,1\}, 2 \leqq \mathrm{r} \leqq p-1 \\
& \\
& \text { exceptfor } b=c=1, \mathrm{r}=p-1 ; \\
& \delta^{a}\left(\beta_{(1)} \delta\right)^{r} \bar{\varepsilon} \delta^{b} \quad \text { for } \quad 4 \leqq r \leqq p-1 ; \\
& \delta^{a}\left(\beta_{(1)} \delta\right)^{r} \kappa_{(s)} \delta^{b} \quad \text { for } \quad 1 \leqq \mathrm{~s} \leqq p-3, \mathrm{r}+\mathrm{s} \leqq \mathrm{p}-2 \\
& \delta^{a} \lambda \delta^{b} ; \delta^{a} \lambda \alpha^{i} \delta^{b} \quad \text { for } \quad 0 \leqq i \leqq p-4 ; \delta \lambda \alpha^{i} \delta \alpha \delta^{b} \text { for } 0 \leqq i \leqq p-5 ; \bar{\mu} \delta^{a} .
\end{aligned}
$$

We can also determine completely the ring structure in the cited range, but
we omit the details. For example, the relation [5; Prop. 7.3. (iii)] implies that Toda's relation $\left(\beta_{(1)} \delta\right)^{p} \beta_{(s)}=0(s \geqq 2, s \not \equiv-1 \bmod p) \quad[9 ;$ Cor. 5.7] also holds for $s \equiv-1 \bmod p$. In [7; Cor. 2] and [6; Th. 22.4], several new relations have been obtained. The relation $\left(\beta_{(1)} \delta\right)^{p} \mathcal{E}=0$ clearly holds. The following corresponds to the result [6; Cor. 21.5] in G_{*} :

$$
\alpha \delta \beta_{(2 p-1)}=z\left(\left(\beta_{(1)} \delta\right)^{p-1} \beta_{(p+1)} \uparrow\left(\delta \beta_{(1)}\right)^{p-1} \delta \beta_{(p+1)}\right), \quad z \not \equiv 0 \bmod \mathrm{p} .
$$

We can obtain relations among $\alpha, \beta_{(s)}, \kappa_{(t)}$ and ones among $\alpha, \bar{\lambda}, \lambda$ similar to (ii)-(iv) and (vi)-(vii) of [4; Th. 0.1], respectively, and also obtain analogues to (ix)-(xi), and so on.

We have computed $\mathscr{A}_{*}(M)$ up to degree corresponding to [6; Th. C]. We can make further computations corresponding to the recent result [2; Th. 4.1] on $G_{\boldsymbol{*}}$, but can not determine the ring structure because [2; Th. 4.1] does not give some products in $G_{\boldsymbol{*}}$.

In Part I, we gave the elements $\mathrm{p}(2)$ and $\sigma(2)$ in K_{*} such that $\rho(2) \alpha^{p-2}=$ $\beta_{(2 p)}, \rho(2) \alpha^{p-1}=0, \sigma(2) \alpha^{p-3}=\beta_{(1)} \beta_{(2 p-1}$ and $\sigma(2) \alpha^{p-2}=0$. We also introduced in [2; Lemma 5.3] a unique element $\rho \in K_{*}$ with $\rho \alpha=\rho(2)$.

PROPOSITION 8.11. (i) The group $\mathscr{A}_{k}(M), k=\left(2 p^{2}+p+i\right) q-\varepsilon, 0 \leqq i \leqq \mathrm{p}$, $\varepsilon=0,1,2$, is the direct sum of $A_{k}(\alpha, \delta)$ in (8.4) and thefollowing subgroup $A_{i, \varepsilon}$:

$$
\begin{aligned}
A_{i, 2}= & Z_{p}\{\rho \delta, \delta \rho,[\mathrm{v}], \quad[\gamma]\} \quad \text { for } \quad i=0, \\
& Z_{p}\left\{\sigma(2), \rho \alpha \delta, \delta \rho \alpha,\left(\beta_{(1)} \delta\right)^{p-2} \kappa_{(1)}\right\} \quad \text { for } \quad \mathrm{i}=1, \\
& Z_{p}\left\{\sigma(2) \alpha, \rho \alpha^{2} \delta, \delta \rho \alpha^{2}, \delta\left(\beta_{(1)} \delta\right)^{p-3} \kappa_{(2)} \delta\right\} \quad \text { for } \quad i=2, \\
& Z_{p}\left\{\sigma(2) \alpha^{i-1}, \rho \alpha^{i} \delta, \delta \rho \alpha^{i}\right\} \quad \text { for } \quad 3 \leqq \mathrm{i} \leqq p-2, \\
& Z_{p}\left\{\rho \alpha^{p-1} \delta, \delta \rho \alpha^{p-1}\right\} \quad \text { for } \quad \imath=\mathrm{p}-1, \\
& Z_{p}\left\{\rho \alpha^{p-1} \delta \alpha, \beta_{(1)} \delta \eta \delta, \delta \beta_{(1)} \delta \eta\right\}\left(+Z_{p}\left\{\left(\delta \beta_{(1)}\right)^{2} \delta \lambda \delta\right\} \text { if } p=5\right) \text { for } \mathrm{i}=\mathrm{p} ; \\
A_{i, 1}= & Z_{p}\{\rho, \delta \eta \delta\} \quad \text { for } \quad \mathrm{i}=0, \\
& Z_{p}\left\{\rho \alpha^{i}\right\} \quad \text { for } \quad i=1 \text { andfor } 3 \leqq i \leqq \mathrm{p}-1, \\
& Z_{p}\left\{\rho \alpha^{2},\left(\beta_{(1)} \delta\right)^{p-3} \kappa_{(2)} \delta,\left(\delta \beta_{(1)}\right)^{p-3} \delta \kappa_{(2)}\right\} \\
& \quad\left(+Z_{p}\left\{\left(\delta \beta_{(1)}\right)^{2 p+2} \delta\right\} \text { if } p=5\right) \quad \text { for } \quad \mathrm{i}=2, \\
& Z_{p}\left\{\beta_{(1)} \delta \eta\right\}\left(+Z_{p}\left\{\left(\beta_{(1)} \delta\right)^{2} \lambda \delta,\left(\delta \beta_{(1)}\right)^{2} \delta \pi\right\} \text { if } p=5\right) \quad \text { for } i=\mathrm{p} ; \\
A_{i, 0}= & Z_{p}\{\eta \delta, \delta \eta\}\left(+Z_{p}\left\{\delta \beta_{(1)} \delta \lambda \delta\right\} \text { if } \mathrm{p}=5\right) \quad \text { for } \quad \mathrm{i}=0, \\
& Z_{p}\left\{\left(\beta_{(1)} \delta\right)^{p-3} \kappa_{(2)}\right\}\left(+Z_{p}\left\{\left(\beta_{(1)} \delta\right)^{2 p+2},\left(\delta \beta_{(1)}\right)^{2 p+2}\right\} \text { if } \mathrm{p}=5\right) \text { for } i=2,
\end{aligned}
$$

$$
\begin{array}{ll}
0\left(+Z_{p}\left\{\delta \beta_{(1)} \bar{\mu} \delta\right\} \text { if } p=5\right) & \text { for } i=3, \\
0\left(+Z_{p}\left\{\left(\beta_{(1)} \delta\right)^{2} \bar{\lambda}\right\} \text { if } p=5\right) & \text { for } i=p, \\
0 & \text { for } i=1 \text { andfor } 4 \leqq i \leqq p-1 .
\end{array}
$$

In the above, we put $\eta=\left(\beta_{(1)} \delta\right)^{p-2} \beta_{(p+2)}$
(ii) The element i $\rho \alpha^{i-1} \delta \alpha \in A_{i, 2}, i \geqq 1$, is equal to $i a \sigma(2) \alpha^{i-1}+(i-1) \rho \alpha^{i} \delta$
 of i. In particular,

$$
\begin{aligned}
& 2 \rho \alpha^{p-3} \delta \alpha=a \beta_{(1)} \beta_{(2 p-1)}+3 \rho \alpha^{p-2} \delta+\delta \rho \alpha^{p-2}, \\
& \rho \alpha^{p-2} \delta \alpha=2 \rho \alpha^{p-1} \delta+\delta \rho \alpha^{p-1}
\end{aligned}
$$

Also the following equality holds:

$$
\delta \rho \alpha^{p-1} \delta \alpha=\rho \alpha^{p-1} \delta \alpha \delta .
$$

PROOF. From discussions similar to those in Theorem 8.10, it is easy to see (i) with $\sigma(2) \alpha^{i-1}$ replaced by $\left[\rho_{i}^{\prime}\right]$. Therelations $\sigma(2) \alpha^{i-1} \not \equiv 0 \bmod Z_{p}\left\{\rho \alpha^{i} \delta\right.$ $\left.+\delta \rho \alpha^{i}\right\}\left(+Z_{p}\left\{\left(\beta_{(1)} \delta\right)^{p-2} \kappa_{(1)}\right\}\right.$ if $\left.i=1\right)$, which provides to replace [ρ_{i}^{\prime}] by $\sigma(2) \alpha^{i-1}$, and (ii) follow from the discussions in $[2 ; \S 5]$ and $[4 ; \S \S 5-6]$.
q.e.d.

COROLLARY 8.12. The elements $\rho_{j}^{\prime} \in G_{\left(2 p^{2}+p+j\right) q-3}, 1 \leqq j \leqq p-2$, given in [2; Th. 4.1] can be taken, up to nonzero coefficients,such that $\rho_{j}=\pi \sigma(2) \alpha^{j-1} i$. For these ρ_{j}^{\prime}, there are relations $\rho_{j} \alpha_{k}=k a \rho_{j+k}^{\prime}$ for $j \geqq 0$, fe ${ }^{\wedge} 1, j+k \geqq 2$, where we interpret $\boldsymbol{\rho}_{k}^{\prime}=0$ for $k \geqq p-1$.

§9. Proof of Theorems AII-DII

In this section, we shall prove Theorems AII-DII and Proposition E. We first prove Theorems AII, BII and DII assuming CII.

PROOF of $\mathrm{CII} \Rightarrow$ DII. Consider the induced homomorphism

$$
R(p)_{*}^{(t)}: S^{n(t)} \widetilde{\Omega}_{*}^{U}(X(p)) \longrightarrow \widetilde{\Omega}_{*}^{U}(X(p)),
$$

where $n(t)=t\left(p^{2}+p\right) q$ and $\mathrm{flg}(\mathrm{Jf}(\mathrm{p}))=\Omega_{*}^{U} /\left(p,[P]^{p}\right) \xi(p), P=C P(p-1), \operatorname{deg} \xi(p)$ $=3$ (Proposition 3.2). Since A and $R(p-1)$ induce the multiplications by $[\mathrm{P}]$ and by an element congruent to $[V]^{p}$ modulo $[P]^{p-2}$, we see from the commutativity $A R(p-1)^{t}=R(p)^{(t)} A$ that $R(p)_{*}^{(t)}$ is the multiplication by an [M] such that $[M][P]=[V]^{p t}[P]+[N][P]^{t(p-2)+1}$ for some $[N]$. Hence we have $[\mathrm{M}]=[V]^{p t} \bmod [P]^{p-1}$ in $\Omega_{*}^{U} /\left(p,[P]^{p}\right)$.
q.e.d.

In the same way as Definition 4.8, we define elements in $r f^{*}(M)$ and $\boldsymbol{G}_{\boldsymbol{*}}$
from $R(p)^{(t)}$.
DEFINITION 9.1. Let $t \geqq 2$.

$$
\begin{aligned}
& \rho_{0}(t)=k_{p} R(p)^{(t)} j_{p} \in \mathscr{A}_{(t p+t-1) p q-1}(M), \\
& \rho_{t, 0}=\pi \rho_{0}(t) i=\pi k_{p} R(p)^{\left(t i j_{p}\right.} i e G_{(t p+t-1) p q-2} .
\end{aligned}
$$

Then the following relation is easily seen from the commutativity $\operatorname{AR}(p-1)^{t}$ $=R(p)^{(t)} A$.

$$
\begin{equation*}
\rho_{0}(t) \alpha=\rho(t), \quad \rho_{t, 1} \mathrm{e}\left\langle\rho_{t, 0}, P, \alpha_{1}\right\rangle \tag{9.2}
\end{equation*}
$$

where $\rho(t)=k_{p-1} R(p-1)^{t} j_{p-1}$ and $\rho_{t, 1}=\pi \rho(t) i$ (Definition 4.8).
PROOF of DII \Rightarrow AII, BII. This is similar to the proofs of Theorems A and B [5; p. 105]. It suffices by (9.2) to show $\rho_{t, 0} \neq 0$.

Let h be the $\boldsymbol{M U}$-Hurewicz homomorphism. By DII, $h\left(R(p)^{(t)} j_{p} \dot{\nu}{ }^{\text {T }}\right.$ $[V]^{p} \xi(p) \bmod [P]^{p-1} \xi(p)$,which is not contained in the image of $l_{p *} h=h l_{p *}$ (l_{p} is the inclusion $Y(p) \subset X(p)$ see (3.6)), by Proposition 3.9. Hence $R(p)^{(t)} j_{p} i$ $\notin \operatorname{Im} l_{p *}$, which is equivalent to $\rho_{t, 0}=\left(\pi k_{p}\right)_{*}\left(R(p)^{(t)} j_{p} i\right) \neq 0$. q.e.d.

Next we prove Theorem CII. To prove CII, we prepare some lemmas.
LEMMA 9.3. The kernel of

$$
k_{p-1 *} j_{1}^{*}:\{X(1), X(p-1)\}_{\left(2 p^{2}+2 p-1\right) q-1} \longrightarrow \mathscr{A}_{\left(2 p^{2}+p\right) q-2}(M)
$$

is equal to $Z_{p}\left\{j_{p-1} k_{1} R(1)^{2}\right\}\left(Z_{p}\left\{j_{p-1} \xi k_{1}\right\}\right.$ if $\left.p=5\right)$, where $\xi=\left(\beta_{(1)} \delta\right)^{2} \bar{\lambda}$.
PROOF. By Proposition 8.11 and (8.5), we have the following results:
(1) $\mathscr{A}_{\left(2 p^{2}+2 p\right) q}(M) / \operatorname{Im} \alpha^{*}=0\left(+Z_{p}\{\xi\}\right.$ if $\left.p=5\right)$,
(2) $\mathscr{A}_{\left(2 p^{2}+2 p-1\right) q-1}(M) \Pi \operatorname{Ker} \alpha^{*}=Z_{p}\left\{\beta_{(2 p)}=k_{1} R(1)^{2} j_{1}\right\}$,
(3) $\mathscr{A}_{\left(2 p^{2}+2 p-1\right) q}(M) / \operatorname{Im} \alpha^{*}=0$,
(4) $\mathscr{A}_{\left(2 p^{2}+2 p-2\right) q-1}(M) \mathrm{n} \operatorname{Ker} \alpha^{*}=0$,
(5) $\mathscr{A}_{\left(2 p^{2}+p+1\right) q-1}(M) / \operatorname{Im} \alpha^{*}=0$.

We compute $\{X(1) M\}_{k}$ for some k by applying the above results to the exact sequence (1.3)*. From (1) and (2), we have
(6) $\{X(1), M\}_{\left(2 p^{2}+2 p-1\right) q-3}=Z_{p}\left\{k_{1} R(1)^{2}\right\}\left(+Z_{p}\left\{\xi k_{1}\right\}\right.$ if $\left.P=5\right)$.

From (3) and (4), we have $\{X(1), M\}_{\left(2 p^{2}+2 p-2\right) q-3}=0$, and hence, by (1.3),
(7) $j_{1 *}:\{X(1), M\}_{k-2} \rightarrow \mathscr{A}_{k}(X(1))$ and $j_{p-1 *}:\{X(1), M\}_{k-2} \rightarrow\{X(1) X(p-1)\}_{k}$ are monomorphicfor $k=\left(2 p^{2}+2 p-1\right) q-1$.

We also see from (5) that $j_{1}^{*}:\{X(1), M\}_{\left(2 p^{2}+p\right) q-4} \rightarrow \mathscr{A}_{\left(2 p^{2}+p\right) q-2}(M)$ is monomorphic. Therefore

$$
\operatorname{Ker} k_{p-1 *} j_{1}^{*}=\operatorname{Ker} k_{p-1 *}=\operatorname{Im} j_{p-1 *},
$$

which is equal to the desired result by (6) and (7). q.e.d.
LEMMA 9.4. $\mathscr{A}_{\left(2 p^{2}+2 p-1\right) q-1}(X(1))=Z_{p}\left\{\beta^{2 p} \delta_{1}=\delta_{1} \beta^{2 p}, \beta^{2 p-1} \delta_{1} \beta\right\}\left(+Z_{p}\left\{j_{1}\right.\right.$ $\left.\xi k_{1}\right\}$ if $F 5$), where $\beta^{p}=R(1), \delta_{1}=j_{1} k_{1}[9]$ and $\xi=\left(\beta_{(1)} \delta\right)^{2} \lambda$.

PROOF. By Proposition 8.11 and (8.5), $\mathscr{A}_{\left(2 p^{2}+2 p-1\right) q-1}(M) / \operatorname{Im} \alpha^{*}=0$ and $\mathscr{A}_{\left(2 p^{2}+2 p-2\right) q-2}(M) \Pi$ Ker $\alpha^{*}=Z_{p}$, generated by $-\beta_{(1)} \beta_{(2 p-1)}=\beta_{(2 p-1)} \beta_{(1)}=$ $k_{1} \beta^{2 p-1} \delta_{1} \beta_{j_{1}}$ Hence $\{X(1), M\}_{\left(2 p^{2}+2 p-2\right) q-4}=Z_{p}\left\{k_{1} \beta^{2 p-1} \delta_{1} \beta\right\}$. From this and (6)-(7) in the proof of Lemma 9.3, the lemma easily follows. q.e.d.

PROOF of Theorem CII. Consider the elements $R(p-1)^{2} j_{p-1} k_{1}$ and $R(p-1) j_{p-1} k_{1} R(1)$ in $\{X(1), X(p-1)\}_{\left(2 p^{2}+2 p-1\right) q-1}$. Since fcJ^O and $\varepsilon \beta_{(p)}$ $=\varepsilon^{2} \alpha^{p-2}=0$ by $[6 ;(22.2)]$, these elements lie in $\operatorname{Kerfc}_{\mathrm{p}-1 *} j_{1}^{*}$. Hence, by Lemma 9.3 , we can put

$$
\begin{aligned}
& R(p-1)^{2} j_{p-1} k_{1}=x j_{p-1} k_{1} R(1)^{2}+y j_{p-1} \xi k_{1} \\
& R(p-1) j_{p-1} k_{1} R(1)=x^{\prime} j_{p-1} k_{1} R(1)^{2}+y^{\prime} j_{p-1} \xi k_{1}
\end{aligned}
$$

for some $\mathrm{x}, y, x^{\prime}, y^{\prime} \in Z_{p}\left(y=y^{\prime}=0\right.$ if $\left.p \geqq 7\right)$. Consider the B_{*}^{p-2}-images of these equalities. Then by Theorem C (c) and (1.4), we get

$$
\begin{aligned}
& R(1)^{2} j_{1} k_{1}=x j_{1} k_{1} R(1)^{2}+y j_{1} \xi k_{1}, \\
& R(1) j_{1} k_{1} R(1)=x^{\prime} j_{1} k_{1} R(1)^{2}+y^{\prime} j_{1} \xi k_{1}
\end{aligned}
$$

Since $\delta_{1}=j_{1} k_{1}$ commutes with $R(1)=\beta^{p}[9]$, it follows from Lemma 9.4 that $x=x^{\prime}=1$ and $y=y^{\prime}=0$, i.e., $R(p-1)^{2} j_{p-1} k_{1}=j_{p-1} k_{1} R(1)^{2}$ and $R(p-1) j_{p-1} k_{1} R(1)$ $=j_{p-1} k_{1} R(1)^{2}$. We obtain therefore

$$
\begin{equation*}
R(p-1)^{t} j_{p-1} k_{1}=j_{p-1} k_{1} R(1)^{t} \quad \text { for } t \geqq 2 \tag{*}
\end{equation*}
$$

By Lemma 1.5, $\Delta=j_{p-1} k_{1}$ is contained in the following sequence of cofiberings

$$
X(1) \xrightarrow{\Delta} S^{q+1} X(p-1) \xrightarrow{A} S X(p) \xrightarrow{B^{p-1}} S X(1) .
$$

By Lemma 2.5 (i), (${ }^{*}$) yields the existence of an element $R(p)^{(t)} \in \mathscr{A} *(X(p))$, $t \geqq 2$, such that $R(p)^{(t)} A=A R(p-1)^{t}$ and

$$
\begin{equation*}
B^{p-1} R(p)^{(t)}=R(1)^{t} B^{p-1} \tag{9.5}
\end{equation*}
$$

Consider the element $\rho_{0}(2)=k_{p} R(p)^{(2)} j_{p}$. This satisfies $\rho_{0}(2) \alpha=\mathrm{p}(2)=\rho \alpha$ by (9.2) and [2; Lemma 5.3]. By Proposition 8.11 and (8.5), we have

$$
\rho_{0}(2)=\rho+x \delta \eta \delta \quad \text { for some } \quad x \text { e } \boldsymbol{Z}_{\boldsymbol{p}}
$$

Since $\mathscr{A}_{k}(M)=A_{k}(\alpha, \delta)$ for $k=\left(2 p^{2}+2 p-1\right) q$ by Proposition 8.11, the Toda bracket $\left\langle\alpha^{p-2}, \delta \eta \delta, \alpha\right\rangle$ contains zero. So there is an element $S \in\{X(1), X(p$ $-1)\}_{\left(2 p^{2}+2 p-2\right) q}$ such that $k_{p-2} S j_{1}=\delta \eta \delta$. Then, replacing $R(p)^{(2)}$ by $R(p)^{(2)}$ $-x A^{2} S B^{p-1}$, we obtain $k_{p} R(p)^{(2)} j_{\bar{p}} \rho$. For this $R(p)^{(2)}$, the relations $R(p)^{(2)} A$ $=A R(p-1)^{2}$ and (9.5) also hold, because $B^{p-1} A=0: S^{q} X(p-1) \rightarrow X(p) \rightarrow X(1)$. q.e.d.

Finally we consider the element $\theta\left(R(p)^{(2)}\right)^{*)}$.
LEMMA 9.6. The following composition is monomorphic:
$\theta j_{p *}: \mathscr{A}_{\left(2 p^{2}+2 p\right) q+1}(M) \longrightarrow\{M, X(p)\}_{\left(2 p^{2}+2 p\right) q+3} \longrightarrow\{M, X(p)\}_{\left(2 p^{2}+2 p\right) q+4}$.
PROOF. Put $l=\left(2 p^{2}+2 p\right) q+1$. From the results on G_{l+1}, G_{l} and G_{l-1} [2; Th. 4.1], we have $\mathscr{A}_{l}(M)=0$ if $p \geqq 7$, and $=i_{*} \pi^{*} G_{l+1}=Z_{p}$ if $p=5$. If $p \geqq 7$, the lemma holds obviously, and so we consider the case $p=5$.

By Proposition 1.13, $\theta\left(j_{p}\right)=0$ and so, by Proposition 1.9 (1$), \theta j_{p *}=j_{p *} \theta$, where θ in the right side coincides with $-D$ by Proposition 1.12. We notice that (9.7) D is monomorphic on the subgroup $i_{*} \pi^{*} G_{k+1}$ of $\mathscr{A}_{k}(M)$.

For, $i_{*} \pi^{*} G_{k+1}=\delta^{*}\left(G_{k} \wedge 1_{M}\right)=\delta_{*}\left(G_{k} \wedge 1_{M}\right)$, and δ^{*} and δ_{*} are right inverses of D.
In particular, D on $\mathscr{A}_{l}(M)$ is monomorphic. Since $\mathscr{A}_{l-p q+1}(M)=Z_{p}$ generated by $\beta_{(1)} \delta \bar{\lambda}$ and since $\alpha_{*}^{p}\left(\beta_{(1)} \delta \bar{\lambda}\right)=0, j_{p *}$ on $\mathscr{A}_{l+1}(M)$ is also monomorphic. Thus, $\theta j_{p *}=-j_{p *} D$ is monomorphic.
q.e.d.

LEMMA 9.8. The following composition is monomorphic:
$k_{p}^{*} \theta:\{M, X(p)\}_{\left(2 p^{2}+3 p\right) q+4} \longrightarrow\{M, X(p)\}_{\left(2 p^{2}+3 p\right) q+5} \longrightarrow \mathscr{A}_{\left(2 p^{2}+2 p\right) q+2}(X(p))$.
PROOF. Put $l=\left(2 p^{2}+3 p\right) q+2$. If $p \geqq 7$, then $\mathscr{A}_{l}(M)=\mathscr{A}_{l-p q-1}(M)=0$ and hence $\{M, X(p)\}_{l+2}=0$. So we consider the case $p=5$.

Since $\mathscr{A}_{l-2 q}(M)=0, \alpha_{*}^{p}=0: \mathscr{A}_{l-p q}(M) \rightarrow \mathscr{A}_{l}(M)$. Since $\mathscr{A}_{l-2 q+1}(M)=Z_{p}$ generated by $\delta \beta_{(2)} \delta \beta_{(2 p-1)} \delta=i \beta_{2} \beta_{2 p-1} \pi$ and since $\alpha^{2} \delta \beta_{(2)}=0$ [4; §5], we have also $\alpha_{*}^{p}=0: \mathscr{A}_{l-p q+1}(M) \rightarrow \mathscr{A}_{l+1}(M)$. Hence, we obtain the following commutative diagram of exact sequences:

[^1]From the results on $G_{*}[2 ;$ Th. 4.1$], \mathscr{A}_{k}(M)=i_{*} \pi^{*} G_{k+1}$ for $k=l, l-p q-1$. By (9.7), D 's in the above diagram are monomorphic, and hence θ is also monomorphic.

We have $\mathscr{A}_{l-p q-3 q}(M)=0$ and $\mathscr{A}_{l-3 q+1}(M)=Z_{p}\left\{\left(\beta_{(1)} \delta\right)^{2} \beta_{(2 p-1)}\right.$ or $p=5$. Hence $\alpha^{3 *}=0:\{M, X(p)\}_{l-3 q+3} \rightarrow\{M X(p)\}_{l+3}$, and k^{*}. is monomorphic. Therefore the lemma follows.
q.e.d.

LEMMA 9.9. $\mathscr{A}_{\left(2, p^{2}+2 p\right) a+1}(X(p)) \Pi \operatorname{Ker} 0 \mathrm{n} \operatorname{Ker} k_{D * J} j=0$.
PROOF. Let ξ be any element in the left side. Then $\xi j_{p}=0$ by Lemma 9.6. Write $\xi=\eta k_{p}$. Then $\theta(\eta) k_{p}=0$ and $\eta=0$ by Lemma 9.8. Therefore $\xi=0$. q.e.d.

PROOF of Proposition E. It is easily seen that the element $\xi=\theta\left(R(p)^{(2)}\right)$ satisfies $\theta(\xi)=0$ and $k_{p} \xi j_{\bar{p}}=0$. Then $\theta\left(R(p)^{(2)}\right)=0$ by Lemma 9.9. By setting $R(p)^{(2 t)}=\left(R(p)^{(2)}\right)^{t}$, we obtain $\theta\left(R(p)^{(2 t)}\right)=0$ and $D\left(\rho_{0}(2 t)\right)=0 . \quad$ q.e.d.

§ 10. Generalization of Theorems $\mathbf{A}^{\prime}-\mathbf{D}^{\prime}$

We considered in § 6 a generalization of the elements in Theorems A and B for $t=0 \bmod p$ and obtained Theorems A'-D'. In the same way, we shall generalize the elements in Theorems AII and BII for $t=0 \bmod 2 p$.

The following result corresponds to Lemma 6.1.
LEMMA 10.1. Let $\Delta=j_{p} k_{p}$. Then

$$
\lambda_{X(p)}(\rho \delta)=R(p)^{(2)} \Delta-\Delta R(p)^{(2)} .
$$

PROOF. Since $\left\langle\alpha^{p}, \delta \eta \delta, \alpha^{p}\right\rangle=0, \eta=\left(\beta_{(1)} \delta\right)^{p-2} \beta_{(p+2)}$,there is an element $S^{\prime} \in \mathscr{A}_{\left(2 p^{2}+2 p\right) q}\left(X\left(p\right.\right.$ with $k_{p} S^{\prime} j_{p}=\delta \eta \delta$ (We can take $S^{\prime}=A^{2} S B^{p-1}$ for the element S in the proof of Theorem CII). Then, by routine calculations, the following results are verified:

$$
\begin{gather*}
\mathscr{A}_{\left(2 p^{2}+p\right) q-1}(X(p))=Z_{p}\left\{R(p)^{(2)} \Delta \Delta R(p)^{(2)}, S^{\prime} \Delta, \Delta S^{\prime}\right\} \tag{10.2}\\
\left(+Z_{p}\left\{j_{p} \xi k_{p} j \text { if } p=5\right), \quad \text { where } \xi=\left(\beta_{(1)} \delta\right)^{2} \lambda .\right. \\
k_{p}^{*} j_{p *} \mathscr{A}_{\left(2 p^{2}+p\right) q-1}(M)=Z_{p}\left\{\Delta R(p)^{(2)} \Delta \Delta S^{\prime} \Delta\right\} . \tag{10.3}
\end{gather*}
$$

Put $d=\lambda_{X(p)}(\rho \delta)-R(p)^{(2)} \Delta+\Delta R(p)^{(2)}$ Then, $d A=A d=0$ in the same way as in Lemma 6.1. Hence, $d=0$ for $p \geqq 7$ and $d=x j_{p} \xi k_{p}, x \in Z_{p}$, for $p=5$. It follows easily from Theorem CII and (9.5) that $B^{p-1} \lambda_{X(p)}(\rho \delta) A^{p-1}=0$, $B^{p-1}\left(R(p)^{(2)} \Delta-\Delta R(p)^{(2)}\right) A^{p-1}=R(1)^{2} \delta_{1}-\delta_{1} R(1)^{2}=0$ and $B^{p-1} j_{p} \xi k_{p} A^{p-1}=j_{1} \xi k_{1}$, which is nonzero by Lemma 9.4, Hence $x=0$ and $d=0$ for $p=5$. q.e.d.

From Proposition 1.12, we have
(10.4) $R(p)^{(2)} \Delta-\Delta R(p)^{(2)}$ commutes with any element in $\mathscr{A}_{*}(X(p)) \mathrm{n} \operatorname{Ker} \theta$. By Proposition E, we obtain

THEOREM 10.5. For $R=R(p)^{(2)}$ and $A=j_{p} k_{p}$,

$$
R^{2} \Delta-2 R \Delta R+\Delta R^{2}=0 \quad \text { in } \quad \mathscr{A}_{*}(X(p))
$$

Then all the relations in Corollary 6.4 are also verified for these R and A. In particular, $R^{p} \Delta=\Delta R^{p}$ holds. From this relation together with $R(r)^{2 p} A$ $=A R(r-1)^{2 p}, 2 \leqq r \leqq p-1$, and $R^{p} A=A R(p-1)^{2 p}$, we can construct the following elements $R^{\prime}(r)^{(2)} \in \mathscr{A}_{*}(X(r)), p \leqq r \leqq 2 p$, in the same manner as in the proof of Theorem C^{\prime}.

THEOREM C'II. There exist nonzero elements

$$
R^{\prime}(r)^{(2)} \in \mathscr{A}_{2\left(p^{3}+p^{2}\right) q}(X(r)), \quad p \leqq r \leqq 2 p,
$$

satisfying the following relations:
(i) $R^{\prime}(p)^{(2)}=\left(R(p)^{(2)}\right)^{p}$,
(ii) $A R^{\prime}(r-1)^{(2)}=R^{\prime}(r)^{(2)} A \quad$ for $\quad p+1 \leqq r \leqq 2 p$,
(iii) $B^{p} R^{\prime}(r)^{(2)}=R(r-p)^{2 p} B^{p} \quad$ for $\quad p+1 \leqq r \leqq 2 p$, where $R(p)^{2 p}=\left(R(p)^{(2)}\right)^{p}$.

REMARK. The squares of the elements $R^{\prime}(r), p \leqq r \leqq 2 p-2$, constructed in Theorem \mathbf{C}^{\prime} also satisfy (ii), but may possibly differ from the above elements $R^{\prime}(r)^{(2)}$.

The following results are also obtained by the same techniques.
THEOREM ATI. The elements
$\rho_{2 t p, r}^{\prime}=\pi k_{2 p-r-1}\left(R^{\prime}(2 p-r-1)^{(2)}\right)^{t} j_{2 p-r-1} i \in G_{\left(t p^{3}+t p^{2}-2 p+r+1\right) q-2}$,
$-1 \leqq r \leqq p-1, t \geqq 1$, are nonzero and satisfy

$$
\rho_{2 t p, r}^{\prime} \in\left\langle\rho_{2 t p, r-1}^{\prime}, P, \alpha_{1}\right\rangle \quad \text { for } \quad 0 \leqq r \leqq p\left(\rho_{2 t p, p}^{\prime}=\rho_{2 t p, 0}\right)
$$

THEOREM B'II. The element $\rho_{0}(2 t p)$ in Theorem Ell is strictly divisible by α^{p}, and hence $\beta_{\left(2 t p^{2}\right)}$ ls strictlydivisible by $\alpha^{2 p-1}$.

Here we say that ξ is strictly divisible by η if $\xi=\eta \xi=\zeta \eta$ for some ζ.
THEOREM D'II. The complex bordism module of the mapping cone of $R^{\prime}(r)^{(2)}, p \leqq r \leqq 2 p$, is isomorphic to

$$
\Omega_{*}^{U} /\left(p,[C P(p-1)]^{r},[V]^{2 p^{2}}+\left[N_{r}\right]\right) \quad \text { for some } \quad\left[N_{r}\right] \in\left([C P(p-1)]^{r-1}\right)
$$

Let $B P_{*}(\quad)$ be the Brown-Peterson homology theory for the prime $p(\geqq 5)$. $B P_{*}=B P_{*}\left(S^{0}\right)$ is a polynomial ring on generators v_{i} of degree $2\left(p^{i}-1\right)$ over
the integers localized at p. An ideal / of $B P_{*}$ is called realizable if there is a $C W$-complex (or- spectrum) X with $B P_{*}(X)=B P_{*} / I$.

We consider the ideal $I_{r, s}=\left(p, v_{1}^{r}, v_{2}^{s}\right)$, where $r \geqq 1, s=a p^{f}, a \geqq 1, a \neq 0$ $\bmod p, f \geqq 0$. R. S. Zahler proved [10] that $I_{r . s}$ is not realizable if $r>p^{f}$, and we consider the converse conclusion. In general, the converse is negative. In fact, $I_{p, p}$ is not realizable. Since the element β realizes the multiplication by v_{2} on $B P_{*}(), I_{1, s}$ is realized by the mapping cone of β^{s}. We see therefore that $I_{r, s}, s \neq 0 \bmod p$, is realizable if and only if $\mathrm{r}=1$. Similarly we see the realizability of $I_{r, s}$ for the following four cases:

$$
\begin{array}{ll}
1 \leqq r \leqq p-1, f \geqq 1 ; & p \leqq r \leq 2 p-2, f \geqq 2 \\
r=p, f \geqq 1, s \geqq 2 p ; & r=2 p-1,2 p, f \geqq 2, a=0 \bmod 2
\end{array}
$$

by Theorems D, D', DII, $\mathrm{D}^{\prime} I I$, respectively. In particular, for $f=1$, realizable $I_{r, s}$ are exhausted by the above.

PROPOSITION 10.6. The ideal $\left(p, v_{1}^{r}, v_{2}^{t p}\right), r \geqq 1, t \geqq 1, t \not \equiv 0 \bmod p$, is realizable if and only if $r \leqq p$ and $(\mathrm{r}, t) \neq(p, 1)$.

References

[1] P. Hoffman, Relations in the stable homotopy rings of Moore spaces, Proc. London Math. Soc. 18 (1968), 621-634.
[2] O. Nakamura and S. Oka, Some differentials in the $\bmod p$ Adams spectral sequence ($p \geqq 5$), this journal 305-330.
[3] S. Oka, The stable homotopy groups of spheres II, Hiroshima Math. J. 2 (1972), 99-161.
[4]——O On the stable homotopy ring of Moore spaces, Hiroshima Math. J. 4 (1974), 629-678.
[5], A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5(1975), 87-114.
[6] , The stable homotopy groups of spheres ///, Hiroshima Math. J. 5 (1975), 407-438.
[7] and H. Toda, Non-triviality of an element in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975), 115-125.
[8] H. Toda, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839-842.
[9], Algebra of stable homotopy of \boldsymbol{Z}_{p}-spacesand applications, J. Math. Kyoto Univ. 11 (1971), 197-251.
[10] R. S. Zahler, Fringe families in stable homotopy, to appear.

Department of Mathematics,
Faculty of Science, Hiroshima University

[^0]: *) $Z_{p}\left\{d_{1}, \ldots, d_{n}\right\}$ stands for the Z_{p}-module with basis d_{1}, \ldots, d_{n}.

[^1]: *) For the definition and properties of θ, see $\S 1$,

