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1. Introduction

Let X be an irreducible normal complex space which is a /c-sheeted (ramified)
covering space over the m-dimensional complex affine space Cm and L-»F a
positive holomorphic line bundle over a smooth projective variety of dimension
n^m. In [9] we proved the following defect relation:

Let/: X-»Fbe a non-degenerate meromorphic mapping. Then for divisors
«

DI (/ = !,..., q) determined by global holomorphic sections of L such that Σ Dt

has simple normal crossings,

(1.1) .Σ δ(Di) ^

where Kv denotes the canonical bundle over V and /0 is an integer independent of
each {DJ (cf. (2.6) and Theorem B in section 2).

We wish to investigate what the defect relation (1.1) amounts to, determining
its right hand side more explicitly in the rather simple case dim X = dim V—\.
This is the first aim of the present note.

Since R. Nevanlinna created his theory of meromorphic functions in the com-
plex plane C (cf. [6]), many authors have done its generalization for holomorphic
mappings between two abstract Riemann surfaces R and S in various ways.
Sario [11] obtained a very general defect relation and simultaneously showed that
if the genus of S is greater than 1, there can be only a few restricted cases where
there really exist non-trivial ( = non-constant) holomorphic mappings /: R-*S
for which the general defect relation remains valid in its proper sense. Therefore
it is one of the most interesting problems to determine the types (in any sense) of
the Riemann surfaces R and S admitting non-trivial holomorphic mappings from
R into S for which the defect relation holds in the proper sense. So far as the
existence of non-trivial holomorphic mappings from R into S, Ozawa [10], Mutό
[5], Hiromi-Mutό [3] and Niino [7, 8] dealt with this problem in the case when
R (resp. S) is a finitely sheeted covering surface over C (resp. C or the Riemann
sphere P1). Our second aim is to study holomorphic mappings /: X-+S, where
X is a finitely sheeted covering surface over C and S is a closed Riemann surface,
from a point of view different from that of Ozawa [10], Mutό [5] and Hiromi-
Mutό [3]. In the case when X is a 2-sheeted covering surface over C, we shall
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completely determine the type of S which admits a non-trivial holomorphic map-
ping /: X-+S satisfying an additional condition (cf. Theorem 3 in section 4
and the examples in section 5).

The author is very thankful to Professors M. Ozawa, H. Muto and K.
Niino for many valuable conversations.

2. Preliminaries

Throughout this note we let Xk denote a λ -sheeted (ramified) covering surface
over C with projection π: Xk-*C, S a closed Riemann surface and suppose
that all holomorphic mappings are non-trivial. Let α be a meromorphic function
on Xk. As usual, we write T(r, α), N(r, α) and m(r, α) for the Nevanlinna-
Selberg characteristic function of α, the counting function of poles of α and
the proximity function of α, respectively (Selberg [12]).

Let/: Xk-*S be a holomorphic mapping and L->S a holomorphic line bundle
with an hermitian metric whose curvature form is ω. For the holomorphic
mapping /, we define the characteristic function with respect to L by

where Xk(t) = {xeXk: |π(x)|<ί} (cf. [1, 9]). If ω' is the curvature form of
another hermitian metric in L,

T,(r,L)=±

so that 7}(r, L) is well defined, up to an 0(l)-term. Let L'->S be another line
bundle. Then, by definition,

(2.1) 7}(r, L®L') = 7>(r, L) + 7}(r, L1) + O(l).

We denote by c(L)eH2(S, Z) the Chern class of a line bundle L over S,
which is identified with an integer through the isomorphism H2(S, Z)^Z (cf.,
e.g., [2]). For a line bundle L-+S with c(L) = 0, there is an hermitian metric in
L whose curvature form constantly vanishes1}. In this case we have 7}(r, L) =

0(1). Therefore we see that

(2.2) 7}(r,L) = 7}(r,L') + 0(l)

for line bundles L and L' over 5 with c(L) = c(I/). Taking a line bundle L over

S with c(L) = l, we define the characteristic function of/by

1) This is a general property of Kaehler manifolds. See Weil [13, chapter V].



Holomorphic Mappings into Closed Riemann Surfaces 283

7}(r)=7}(r,L).

From (2.1) and (2.2) we obtain

(2.3) T/r

for any line bundle L over S. For a point a e S we define the counting func-
tion Nf(r, a) of roots of f(x) = a (counting multiplicities) as in case S = P1 (see

[12]). For a divisor D = Σvr ai on S we set

Let L-+S be the line bundle determined by a positive divisor D on S. Then there
is a global holomorphic section σ of L such that the divisor (σ) determined by σ
equals D. Taking an hermitian metric | | in L with |σ | 5^1, we set

mf(r, D) = -M log π*?y,
A: Jax k(r) / | f f |

where f7(z) = ——d# with z = reiθ (r>0). We have the so-called first main theorem

(cf. [1,9]):

(2.4) 7}(r, L) = N/r, D) + m/r, D) + 0(1)

especially, if D = 1. α with α e S, then

(2.5) 7}(r) = JV/r, α) + m/r, α) + O(l),

where my(r, a) stands for mf(r, I-a).
We set

for α e S.

DEFINITION. We say that a holomorphic mapping /: Xk^>S separates the
fibres of Xk—^C if there exists a point zeC such that π is unramified over z

and/(x1)τέ/(x2) for any distinct points xί9 x2 of π-1(z).

Let &(S) be the field of rational function on S, C(α) the field generated by
α 6 £%(S) over the complex number field C and [̂ (5): C(α)] the extension degree

of ®(S) over C(α).

THEOREM A (Proposition 1 in [9]). For a holomorphic mapping f:

Xk-+S, there are a k'-sheeted covering surface X'k> over C with projection
π', a holomorhic mapping λ: Xk-+X'k> and a holomorphic mapping f: Xk>^>S
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which separates the fibres of X'k> —*—>C, such that the diagram

c<Γ ϊλ J>*
is commutative.

REMARK (cf. [9, section 5]). For the holomorphic mappings / and /' in

Theorem A and any a e S we have

7}(r)=7},(r),

N/r, ά) = Nf.(r,a)9

m/r, 0) = mr(r, a) .

In the same situation as in Theorem A, we put

(2.6) /o = inf {[0(S): C(α)] α e 0(S) such that /'*α

separates the fibres of X^.-^-^C] .

THEOREM B (Theorem 2 in [9]). Let f: Xk-*S be a holomorphic mapping.

Then

aeS

where g is the genus of S and 70 is the integer given above.

COROLLARY. If there is a holomorphic mapping from Xk into S, then

REMARK. Cf. Hiromi-Mutό [3, II, section 5].

3. Characteristic function Tf(r)

We shall show an elementary property of the characteristic function 7}(r)
of a holomorphic mapping/: Xk-^S.

THEOREM 1. Let f: Xk-+S be a holomorphic mapping and α

Then

PROOF. Let L->5 be a line bundle determined by the divisor D of poles
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of α. Then c(L) = [̂ (S): C(α)] and there is a holomorphic section σ0 of L
which determines a divisor equal to D. By (2.3) and (2.4) it suffices to show that

T(r,/*α) = JV/r, D) + m/(r, D) + 0(l).

By definition, N(r, /*α) = N/(r, D). Setting σ t = ασ0 which is a holomorphic
section of L, we have

(3.1) m(r,/*α) = * ( log+\f*a\π*η»

Iog+ -,,. .
/*|σ0|

where each \σ,\ is the length of σt with respect to an hermitian metric | | in L such
that jσd^l . Let Θ<1 be a positive number such that \σι(y)\*zθ for ye{\σ0(y)\£
θ}. Then

log

for y e S. It follows that

Combining this with (3.1), we get

m/r, D) = m(r,/*α) + 0(l).

This completes the proof.

4. Holomorphic mappings from Xk into 5"

THEOREM 2. For α holomorphic mapping f: Xk-*S we have

(4.1)
αεS

REMARK. In case 0=0, i.e., S=P1, (4.1) becomes Σδ(ά)^2k, which is
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the defect relation due to Selberg [12]. Let fc=l. Then Σδ(a)^2-2g. This
implies the well-known fact that there is no holomorphic mapping of C into
5 with genus greater than one.

PROOF. By Theorem A and its remark we may assume that / separates
the fibres of Xk—

 1L-^C. Take z0eC such that π is unramified over z0 and

/(X)^/(X) f°Γ any distinct points x, x' of π~1(z0), and set yo=f(x0) with x 0e
π~1(z0). As is well-known, there is a rational function αe^(S) whose divisor
of poles equals (g + l) y0. Since the point x0 is a pole of /*α and the other
points of π"i(z) are not poles of/*α,/*α is necessarily a fc-valued meromorphic
function in C if /*α is regarded as a multi- valued meromorphic function in C.
It follows that/*α separates the fibres of Xk-

JL^C. Thus the integer /0 given by
(2.6) satisfies I0^g + l and so the defect relation (4.1) follows from Theorem B.

We denote by S(g, q) a closed Riemann surface of genus g such that q =
inf {[̂ : C(α)]; αe ̂ }, where ̂  is the field of rational functions on the Riemann
surface. For a holomorphic mapping /: Xk-+S(g, q) which separates the fibres
of Xk-

JL-^C9 the integer /0 defined by (2.6) satisfies I0^q. In what follows,
we consider the case where I0 = q9 that is, /satisfies that

there is a rational function α e &(S(g, q)) such that

, q)): C(α)] = # and/*α separates the fibres of Xk-
(4.2)

THEOREM 3. Letf: X2^>S(g, q) be a holomorphic mapping satisfying (4.2).
Then

(4.3)
aeS

and if g^2, the type (g, q) of S(g, q) is one of the foil owing A, B, C, D and E:

B

D

REMARK. If 0=0 or 1, there are many holomorphic mappings/: Xk-^>S(g,
q) with k arbitrary, and if g^2, there exists no holomorphic mapping /: C->S(#,
q). Therefore g^.2 is the only interesting case. In the next section we shall
give examples for all the cases above.

PROOF. The defect relation (4.3) readily follows from Theorem B and
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(4.2). It follows from (4.3) that

(4.4) 0

By Meis [4] we have

(4.5) 2q ^

From (4.4) and (4.5) we deduce the second assertion.

5. Examples for Theorem 3

We shall give examples for A, B, C, D and E in Theorem 3. In the fol-
lowing, eί9 e2 and e3 are distinct non-zero complex numbers.

A (see Ozawa [10, section 5]). Let p(z) be Weierstrass' elliptic function
satisfying

{p'(z)}2

Let S be a hyperelliptic surface defined by

and X2 a Riemann surface defined by x2 = p(z). We define/: X2-*S by

Then S = S(2, 2) and/: X2-*S(29 2) satisfies (4.2).

B (see Ozawa [10, section 5]). Let sn z be Jacobi's elliptic function satisfy-
ing

(sn'z)2 = (l-sn2z)(l-μ2sn2z)

with μ2 Φ1. Let S be a hyperelliptic surface defined by

n2=(l-ι>4)(l-/ι2t>4),

and X2

 a Riemann surface defined by x2 = snz. We define/: X2-*S by

I i? = ±x/snz ]
65.

w = sn'z j

Then S = S(3, 2) and/: X2->S(3, 2) satisfies (4.2).
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C. Let p(z) be Weierstrass' elliptic function given in A. Let S be a Rcie-
mann surface defined by

(5.1) v4 =4(u-el)(u-e2)(u-e3).

Then the genus of S is 3. Let X2 be a Riemann surface defined by x2 = ρ'(z)

and set

f t ; = ± V F ω ]
65.

I u = p(z) ]

The rational function v satisfies \β(S): C(v}] = 3 and f*υ sepatates the fibres
of the covering surface X2 over C.

Now we must show S = S(3, 3), that is, q = 3. If this is shown, the holo-
morphic mapping / satisfies (4.2). By the definition (5.1), q^3. If we con-
sider S as a covering surface over P1 with projection v, S is regularly branched
over v= oo. Hence there is one point a^eS over υ = oo and the rational function
v has an only pole a^ with order 3. Therefore a^ is a Weierstrass point of 5.
Since the gap sequence of a Weierstrass point of a hyperelliptic surface is {1,
3, 5,...}, S is not hyperelliptic, that is, q>2. Therefore we obtain q = 3.

(5.2)

D (see Mutό [5, section 10]). Set

dt

We write w=φ(z) for the inverse function of (5.2) which is a double periodic mero-
morphic function in C (cf., e.g., [6, section 50]) and satisfies

Let S be a Riemann surface defined by

U3=(v2-e1)
2(v2-e2)

2(υ2-e3)
2,

and X2 a Riemann surface defined by x2 = φ(z). We put

>eS.
u = φ'(z) }

By using the rational function \l(v-*Je\) on S and Weierstrass' gap sequence
as in the case C, we see S=S(4, 3). The holomorphic mapping /: X2^S(4, 3)
satisfies (4.2).
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E. We set

(5.3) z = dt

The inverse function w = ψ(z) of (5.3) satisfies

Let S be a Riemann surface defined by

whose genus g is 5, and X2 a Riemann surface defined by x2 = φ(z). We set

f:X3±Jφ(z)
u = φ'(z)

eS.

We must show q = 49 where g = inf{[#(S): C(α)];.αε&(S)}. Because q^4,
it suffices to check g/2, 3.

Suppose f̂ = 3. Then there is vΈ&(S) with [̂ (S): C(t/)] = 3. We
get a diagram of field extensions:

Since the degree [̂ (5): C(t;, t?')] is a common divisor of 3 and 4,
ϋ'). There are rational functions A^T), / = !, 2, 3, in Tsuch that

(5.4) = 0.

If f*v'(z) is 2-valued as a multi-valued meromorphic function in C, then by
Corollary of Theorem A, g^4; this contradicts 0 = 5. Hence f*v'(z) is 1-valued.
From (5.4) we get

s 0.

This implies

It follows that
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Therefore we deduce that [̂ (S): C(t/)] ( = 3) is a divisor of [@(S): C(t;2)] (=8).
This is a contradiction.

Next we suppose g = 2. Then there is a rational function v' on S with

: C(ι/)]=2. We have a diagram of field extensions:

C(v)

If [̂ (5): C(v, t/)] = 2, then ι;eC(t/) Then there is a rational function A(T)
such that

(5.5) v = A(v').

If f*υ'(z) is 2-valued as a multi-valued meromorphic function in C, by Corollary
of Theorem A, 0^3; this contradicts g = 5. Therefore /*t/(z) is 1-valued and

by (5.5), ^/φ(z) = A(f*v'(z)). Since the function of the left hand side is 2-valued,
it is absurd. Finally assume that [̂ (S): C(v9 t/)] = l. Then there are rational
functions A^T) and A2(T) in T satisfying

(5.6) v2+A1(Of)v-A2(Of) = 0.

It follows that

From this we deduce A^Q. Hence v2=A2(v'). Since [̂ (5): C(ι;2)] = 8 and

): C(t;')] = 2, the order of A2(T) is 4. Represent

with P(T) and β(Γ) polynomials in T which are relatively prime; furthermore
write

P'(jΓ){P"(Γ)}2

in such a manner as P'(Γ) and β'(Γ) have only simple zeros. Setting u' = vP'(v')
xP"(v')IQ"(v') and P»(T) = P'(T}Q'(T\ we get
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(5.7)

Thus 5 is conformal to a hyperelliptic surface defined by (5.7). Since the degree
of the polynomial P0(T) is not greater than 8, 0^3. This is a contradiction.
Hence S = S(59 4) and the holomorphic mapping /: X2->S(59 4) satisfies (4.2).
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