A New Family in the Stable Homotopy Groups of Spheres II

ShichiróOKA

(Received December 27, 1975)

Statement of Results

This paper is a continuation of [5] with the same title. We shall use all notations defined in Part I [5].

In Theorem A, we constructed nonzero elements $\rho_{t,r}$, $t \ge 1$, $1 \le r \le p-1$, of order p in G_* , the stable homotopy group of spheres. Here p denotes always a fixed prime integer with $p \ge 5$. The following result is a sequel to Theorem A. We put q = 2(p-1).

THEOREM AII. There exist nonzero elements

$$Pr,0 \in G_{(tp+t-1)pq-2}, \quad t = 2,$$

of order p such that

 $\rho_{t,1} \in \langle \rho_{t,0}, p, \alpha_1 \rangle.$

REMARK. For t=1, there is no element $\rho_{1,0}$ with $\rho_{1,1} \in \langle \rho_{1,0}, p, \alpha_1 \rangle$ This fact is equivalent to the nontriviality of the differential on E_{2p-1}^{2p-2q} , proved by H. Toda [8], in the Adams spectral sequence. The first element $\rho_{2,0}$ coincides with the element ρ_0 constructed in [2].

We recall the stable homotopy rings $\mathscr{A}_{*}(M)$ and $\mathscr{A}_{*}(X(r)), r \geq 1$, of $M = S^{1} \cup_{p} e^{2}$ and $X(r) = S^{2}M \cup_{\alpha^{r}} CS^{rq+2}M$; α being the generator of $\mathscr{A}_{q}(M) = Z_{p}$ (see Definition 1.1). We consider elements in $\mathscr{A}_{*}(M)$ and $\mathscr{A}_{*}(X(p))$ corresponding to the ones in Theorem A II, and obtain the following two results as sequels to Theorems B and C.

THEOREM BII. There exist nonzero elements

$$\rho_0(t) \in \mathscr{A}_{(tp+t-1)pq-1}(M), \quad t \ge 2,$$

such that $\rho_0(t) \alpha = \rho(t)$, $\rho_0(t) \alpha^{p-1} = \alpha^{p-1} \rho_0(t) = \beta_{(tp)}$, $\rho_0(t) \alpha^p = \alpha^p \rho_0(t) = 0$ and $\pi_* i^* \rho_0(t) = P_{f,0}$

Here $\rho(t)$ and $\beta_{(t)}$ are the elements in $\mathscr{A}_*(M)$ introduced in Theorem B

and [9], respectively, and we denote the cofiberings for M and X(r) by $S^1 \xrightarrow{i} M \xrightarrow{\pi} S^2$ and $S^2M \xrightarrow{j_r} X(r) \xrightarrow{k_r} S^{rq+3}M$. Recall also the natural map A: $S^qX(r-1) \rightarrow X(r)$.

THEOREM CII. There exist nonzero elements

 $R(p)^{(t)} \in \mathscr{A}_{t(p+1)pq}(X(p)), \qquad t \ge 2,$

such that $R(p)^{(t)}A = AR(p-1)^t$ and $k_{p*}j_p^*R(p)^{(t)} = \rho_0(t)$, where $R(p-1)^t$ is the t-times composition of the element R(p-1) constructed in Theorem C.

A sequel to Theorem D is given as follows:

THEOREM DII. The element $R(p)^{(t)}$ induces the multiplication by an element congruent to $[V]^{pt}$ modulo $[CP(p-1)]^{p-1}$ on the complex bordism theory, where $[V] \in \Omega^{U}_{*}$ is the class of the Milnor manifold for the prime p with dim V $=2(p^{2}-1)$. Hence the mapping cone of $R(p)^{(t)}$ realizes a cyclic Ω^{U}_{*} -module

 $\Omega_*^U/(p, [CP(p-1)]^p, [V]^{pt} + [N_t])$

for some $[N_t] \in ([CP(p-1)]^{p-1})$ with dim $N_t = 2t(p^2-1)$.

The rings $\mathscr{A}_*(M)$ and $\mathscr{A}_*(X(r))$ form differential algebras over Z_p with differentials D and θ defined in [1] and [9], respectively.

PROPOSITION E. For even t, the elements $\rho_0(t)$ and $R(p)^{(t)}$ can be chosen so that $D(\rho_0(t)) = 0$ and $\theta(R(p)^{(t)}) = 0$.

In §8, we shall compute $\mathscr{A}_{*}(M)$ completely in degree $\langle (2p^{2} + p)q - 4$ (Theorem 8.10) and partially in higher degree (Proposition 8.11), by the same techniques as [4]. In §9, Theorems AII–DII and Proposition E will be proved. From Proposition E, we shall, in § 10, slightly generalize Theorems A'–D' for even *t*. The results are Theorems A'II–D'II.

§8. Some results on $\mathscr{A}_*(M)$

We recall the structure of the ring $\mathscr{A}_{*}(M)$, $M = S^{1} \cup_{p} e^{2}$, from [4], (cf. [1]). This is a differential graded algebra over Z_{p} with differential D of degree +1 [4; (1.6)]. The subalgebra

$$K_* = \sum_k K_k = \operatorname{Ker} D$$

is commutative [4; (1.11)], and there are direct sum decompositions

(8.1)
$$\mathscr{A}_{k}(M) = K_{k} + \delta^{*}K_{k+1} = K_{k} + \delta_{*}K_{k+1},$$

where the right and the left translations δ^* and δ_* by the element $\delta = i\pi \in \mathscr{A}_{-1}(M)$ are monomorphic on K_* [1; Th. A (c)]. For any $\gamma \in G_k$, the smash product $\gamma \wedge 1_M$ lies in K_k [4; Lemma 3.1], and the subgroup $G_k \wedge 1_M$ of K_k is naturally isomorphic to $G_k \otimes Z_p$ [4; Lemma 3.3]. For any $\gamma \in G_{k-1}$ of order p, there is an element $[\gamma] \in K_k$ such that $\pi_* i^* [\gamma] = \gamma$ [4; Lemma 3.2], where $S^1 - i \to M$ $-\pi \to S^2$ is the cofibering for M. This element $[\gamma]$ is determined up to the subgroup $G_k \wedge 1_M$ The subgroup $[G_{k-1}*Z_p]$ of K_k , which consists of those elements $[\gamma]$ for $\gamma \in G_{k-1}*Z_p$, is isomorphic to $G_{k-1}*Z_p$ by the homomorphism $\pi_* i^*$ [4; Lemma 3.3], and there is a direct sum decomposition

(8.2)
$$K_k = [G_{k-1} * Z_p] + G_k \wedge 1_M (\approx G_{k-1} * Z_p + G_k \otimes Z_p).$$

The equalities (8.1) and (8.2) provide that $\mathscr{A}_k(M)$ is computed from G_{k-1} , G_k and G_{k+1} [4; Th. 3.5]. If $\gamma \in G_{k-1} * \mathbb{Z}_p$, then there is a relation [4; (3.5)]

(8.3)
$$\gamma \wedge 1_M = [\gamma]\delta - (-1)^k \delta[\gamma].$$

Let $A_*(\alpha, \delta)$ be the subalgebra generated by the element $\alpha \in \mathscr{A}_q(M)$, q = 2(p-1), and δ . Then a Z_p -basis for $A_k = A_k(\alpha, \delta)$ is given as follows [4; Th. 4.1]:

(8.4)
$$A_{rq} = Z_p\{\alpha^r\}^*, \quad A_{rq-1} = Z_p\{\alpha^r\delta, \alpha^{r-1}\delta\alpha\},$$

 $A_{rq-2} = Z_p\{\alpha^{r-1}\delta\alpha\delta\} \quad for \quad r \ge 1;$
 $A_0 = Z_p\{1_M\}, \quad A_{-1} = Z_p\{\delta\}, \quad A_k = 0 \quad for \ other \quad k,$

and hence,

(8.5) for fe^O and $r \ge 1$, α_*^r and α^{r*} : $A_k(\alpha, \delta) \rightarrow A_{k+rq}(\alpha, \delta)$ are isomorphic. We have also [4; pp. 648-651]

(8.6)
$$[\alpha_r] = \alpha^r, \quad \alpha_r \wedge 1_M = r(\alpha^r \delta - \alpha^{r-1} \delta \alpha),$$
$$\alpha'_{rp} \wedge 1_M = r(\alpha^{rp} \delta - \alpha^{rp-1} \delta \alpha), \quad \alpha''_{rp^2} \wedge 1_M = r(\alpha^{rp^2} \delta - \alpha^{rp^{2}-1} \delta \alpha)$$

In [4; Th. 0.1] we computed the algebra $\mathscr{A}_{*}(M)$ up to degree $(p^{2}+3p+1)q$ -6 from our results on G_{*} [3; Th. A]. We have recently determined G_{*} in higher degrees ([6; Th. C], [2; Th. 4.1]), and so we can easily continue to compute $\mathscr{A}_{*}(M)$.

LEMMA 8.7. There exists an element $\kappa_{(s)} \in K_{k(s)}$, $1 \leq s \leq p-3$, such that $\pi_* i^* \kappa_{(s)} = \kappa_s$, the generator of the p-component of $G_{k(s)-1}$ [6], where $fc(s) = (p^2 + (s+2)p + s + 1)q - 4$. For $1 \leq s \leq p-4$, $\kappa_{(s)}$ is unique and satisfies $\alpha \kappa_{(s)} = \beta_{(1)} \kappa_{(s)} = 0$.

^{*)} $Z_p\{d_1,...,d_n\}$ stands for the Z_p -module with basis $d_1,...,d_n$.

Shichirô OKA

PROOF. Since $K_{k(s)} = Z_p$, generated by $[\kappa_s]$, and $K_{k(s)+q} = K_{k(s)+pq-1} = 0$ ($s \leq p-4$), we have the result by setting $\kappa_{(s)} = [\kappa_s]$. q. e. d.

We defined the elements $\beta_{(s)} = [\beta_s] (s \ge 1, s \ne 0 \mod p)$, $\varepsilon = [\varepsilon']$ and $\lambda = [\lambda_1]$ in K_* ([4; §5], [6; §22]), where β_s , ε' and λ_1 are the generators of G_* ([3; Th. A], [6; Th. C]). For the generators λ' and μ of G_* , we also define the following two elements

 $\bar{\lambda} = [(2p^2+1)q-4,$

(8.9)
$$\mu = \mu \wedge 1_M \in K_{(2p^2 + p - 1)q - 5}.$$

Now let y be any element in the *p*-component of G_k , $(p^{2+}3p+1)q-7 \le k \le (2p^{2+}p)q-4$. For y of order greater than p, i.e., $y = \alpha'_{rp}, \alpha''_{rp^2}$ or μ , the element $y \land \mathbf{1}_M$ is given by (8.6) or (8.9). For y of order p, it suffices by (8.3) to determine $[\gamma]$. Furthermore, by [4; Prop. 3.8], it suffices to do for indecomposable y, i.e., $\gamma = \alpha_r, \beta_s, \kappa_s, \lambda', \lambda_i$, for which we have $[y] = \alpha', \beta_{(s)}, \kappa_{(s)}, I, \lambda \alpha^{i-1}$ by (8.6), [4; (5.9)], Lemma 8.7, (8.8), [6; Th. 22.2], respectively. Thus, from Theorem C of [6], we have obtained the following result.

THEOREM 8.10. The following elements give a Z_p -basis for $\mathscr{A}_k(M)$, $(p^2 + 3p + 1)q - 6 \le k \le (2p^2 + p)q - 5(a, \text{ fee}\{0, 1\}, 0 \le r :$

$$\begin{aligned} \alpha^{i}\delta^{a}, \ \alpha^{i-1}\delta\alpha\delta^{a} & for \ p^{2}+3p+1 \leq t \leq 2p^{2}+p-1; \\ \delta^{a}(\beta_{(1)}\delta)^{i-1}\beta_{(1)}\delta^{b} & for \ p+4 \leq t \leq 2p+1; \\ \delta^{a}(\beta_{(1)}\delta)^{r}\beta_{(s)}\delta^{b} & for \ 4 \leq s \leq 2p-1, s \neq p, \ p+3 \leq r+s \leq 2p-1 \\ & and for \ (r, s) = (p-1, p+1); \\ \delta^{a}\alpha\delta(\beta_{(1)}\delta)^{r}\beta_{(s)}\delta^{b} & for \ 4 \leq s \leq p-1, for \ r=0, \ p+1 \leq s \leq 2p-2 \\ & and for \ r=1, \ s=2p-2; \\ \delta^{a}(\alpha\delta)^{c}(\beta_{(1)}\delta)^{r}\beta_{(2)}\delta\beta_{(\mu)}\delta^{b} & for \ c \in \{0, 1\}, 2 \leq r \leq p-1 \\ & except \ for \ b=c=1, \ r=p-1; \\ \delta^{a}(\beta_{(1)}\delta)^{r}\bar{\epsilon}\delta^{b} & for \ 1 \leq s \leq p-3, \ r+s \leq p-2 \\ \delta^{a}\bar{\lambda}\delta^{b}; \ \delta^{a}\lambda\alpha^{i}\delta^{b} & for \ 0 \leq i \leq p-4; \ \delta\lambda\alpha^{i}\delta\alpha\delta^{b} \ for \ 0 \leq i \leq p-5; \ \bar{\mu}\delta^{a}. \end{aligned}$$

We can also determine completely the ring structure in the cited range, but

we omit the details. For example, the relation [5; Prop. 7.3. (iii)] implies that Toda's relation $(\beta_{(1)}\delta)^p\beta_{(s)}=0$ ($s \ge 2, s \ne -1 \mod p$) [9; Cor. 5.7] also holds for $s \equiv -1 \mod p$. In [7; Cor. 2] and [6; Th. 22.4], several new relations have been obtained. The relation $(\beta_{(1)}\delta)^p \overleftarrow{c}=0$ clearly holds. The following corresponds to the result [6; Cor. 21.5] in G_* :

$$\alpha\delta\beta_{(2p-1)} = z((\beta_{(1)}\delta)^{p-1}\beta_{(p+1)}\hat{+}(\delta\beta_{(1)})^{p-1}\delta\beta_{(p+1)}), \quad z \not\equiv 0 \mod p.$$

We can obtain relations among α , $\beta_{(s)}$, $\kappa_{(t)}$ and ones among α , $\overline{\lambda}$, λ similar to (ii)-(iv) and (vi)-(vii) of [4; Th. 0.1], respectively, and also obtain analogues to (ix)-(xi), and so on.

We have computed $\mathscr{A}_{*}(M)$ up to degree corresponding to [6; Th. C]. We can make further computations corresponding to the recent result [2; Th. 4.1] on G_{*} , but can not determine the ring structure because [2; Th. 4.1] does not give some products in G_{*} .

In Part I, we gave the elements p(2) and $\sigma(2)$ in K_* such that $\rho(2)\alpha^{p-2} = \beta_{(2p)}, \rho(2)\alpha^{p-1} = 0, \ \sigma(2)\alpha^{p-3} = \beta_{(1)}\beta_{(2p-1)}$ and $\sigma(2)\alpha^{p-2} = 0$. We also introduced in [2; Lemma 5.3] a unique element $\rho \in K_*$ with $\rho \alpha = \rho(2)$.

PROPOSITION 8.11. (i) The group $\mathscr{A}_k(M), k = (2p^2 + p + i)q - \varepsilon, 0 \leq i \leq p$, $\varepsilon = 0, 1, 2$, is the direct sum of $A_k(\alpha, \delta)$ in (8.4) and the following subgroup $A_{i,\varepsilon}$:

$$\begin{split} A_{i,2} &= Z_p \{ \rho \delta, \delta \rho, [v], [\gamma] \} \quad for \quad i = 0, \\ &Z_p \{ \sigma(2), \rho \alpha \delta, \delta \rho \alpha, (\beta_{(1)} \delta)^{p-2} \kappa_{(1)} \} \quad for \quad i = 1, \\ &Z_p \{ \sigma(2) \alpha, \rho \alpha^2 \delta, \delta \rho \alpha^2, \delta(\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \delta \} \quad for \quad i = 2, \\ &Z_p \{ \sigma(2) \alpha^{i-1}, \rho \alpha^i \delta, \delta \rho \alpha^i \} \quad for \quad 3 \leq i \leq p-2, \\ &Z_p \{ \sigma(2) \alpha^{i-1}, \rho \alpha^i \delta, \delta \rho \alpha^{i-1} \} \quad for \quad i = p - 1, \\ &Z_p \{ \rho \alpha^{p-1} \delta, \delta \rho \alpha^{p-1} \} \quad for \quad i = p - 1, \\ &Z_p \{ \rho \alpha^{p-1} \delta \alpha, \beta_{(1)} \delta \eta \delta, \delta \beta_{(1)} \delta \eta \} (+ Z_p \{ (\delta \beta_{(1)})^2 \delta \bar{\lambda} \delta \} \text{ if } p = 5) \text{ for } i = p; \\ &A_{i,1} = Z_p \{ \rho, \delta \eta \delta \} \quad for \quad i = 0, \\ &Z_p \{ \rho \alpha^i \} \quad for \quad i = 1 \text{ and for } 3 \leq i \leq p-1, \\ &Z_p \{ \rho \alpha^2, (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \delta, (\delta \beta_{(1)})^{p-3} \delta \kappa_{(2)} \} \\ & \quad (+ Z_p \{ (\delta \beta_{(1)})^{2p+2} \delta \} \text{ if } p = 5) \quad for \quad i = 2, \\ &Z_p \{ \beta_{(1)} \delta \eta \} (+ Z_p \{ (\beta_{(1)} \delta)^2 \bar{\lambda} \delta, (\delta \beta_{(1)})^2 \delta \bar{\lambda} \} \text{ if } p = 5) \quad for \quad i = p; \\ &A_{i,0} = Z_p \{ \eta \delta, \delta \eta \} (+ Z_p \{ \delta \beta_{(1)} \delta \bar{\lambda} \delta \} \text{ if } p = 5) \quad for \quad i = 0, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3} \kappa_{(2)} \} (+ Z_p \{ (\beta_{(1)} \delta)^{2p+2}, (\delta \beta_{(1)})^{2p+2} \} \text{ if } p = 5) \text{ for } i = 2, \\ \\ &Z_p \{ (\beta_{(1)} \delta)^{p-3}$$

Shichirô OKA

$$\begin{array}{ll} 0(+Z_p\{\delta\beta_{(1)}\bar{\mu}\delta\} \ if \ p=\ 5) & for \ i=3,\\ 0(+Z_p\{(\beta_{(1)}\delta)^2\bar{\lambda}\} \ if \ p=\ 5) & for \ i=p,\\ 0 & for \ i=1 \ and \ for \ 4\leq i\leq p-1. \end{array}$$

In the above, we put $\eta = (\beta_{(1)}\delta)^{p-2}\beta_{(p+2)}$

(ii) The element $i\rho\alpha^{i-1}\delta\alpha \in A_{i,2}, i \ge 1$, is equal to $ia\sigma(2)\alpha^{i-1} + (i-1)\rho\alpha^i\delta - \delta\rho\alpha^i$ (modulo $(\beta_{(1)}\delta)^{p-2}\kappa_{(1)}ifi=1$), where the coefficient $a \in \mathbb{Z}_p$ is independent of *i*. In particular,

$$2\rho\alpha^{p-3}\delta\alpha = a\beta_{(1)}\beta_{(2p-1)} + 3\rho\alpha^{p-2}\delta + \delta\rho\alpha^{p-2},$$
$$\rho\alpha^{p-2}\delta\alpha = 2\rho\alpha^{p-1}\delta + \delta\rho\alpha^{p-1}.$$

Also the following equality holds:

$$\delta \rho \alpha^{p-1} \delta \alpha = \rho \alpha^{p-1} \delta \alpha \delta.$$

PROOF. From discussions similar to those in Theorem 8.10, it is easy to see (i) with $\sigma(2)\alpha^{i-1}$ replaced by $[\rho'_i]$. Therelations $\sigma(2)\alpha^{i-1} \neq 0 \mod Z_p \{\rho \alpha^i \delta + \delta \rho \alpha^i\} (+ Z_p \{(\beta_{(1)}\delta)^{p-2}\kappa_{(1)}\})$ if i = 1, which provides to replace $[\rho'_i]$ by $\sigma(2)\alpha^{i-1}$, and (ii) follow from the discussions in [2; §5] and [4; §§ 5-6]. *q.e.d.*

COROLLARY 8.12. The elements $\rho'_j \in G_{(2p^2+p+j)q-3}$, $1 \leq j \leq p-2$, given in [2; Th. 4.1] can be taken, up to nonzero coefficients, such that $\rho_j = \pi \sigma(2) \alpha^{j-1} i$. For these ρ_j , there are relations $\rho_j \alpha_k = ka \rho'_{j+k}$ for $j \geq 0$, fe¹, $j + k \geq 2$, where we interpret $\rho'_k = 0$ for $k \geq p-1$.

§9. Proof of Theorems AII–DII

In this section, we shall prove Theorems AII-DII and Proposition E. We first prove Theorems AII, BII and DII assuming CII.

PROOF of $CII \Rightarrow DII$. Consider the induced homomorphism

$$R(p)^{(t)}_*: S^{n(t)} \widetilde{\Omega}^U_*(X(p)) \longrightarrow \widetilde{\Omega}^U_*(X(p)),$$

where $n(t)=t(p^2+p)q$ and flg(Jf(p)) = $\Omega_*^U/(p, [P]^p) \xi(p)$, P=CP(p-1), deg $\xi(p)$ = 3 (Proposition 3.2). Since A and R(p-1) induce the multiplications by [P] and by an element congruent to $[V]^p$ modulo $[P]^{p-2}$, we see from the commutativity $AR(p-1)^t = R(p)^{(t)}A$ that $R(p)_*^{(t)}$ is the multiplication by an [M]such that $[M][P] = [V]^{pt}[P] + [N][P]^{t(p-2)+1}$ for some [N]. Hence we have $[M] = [V]^{pt} \mod [P]^{p-1} \inf \Omega_*^U/(p, [P]^p)$. q.e.d.

In the same way as Definition 4.8, we define elements in $rf^*(M)$ and G_*

from $R(p)^{(t)}$.

DEFINITION 9.1. Let $t \ge 2$.

$$\begin{split} \rho_0(t) &= k_p R(p)^{(t)} j_p \in \mathscr{A}_{(tp+t-1)pq-1}(M), \\ \rho_{t,0} &= \pi \rho_0(t) i = \pi k_p R(p)^{(t)} j_p i e \ G_{(tp+t-1)pq-2}. \end{split}$$

Then the following relation is easily seen from the commutativity $AR(p-1)^t = R(p)^{(t)}A$.

(9.2)
$$\rho_0(t)\alpha = \rho(t), \quad \rho_{t,1} \in \langle \rho_{t,0}, P, \alpha_1 \rangle,$$

where $\rho(t) = k_{p-1}R(p-1)^{t}j_{p-1}$ and $\rho_{t,1} = \pi \rho(t)i$ (Definition 4.8).

PROOF of **DII** \Rightarrow **AII**, **BII**. This is similar to the proofs of Theorems A and B [5; p. 105]. It suffices by (9.2) to show $\rho_{t,0} \neq 0$.

Let *h* be the **MU**-Hurewicz homomorphism. By DII, $h(R(p)^{(t)}j_p \rightarrow [V]^p \xi(p) \mod [P]^{p-1} \xi(p)$, which is not contained in the image of $l_{p*}h = hl_{p*}$ (l_p is the inclusion $Y(p) \subset X(p)$, see (3.6)), by Proposition 3.9. Hence $R(p)^{(t)}j_pi \neq \mathbb{Im} l_{p*}$, which is equivalent to $\rho_{t,0} = (\pi k_p)_* (R(p)^{(t)}j_pi) \neq 0$. *q.e.d.*

Next we prove Theorem CII. To prove CII, we prepare some lemmas.

LEMMA 9.3. The kernel of

$$k_{p-1*}j_1^*: \{X(1), X(p-1)\}_{(2p^2+2p-1)q-1} \longrightarrow \mathscr{A}_{(2p^2+p)q-2}(M)$$

is equal to $Z_p\{j_{p-1}k_1R(1)^2\}(Z_p\{j_{p-1}\xi k_1\})$ if p = 5, where $\xi = (\beta_{(1)}\delta)^2 \bar{\lambda}$.

PROOF. By Proposition 8.11 and (8.5), we have the following results:

- (1) $\mathscr{A}_{(2p^2+2p)q}(M)/\operatorname{Im} \alpha^* = 0(+ Z_p\{\xi\}) \text{if } p = 5),$
- (2) $\mathscr{A}_{(2p^2+2p-1)q-1}(M) \prod \operatorname{Ker} \alpha^* = Z_p \{\beta_{(2p)} = k_1 R(1)^2 j_1\},$
- (3) $\mathscr{A}_{(2p^2+2p-1)q}(M)/\operatorname{Im} \alpha^* = 0,$
- (4) $\mathscr{A}_{(2p^2+2p-2)q-1}(M)$ n Ker $\alpha^* = 0$,
- (5) $\mathscr{A}_{(2p^2+p+1)q-1}(M)/\operatorname{Im} \alpha^* = 0.$

We compute $\{X(1)M\}_k$ for some k by applying the above results to the exact sequence $(1.3)^*$. From (1) and (2), we have

(6) $\{X(1), M\}_{(2p^2+2p-1)q-3} = Z_p\{k_1R(1)^2\}(+Z_p\{\xi k_1\} \text{ if } P = 5).$ From (3) and (4), we have $\{X(1), M\}_{(2p^2+2p-2)q-3} = 0$, and hence, by (1.3), (7) $j_{1*}: \{X(1), M\}_{k-2} \rightarrow \mathscr{A}_k(X(1)) \text{ and } j_{p-1*}: \{X(1), M\}_{k-2} \rightarrow \{X(1)X(p-1)\}_k$ are monomorphic for $k = (2p^2+2p-1)q-1.$ We also see from (5) that $j_1^*: \{X(1), M\}_{(2p^2+p)q-4} \rightarrow \mathscr{A}_{(2p^2+p)q-2}(M)$ is monomorphic. Therefore

$$\operatorname{Ker} k_{p-1*} j_1^* = \operatorname{Ker} k_{p-1*} = \operatorname{Im} j_{p-1*},$$

q. e. d.

which is equal to the desired result by (6) and (7).

LEMMA 9.4. $\mathscr{A}_{(2p^2+2p-1)q-1}(X(1)) = Z_p \{\beta^{2p}\delta_1 = \delta_1\beta^{2p}, \beta^{2p-1}\delta_1\beta\} (+Z_p \{j_1, \xi_{k_1}\} \text{ if } p=5), \text{ where } \beta^p = R(1), \delta_1 = j_1k_1[9] \text{ and } \xi = (\beta_{(1)}\delta)^2 \overline{\lambda}.$

PROOF. By Proposition 8.11 and (8.5), $\mathscr{A}_{(2p^2+2p-1)q-1}(M)/\operatorname{Im} \alpha^* = 0$ and $\mathscr{A}_{(2p^2+2p-2)q-2}(M) \prod \operatorname{Ker} \alpha^* = \mathbb{Z}_p$, generated by $-\beta_{(1)}\beta_{(2p-1)}=\beta_{(2p-1)}\beta_{(1)}=k_1\beta^{2p-1}\delta_1\beta_1$ Hence $\{X(1), M\}_{(2p^2+2p-2)q-4}=\mathbb{Z}_p\{k_1\beta^{2p-1}\delta_1\beta\}$. From this and (6)-(7) in the proof of Lemma 9.3, the lemma easily follows. *q. e. d.*

PROOF of Theorem CII. Consider the elements $R(p-1)^2 j_{p-1} k_1$ and $R(p-1) j_{p-1} k_1 R(1)$ in $\{X(1), X(p-1)\}_{(2p^2+2p-1)q-1}$. Since fcJ^O and $\varepsilon \beta_{(p)} = \varepsilon^2 \alpha^{p-2} = 0$ by [6; (22.2)], these elements lie in Kerfc_{p-1*} j_*. Hence, by Lemma 9.3, we can put

$$R(p-1)^{2} j_{p-1}k_{1} = x j_{p-1}k_{1}R(1)^{2} + y j_{p-1}\xi k_{1},$$

$$R(p-1) j_{p-1}k_{1}R(1) = x' j_{p-1}k_{1}R(1)^{2} + y' j_{p-1}\xi k_{1}$$

for some x, y, x', $y' \in \mathbb{Z}_p$ (y = y' = 0 if $p \ge 7$). Consider the B_*^{p-2} -images of these equalities. Then by Theorem C (c) and (1.4), we get

$$R(1)^{2} j_{1}k_{1} = x j_{1}k_{1}R(1)^{2} + y j_{1}\xi k_{1},$$

$$R(1) j_{1}k_{1}R(1) = x' j_{1}k_{1}R(1)^{2} + y' j_{1}\xi k_{1}.$$

Since $\delta_1 = j_1 k_1$ commutes with $R(1) = \beta^p$ [9], it follows from Lemma 9.4 that x = x' = 1 and y = y' = 0, i.e., $R(p-1)^2 j_{p-1} k_1 = j_{p-1} k_1 R(1)^2$ and $R(p-1) j_{p-1} k_1 R(1) = j_{p-1} k_1 R(1)^2$. We obtain therefore

(*)
$$R(p-1)^t j_{p-1} k_1 = j_{p-1} k_1 R(1)^t$$
 for $t \ge 2$.

By Lemma 1.5, $\Delta = j_{p-1}k_1$ is contained in the following sequence of cofiberings

$$X(1) \xrightarrow{A} S^{q+1}X(p-1) \xrightarrow{A} SX(p) \xrightarrow{B^{p-1}} SX(1).$$

By Lemma 2.5 (i), (*) yields the existence of an element $R(p)^{(t)} \in \mathscr{A}_*(X(p))$, $t \ge 2$, such that $R(p)^{(t)}A = AR(p-1)^t$ and

(9.5)
$$B^{p-1}R(p)^{(t)} = R(1)^t B^{p-1}.$$

Consider the element $\rho_0(2) = k_p R(p)^{(2)} j_p$. This satisfies $\rho_0(2) \alpha = p(2) = \rho \alpha$ by (9.2) and [2; Lemma 5.3]. By Proposition 8.11 and (8.5), we have

$$\rho_0(2) = \rho + x \delta \eta \delta$$
 for some $x \in \mathbb{Z}_p$.

Since $\mathscr{A}_k(M) = A_k(\alpha, \delta)$ for $k = (2p^2 + 2p - 1)q$ by Proposition 8.11, the Toda bracket $\langle \alpha^{p-2}, \delta\eta\delta, \alpha \rangle$ contains zero. So there is an element $S \in \{X(1), X(p-1)\}_{(2p^2+2p-2)q}$ such that $k_{p-2}Sj_1 = \delta\eta\delta$. Then, replacing $R(p)^{(2)}$ by $R(p)^{(2)} - xA^2SB^{p-1}$, we obtain $k_pR(p)^{(2)}j_{\overline{p}}\rho$. For this $R(p)^{(2)}$, the relations $R(p)^{(2)}A = AR(p-1)^2$ and (9.5) also hold, because $B^{p-1}A = 0$: $S^qX(p-1) \to X(p) \to X(1)$.

Finally we consider the element $\theta(R(p)^{(2)})^{*}$.

LEMMA 9.6. The following composition is monomorphic:

$$\theta j_{p*}: \mathscr{A}_{(2p^2+2p)q+1}(M) \longrightarrow \{M, X(p)\}_{(2p^2+2p)q+3} \longrightarrow \{M, X(p)\}_{(2p^2+2p)q+4}$$

PROOF. Put $l = (2p^2 + 2p)q^{+1}$. From the results on G_{l+1} , G_l and G_{l-1} [2; Th. 4.1], we have $\mathscr{A}_l(M) = 0$ if $p \ge 7$, and $= i_*\pi^*G_{l+1} = Z_p$ if p = 5. If $p \ge 7$, the lemma holds obviously, and so we consider the case p = 5.

By Proposition 1.13, $\theta(j_p)=0$ and so, by Proposition 1.9 (i), $\theta j_{p*}=j_{p*}\theta$, where θ in the right side coincides with -D by Proposition 1.12. We notice that (9.7) D is monomorphic on the subgroup $i_*\pi^*G_{k+1}$ of $\mathscr{A}_k(M)$.

For, $i_*\pi^*G_{k+1} = \delta^*(G_k \wedge 1_M) = \delta_*(G_k \wedge 1_M)$, and δ^* and δ_* are right inverses of D. In particular, D on $\mathscr{A}_l(M)$ is monomorphic. Since $\mathscr{A}_{l-pq+1}(M) = Z_p$ generated by $\beta_{(1)}\delta\bar{\lambda}$ and since $\alpha_*^p(\beta_{(1)}\delta\bar{\lambda}) = 0$, j_{p*} on $\mathscr{A}_{l+1}(M)$ is also monomorphic. Thus, $\theta j_{p*} = -j_{p*}D$ is monomorphic. q.e.d.

LEMMA 9.8. The following composition is monomorphic: $k_p^*\theta: \{M, X(p)\}_{(2p^2+3p)q+4} \longrightarrow \{M, X(p)\}_{(2p^2+3p)q+5} \longrightarrow \mathscr{A}_{(2p^2+2p)q+2}(X(p)).$

PROOF. Put $l = (2p^2+3p)q+2$. If $p \ge 7$, then $\mathscr{A}_l(M) = \mathscr{A}_{l-pq-1}(M) = 0$ and hence $\{M, X(p)\}_{l+2} = 0$. So we consider the case p = 5.

Since $\mathscr{A}_{l-2q}(M) = 0$, $\alpha_{*}^{p} = 0$: $\mathscr{A}_{l-pq}(M) \rightarrow \mathscr{A}_{l}(M)$. Since $\mathscr{A}_{l-2q+1}(M) = Z_{p}$ generated by $\delta\beta_{(2)}\delta\beta_{(2p-1)}\delta = i\beta_{2}\beta_{2p-1}\pi$ and since $\alpha^{2}\delta\beta_{(2)} = 0$ [4; §5], we have also $\alpha_{*}^{p} = 0$: $\mathscr{A}_{l-pq+1}(M) \rightarrow \mathscr{A}_{l+1}(M)$. Hence, we obtain the following commutative diagram of exact sequences:

$$\begin{array}{cccc} 0 \longrightarrow \mathscr{A}_{l}(M) \longrightarrow \{M, X(p)\}_{l+2} \longrightarrow \mathscr{A}_{l-pq-1}(M) \\ & & & \downarrow^{-D} & & \downarrow^{\theta} & & \downarrow^{D} \\ 0 \longrightarrow \mathscr{A}_{l+1}(M) \longrightarrow \{M, X(p)\}_{l+3} \longrightarrow \mathscr{A}_{l-pq}(M) \,. \end{array}$$

^{*)} For the definition and properties of θ , see § 1,

Shichirô OKA

From the results on G_* [2; Th. 4.1], $\mathscr{A}_k(M) = i_* \pi^* G_{k+1}$ for k = l, l - pq - 1. By (9.7), **D**'s in the above diagram are monomorphic, and hence θ is also monomorphic.

We have $\mathscr{A}_{l-pq-3q}(M) = 0$ and $\mathscr{A}_{l-3q+1}(M) = Z_p\{(\beta_{(1)}\delta)^2\beta_{(2p-1)}\}$ or p = 5. Hence $\alpha^{3*} = 0: \{M, X(p)\}_{l-3q+3} \rightarrow \{MX(p)\}_{l+3}$, and k_{\pm}^* is monomorphic. Therefore the lemma follows. q.e.d.

LEMMA 9.9. $\mathscr{A}_{(2p^2+2p)q+1}(X(p)) \prod \text{Ker0 n } \text{Ker}k_{p*}j=0.$

PROOF. Let ξ be any element in the left side. Then $\xi j_p = 0$ by Lemma 9.6. Write $\xi = \eta k_p$. Then $\theta(\eta)k_p = 0$ and $\eta = 0$ by Lemma 9.8. Therefore $\xi = 0$. q.e.d.

PROOF of Proposition E. It is easily seen that the element $\xi = \theta(R(p)^{(2)})$ satisfies $\theta(\xi) = 0$ and $k_p \xi j_p = 0$. Then $\theta(R(p)^{(2)}) = 0$ by Lemma 9.9. By setting $R(p)^{(2t)} = (R(p)^{(2)})^t$, we obtain $\theta(R(p)^{(2t)}) = 0$ and $D(\rho_0(2t)) = 0$. q.e.d.

§ 10. Generalization of Theorems A'-D'

We considered in § 6 a generalization of the elements in Theorems A and B for $t=0 \mod p$ and obtained Theorems A'-D'. In the same way, we shall generalize the elements in Theorems AII and BII for $t=0 \mod 2p$.

The following result corresponds to Lemma 6.1.

LEMMA 10.1. Let $\Delta = j_p k_p$. Then

$$\lambda_{X(p)}(\rho\delta) = R(p)^{(2)} \varDelta - \varDelta R(p)^{(2)}.$$

PROOF. Since $\langle \alpha^p, \delta\eta\delta, \alpha^p \rangle = 0$, $\eta = (\beta_{(1)}\delta)^{p-2}\beta_{(p+2)}$, there is an element $S' \in \mathscr{A}_{(2p^2+2p)q}(X(p))$ with $k_p S' j_p = \delta\eta\delta$ (We can take $S' = A^2 S B^{p-1}$ for the element S in the proof of Theorem CII). Then, by routine calculations, the following results are verified:

(10.2) $\mathscr{A}_{(2p^2+p)q-1}(X(p)) = Z_p\{R(p)^{(2)}\Delta\Delta R(p)^{(2)}, S'\Delta, \Delta S'\}$

$$(+Z_p\{j_p\xi k_p\} if p=5), \quad where \ \xi = (\beta_{(1)}\delta)^2 \lambda.$$

(10.3)
$$k_p^* j_{p*} \mathscr{A}_{(2p^2+p)q-1}(M) = Z_p \{ \Delta R(p)^{(2)} \angle \Delta S' \Delta \}.$$

Put $d = \lambda_{X(p)}(\rho\delta) - R(p)^{(2)}\Delta + \Delta R(p)^{(2)}$ Then, dA = Ad = 0 in the same way as in Lemma 6.1. Hence, d=0 for $p \ge 7$ and $d = xj_p\xi k_p, x \in Z_p$, for p = 5. It follows easily from Theorem CII and (9.5) that $B^{p-1}\lambda_{X(p)}(\rho\delta)A^{p-1} = 0$, $B^{p-1}(R(p)^{(2)}\Delta - \Delta R(p)^{(2)})A^{p-1} = R(1)^2\delta_1 - \delta_1 R(1)^2 = 0$ and $B^{p-1}j_p\xi k_pA^{p-1} = j_1\xi k_1$, which is nonzero by Lemma 9.4, Hence x = 0 and d = 0 for p = 5. q.e.d. From Proposition 1.12, we have

(10.4) $R(p)^{(2)}\Delta - \Delta R(p)^{(2)}$ commutes with any element in $\mathscr{A}_*(X(p))$ h Ker θ . By Proposition E, we obtain

THEOREM 10.5. For
$$R = R(p)^{(2)}$$
 and $A = j_p k_p$,

$$R^2 \varDelta - 2R \varDelta R + \varDelta R^2 = 0$$
 in $\mathscr{A}_*(X(p))$.

Then all the relations in Corollary 6.4 are also verified for these R and A. In particular, $R^p \Delta = \Delta R^p$ holds. From this relation together with $R(r)^{2p}A = AR(r-1)^{2p}$, $2 \le r \le p-1$, and $R^p A = AR(p-1)^{2p}$, we can construct the following elements $R'(r)^{(2)} \in \mathscr{A}_*(X(r))$, $p \le r \le 2p$, in the same manner as in the proof of Theorem C'.

THEOREM C'II. There exist nonzero elements

$$R'(r)^{(2)} \in \mathscr{A}_{2(p^3+p^2)q}(X(r)), \quad p \leq r \leq 2p,$$

satisfying the following relations:

(i) $R'(p)^{(2)} = (R(p)^{(2)})^p$,

(ii) $AR'(r-1)^{(2)} = R'(r)^{(2)}A$ for $p+1 \le r \le 2p$, (iii) $B^{p}R'(r)^{(2)} = R(r-p)^{2p}B^{p}$ for $p+1 \le r \le 2p$,

(iii) $D^{r}R(r)^{(-)} = R(r-p)^{-r}D^{r}$ for $p+1 \ge r \ge 2p$, where $R(p)^{2p} = (R(p)^{(2)})^{p}$.

REMARK. The squares of the elements $R'(r), p \le r \le 2p-2$, constructed in Theorem C' also satisfy (ii), but may possibly differ from the above elements $R'(r)^{(2)}$.

The following results are also obtained by the same techniques.

THEOREM ATI. The elements $\rho'_{2tp,r} = \pi k_{2p-r-1} (R'(2p-r-1)^{(2)})^t j_{2p-r-1} i \in G_{(tp^3+tp^2-2p+r+1)q-2},$ $-1 \leq r \leq p-1, t \geq 1$, are nonzero and satisfy

$$\rho'_{2tp,r} \in \langle \rho'_{2tp,r-1}, P, \alpha_1 \rangle$$
 for $0 \leq r \leq p(\rho'_{2tp,p} = \rho_{2tp,0})$

THEOREM B'II. The element $\rho_0(2tp)$ in Theorem Ell is strictly divisible by α^p , and hence $\beta_{(2tp^2)}$ is strictly divisible by α^{2p-1} .

Here we say that ξ is strictly divisible by η if $\xi = \eta \xi = \xi \eta$ for some ξ .

THEOREM D'II. The complex bordism module of the mapping cone of $R'(r)^{(2)}, p \leq r \leq 2p$, is isomorphic to

$$\Omega_*^{U}/(p, [CP(p-1)]^r, [V]^{2p^2} + [N_r])$$
 for some $[N_r] \in ([CP(p-1)]^{r-1}).$

Let $BP_*()$ be the Brown-Peterson homology theory for the prime $p \ (\geq 5)$. $BP_* = BP_*(S^0)$ is a polynomial ring on generators v_i of degree $2(p^i - 1)$ over the integers localized at p. An ideal / of BP_* is called realizable if there is a CW-complex (or- spectrum) X with $BP_*(X)=BP_*/I$.

We consider the ideal $I_{r,s}=(p,v_1^r,v_2^s)$, where $r \ge 1$, $s = ap^f$, $a \ge 1$, $a \ne 0 \mod p$, $f \ge 0$. R. S. Zahler proved [10] that $I_{r,s}$ is not realizable if $r > p^f$, and we consider the converse conclusion. In general, the converse is negative. In fact, $I_{p,p}$ is not realizable. Since the element β realizes the multiplication by v_2 on $BP_*()$, $I_{1,s}$ is realized by the mapping cone of β^s . We see therefore that $I_{r,s}$, $s \ne 0 \mod p$, is realizable if and only if r=1. Similarly we see the realizability of $I_{r,s}$ for the following four cases:

$$1 \le r \le p-1, f \ge 1; \qquad p \le r \le 2p-2, f \ge 2;$$

$$r = p, f \ge 1, s \ge 2p; \qquad r = 2p-1, 2p, f \ge 2, a = 0 \mod 2$$

by Theorems D, D', DII, D'II, respectively. In particular, for f=1, realizable $I_{r,s}$ are exhausted by the above.

PROPOSITION 10.6. The ideal $(p, v_1^r, v_2^{tp}), r \ge 1, t \ge 1, t \ne 0 \mod p$, is realizable if and only if $r \le p$ and $(r, t) \ne (p, 1)$.

References

- P. Hoffman, Relations in the stable homotopy rings of Moore spaces, Proc. London Math. Soc. 18 (1968), 621-634.
- [2] O. Nakamura and S. Oka, Some differentials in the mod p Adams spectral sequence $(p \ge 5)$, this journal 305-330.
- [3] S. Oka, The stable homotopy groups of spheres II, Hiroshima Math. J. 2 (1972), 99-161.
- [4]——, On the stable homotopy ring of Moore spaces, Hiroshima Math. J. 4 (1974), 629-678.
- [5], *A new family in the stable homotopy groups of spheres,* Hiroshima Math. J. 5(1975), 87–114.
- [6]____, The stable homotopy groups of spheres ///, Hiroshima Math. J. 5 (1975), 407–438.
- [7] _____and H. Toda, *Non-triviality of an element in the stable homotopy groups of spheres,* Hiroshima Math. J. 5 (1975), 115-125.
- [8] H. Toda, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839-842.
- [9] , Algebra of stable homotopy of Z_p -spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.
- [10] R. S. Zahler, Fringe families in stable homotopy, to appear.

Department of Mathematics, Faculty of Science, Hiroshima University

;