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Introduction

As for the enumeration problem of embeddings of manifolds, many results

have been obtained up to the present (e.g. [2], [5], [6], [7], [20] and [21]) but
they are small in number compared with those of the existence problem. In this
paper, we try one approach to the enumeration problem of embeddings of n-

dimensional differentiate manifolds into the real (2n — l)-space R2n~l. As
an application, we determine the cardinality of the set of isotopy classes of em-

beddings of the n-dimensional real projective space RPn into R2n~l.
Our plan is as follows. An embedding /: M-»Km of a space M into Rm

induces a Z2-equivariant map F: M x M - A -> Sm~x by F(x, y) = π ̂  \ —

for distinct points x, y of M, where A is the diagonal of M and the Z2-actions on
M x M — A and Sm~ί are the interchange of the factors and the antipodal action,

respectively. Consider the correspondence which associates with an isotopy

class of an embedding /: M-+Rm the equivariant homotopy class of the map F

made above. Then this correspondence is surjective if 2m>3(n+1) and bijective
if 2m>3(n + l) for any n-dimensional compact differentiable manifold M by

the theorem of A. Haefliger [5, § 1]. On the other hand, there is a one-to-one

correspondence between the set of the equivariant homotopy classes of equivariant

maps of M x M — A to Sm~1 and the set of homotopy classes of cross sections of
the sphere bundle Sm~1->(MxM-J)xZ2S

m~1^(MxM-J)/Z2, where the re-

duced symmetric product M* = (M x M — Δ)/Z2 of M has the homotopy type of a

CW-complex X of dimension less than 2n (n = dimM). Therefore, the enumera-

tion problem of embeddings of an n-dimensional manifold M into Rm arrives at
the enumeration problem of cross sections of an Sm~ί -bundle ξ over a C ̂ -com-
plex X of dimension less than 2n.

Now, consider the case that m = 2n —1, and let p: BO(m — l)-+BO(m) be the

universal S"1"1 -bundle. Then the enumeration of cross sections of an Sm~l-
bundle ξ over X is equivalent to the enumeration of liftings of the classifying map

ξ: X-+BO(m) of ξ to BO(m-l). We construct the third stage Postnikov fac-

torization
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BO(m-l)
(*)

of p. Here pi is the twisted principal fibration, p2 is the principal fibration and
q2 is an (m + Inequivalence. Since the dimension of X is less than m + 1, the
enumeration of liftings of ξ to B0(m — 1) is equivalent to the enumeration of lift-
ings to Tby the theorem of I. M. James and E. Thomas [11, Theorem 3.2].

From the above considerations, this paper is divided into three chapters.
In Chapter I, we study the enumeration problem of liftings of a map into the

base space of a certain fibration to the total space. In § 1, the twisted principal
fibration is defined and the enumeration of liftings for this fibration is treated.
Further, we are concerned with the composition of two twisted principal fibra-
tions Γ— ̂ U £—£->/) under the assumption that it is stable (see §2). We describe
the set of homotopy classes of liftings of a map u: X-+D to the composition pq: T
-+D in Theorem A of § 2, which is a generalization of the theorem of I. M. James
and E. Thomas [12, Theorem 2.2] for principal fibrations. After preparing sever-
al propositions for the composition pq in §§3-4 without assuming the stability,
Theorem A is proved in § 5.

The purpose of Chapter II is to study the enumeration problem of cross sec-
tions of sphere bundles. In §6, we notice the cohomology H*(X\ Z) with co-
efficients in the local system defined by φ: π1(X)-^ Aut(Z). In §7, the third
stage Postnikov factorization (*) of p: BO(n — l)-+BO(n) is constructed, and we
show in § 8 that the composition of fibrations ptp2: T-+BO(n) is stable in the sense
of § 2. From Theorem A and the fact that q2: B0(n — !)-> T is an (n + ^-equiva-
lence, we have the following theorem in § 9.

THEOREM B. Let ξ be a real n-plane bundle over a CW-complex X of dimen-
sion less than n + 1 and let n>4. If ξ has a non-zero cross section, then the set
cross (ξ) of homotopy classes of non-zero cross sections of ξ is given, as a set, by

cross(ξ) = Hn-l(X; Z) x Coker Θ,

where the homomorphism

Θ:H»-2(X; Z) > Hn(X', Z2)

is defined by

Θ(d) = (P2a)w2(ξ) + Sq2p2a for aeH»-2(X; Z),
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p2 is the mod 2 reduction, Z is the local system on X associated with ξ and

w2(ζ) is the second Stiefel-Whitney class of ξ.

Chapter III is devoted to an application of A. Haefliger's theorem and Theo-
rem B on the enumeration problem of embeddings of n-dimensional manifolds
into Λ2""1. In §10, the set [McK2""1] of isotopy classes of embeddings of

n-dimensional closed diίferentiable manifolds M into R2n~l is described with
the cohomology of M*. As an application for the n-dimensional real projective
space RP", we calculate the cohomology group H2n~2((RPn)*\ Z) and the homo-
morphism Θ: H2"-3((RPn)*', Z)-*H2n-l((RPn)*\ Z2), and we have the following
theorem in §§11-12.

THEOREM C. Let nΦΊr and n>6. Then the n-dimensional real projective
space RPn is embedded in the real (2n — ί)~space R2n~l, and there are just four
and two isotopy classes of embeddings of RPn into Λ2""1 for n = 3(4) and n^3(4),
respectively.

Chapter I. Enumeration of liftings in certain fibrations

§ 1. Twisted principal fibrations

Let Z be a given space. By a Z-space X = (X, /), we mean a space X together

with a (continuous) map/: X-*Z. For two Z-spaces X = ( X , f ) and Y=(Y, #),
the pull back

X xz 7 = {(*, y) |/(x) = g(y)} ( c= * x 7)

of/ and g is a Z-space with (/, g): X xz 7-»Z, (/ g)(x, y)=f(χ) = g(y). A map

h: X-*Y is called a Z-map if gh=f, and a homotopy ht: X-*Y is called a Z-
homotopy if ght=f for all t. In this case, we say that hQ is Z-homotopic to h^

and denote by Λ 0 — z ^i Further,

denotes the set of all Z-homotopy classes of Z-maps of X to 7.
Now, let B be a space (with base point *) and π be a discrete group, and as-

sume that π acts on B preserving the base point by a homomorphism φ: π-+
Homeo(#, *). Then, considering the Eilenberg-MacLane space K = K(π, 1),
the universal covering K^K and the usual action of π on K, we have the fiber
bundle

(1.1) B - >Lφ(B) = KxπB-?->K = K(π, 1)

with structure group π. Since Kxπ* = K, we have the canonical cross section
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s: K->KxπB such that s(K) = K = Kxπ*.

In this paper, we consider the following situation.
(1.2) Let π act on an H-group*) B by φ satisfying the following assumptions:
The multiplication μ: BxB-+B and the homotopy inverse v: B-+B of B are π-
equivariant and there are π-equivariant homotopies

μ(lB9 c)~lβ~μ(c, lβ), μ(μx lβ)^μ(lβ xμ) and μ(v, lβ)^c~μ(lβ, v),

where c: B^B is the constant map to *. Also, if B is homotopy abelian, we
assume in addition that there is a π-equivariant homotopy μt~μ, where t: BxB
-+BxB is the map defined by t(x, y) = (y, x).

Then, for the X-space (Lφ(B), q) of (1.1), we can define K-maps

(1.3) μφ: Lφ(B)xκLφ(B) — > LΦ(B\ vφ: LΦ(B) - » LΦ(B)

by

μΦ(ίZ, 6], [*, 6']) = [i, μ(b, fr')], vφ([x, ft]) = [x, v(fo)] ,

and there exist the following relations :

μφ(ί x sq)Δ ̂ κl^κ μφ(sq x \)Δ : LΦ(B) - > LΦ(B) ,

μφ(μφ* 1)^x^(1 xμφ): LΦ(B) x κ Lφ(B) x κ Lφ(B) - > LΦ(B)9

μφ(vφ x ί)A ̂ κ sq ~κ μφ(i x vφ)A : Lφ(B) - > Lφ(B) ,

and

μφt *κμφ: Lφ(B) x κ Lφ(B) - > LΦ(B) ,

if B is homotopy abelian, where A is the diagonal map and t is the map defined by

t(χ, y)=(y, x).
Therefore we have the following

LEMMA 1.4. Let X be a K-space with a map u : X-+K. Then the homotopy
set [X, Lφ(B)~]κ of K-maps is a group with unit [sw] by the multiplication

[/] [0] = [μ,(/x 9)A\ for K-maps /, g : X - > LΦ(B) .

If , furthermore, B is homotopy abelian, then this group [X, Lφ(B)~]κ is abelian.

Let p: E-+A be a fibration with fiber F = p~1(*), and assume that p admits a
cross section s: (A, *)-»(£, *). Then, we can consider the path spaces

*) The //-group is the homotopy associative //-space with a homotopy inverse.
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PAE = {λ:I — >E\λ(0)es(A), pλ(0) = pλ(t) for all tel},

and we have the following well-known lemma.

LEMMA 1.5. The projection

r:PAE - >£,

is afibration with fiber ΩF. Furthermore,

pr: PAE - >A and pr: ΩAE - >A

arefibrations with fibers PF and ΩF, respectively, and they admit the canonical
cross sections induced by s, where PF={λ: I-*F\λ(0) = *} and ΩF = {λePF\λ(Q)
= λ(l)} are the ordinary path space and loop space of F.

By applying this lemma to the fibration q: Lφ(B)-+K of (1.1), we obtain the
fibration

qr: ΩKLΦ(B) - > K, (^ΓK*) = ΩB9

admitting the canonical cross section s. On the other hand, the given homomor-
phism φ: π-»Homeo(B, *) induces the homomorphism

φ>:π - > Homeo (ΩB, *), φ'(g) (λ) (t) = φ(g) (λ(t)) .

This determines by (1.1) the fibration

q':Lφ,(ΩB) - > X,

with fiber ΩB admitting the canonical cross section s'9 and we have the natural
homeomorphism

ΩκLφ(B\ ^r([x, A]) (t) = [S,

which satisfies qrψ = q'. Also, the loop space ΩB is a homotopy abelian H-
group by the join V of loops :

0 < 2t < 1

and the action of π on ΩB by φ' satisfies (1.2). Therefore, Lemma 1.4 shows that
the homotopy set [X, Lφ,(ΩB)~]κ of K-maps is an abelian group by the multiplica-
tion induced by V^. Furthermore, the above natural homeomorphism ψ com-
mutes with V^' and the K-map
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V : ΩKLΦ(B) xκ ΩKLΦ(B) > ΩKLΦ(B)

given by the join of loops, and we have the following

LEMMA 1.6. The natural K-homeomorphism ψ: LΦ.(ΩB)-*ΩKLΦ(B) in-

duces an isomorphism

<A*: [*, Lφ(ΩB}]κ -=U IX, ΩKLΦ(B}]K

for any K-space X, where the domain is the abelian group of Lemma 1.4 and

the multiplication in the range is induced by V mentioned above.

Also, applying Lemma 1.5 to q: LΦ(B)-+K of (1.1), we obtain the fibration

r: PKLΦ(B) > Lφ(B) with fiber ΩB.

Now, let Θ: D-+LΦ(B) be a given map. Then, from this fibration, θ induces

a fibration

p:E = DxLPKLΦ(B) > D (L = Lφ(B)) with fiber ΩB,

which is called the twisted principal fibration with classifying map θ.

Let u: X-+D be a given map and consider the diagram

E PKLΦ(B) ΩKLΦ(B)

\p lr 1"
JT-JL+ D -i-> Lφ(B) -i-> K.

We define a D-map

(1.7) m: ΩKLΦ(B)xκE > E

by the relation m(λ^ (x, λ2)) = (x, λ1 V A2), where V is the join of paths, and the

domain is the pull back of K-spaces (ΩKLΦ(B\ qr) and (E, qθp) and is understood

as a D-space (ΩKLΦ(B) xκ E, pπ2) (π2 is the projection to the second factor in this

paper). Hereafter, we often write λί V (x, λ2) for m(λί9 (x, /12)) simply. By con-

sidering a D-space X — (X, u) as a K-space (X, qθu), this map m induces a function

m*: [X, ΩκLφ(B)-]κx [X, £]D > [X, £]D.

PROPOSITION 1.8. T/ze function m* mentioned above is an action of the

abelian group [X, ΩKLΦ(B)~\K of Lemma 1.6 on the homotopy set [X, E~\D.

I f u : X-+D has a lifting v: X-*E, that is, if there is a D-map υ: (X, u)-^(E, p),

then the function m#( , [ϋ]): \X, ΩKLΦ(B)~]K-*[X., E~\D is a bijection.

PROOF. This is a straightforward modification of the case that p: E-*D
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is a usual principal fibration (cf. [12, Lemma 3.1]).

§ 2. The main result in Chapter I

Let B and C be //-groups with homomorphisms φ(B): π(β)->Homeo(J5, *)
and φ(C): π(C)->Homeo(C, *) such that they satisfy the assumption (1.2),

and let

qA: L(A) = Lφ(A)(A) —> K(A) = K(n(A\ 1) (A = B, C)

be the fiber bundle of (1.1) with the canonical cross section SA. Consider the
following situation:

(2.1) E-£-> L(C)-lc-> K(C)

L(B) -̂ » K(B).

Here p is the twisted principal fibration with fiber ΩB induced from PX(B)L(B)
-+L(B) by 0, q is the one with fiber ΩC induced from PK(C)L(C)-»L(C) by p, and
it is assumed that

qcp = pp.*)

For a given map u: X->D, the homotopy set [Z, T]D of D-maps of the D-space
(X, u) to the D-space (T, pq) is the set of homotopy classes of liftings of u to T.
The investigation of this set is our main purpose of Chapter I.

From now on, we assume that C is a topological group.**} For the sim-
plicity,

n: L(C) xκ(c)L(C) > L(C) and ~l: L(C) > L(C)

denote the K(C)-maps μφ(C} and vφ(C) of (1.3) induced from the multiplication and
the inverse of C.

Let

(2.2) mB: ΩK(B)L(B) XK(B) E > E

*) In our applications of the later chapters, we are concerned with the case where K(C)=*.
For this case, L(C)=C and q is a usual principal fibration and the existence of such a

map p withqcp = ρp is trivial.
**) This assumption gives neat formulas but essentially the same theory carries through in the

case that C is an /f-group.
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be the D-map defined in (1.7), and consider the map

Pl : ΩK(B)L(β) XK(B) E - > L(C)

defined by

y) = n(pmB(λ9 y\ [ρmB(cλ(0}9 y)]~ l) for λ e ΩK(B}L(B)9 yeE9

where cx denotes the constant loop at x. Then, pί maps E = sB(K(B)) xκ(β) E to

K(C) = sc(K(C))9 and P! is a J£(C)-map, where Ωκ(B)L(B)xK(B)E is considered
as a K(C)-space by the composition ppπ2 = qcpπ2 (π2 is the projection to the second
factor). Therefore, we have X(C)-maps pί and 1 xp in the diagram

(ΩK(B)L(B) xK(B)E9 E) J

(2.3) J l x *

κwD9 D) -1-

where ΩK(B)L(B)xK(B)D is also considered as a ^(C)-space by the composition
pπ2.

Now, we say that the composition of fibrations T— ?->E— P-+Ό in (2.1) is
stable, if there exists a X(C)-map d in (2.3) such that the diagram (2.3) is K(C)~
homotopy commutative.

Suppose that the composition pq is stable by a X(C)-map d. From the fibra-
tion ΩK(B)L(B)-+K(B)9 we obtain the fibration

fli(B)JXB) = ΩKW(ΩKWL(B)) — K(B)

with the canonical cross section, by Lemma 1.5. Then, the map d induces a
K(C)-map

(2.4) d' : (Ω2

K(B)L(B) XK(B} D9 D) —+ (ΩK(C}L(C\ K(C))

by the equation

d'(λ9 x) (0 = d(λ(t)9 x) for λ e Ω|(β)L(B), x e D and ί e /.

For a given D-space X = (Jf, w), these K(C)-maps d and rfr induce two functions

θu: IX9

(2.5)
Θ'u\ [X9 Ω%(B}L(By]K(B) - > [X9 ΩK(C)L(C)~\K(C)9

given by 6)M([α]) = [ί/(α, w)] and 0L([^]) = [^/(^j w)]» where X is considered as
a ^(B)-space (X9 qBθύ) and K(C)-space (X9 pύ). Here 0^ is a homomorphism
of groups by the definition of d' and so CokerΘ^ is defined. Set KerΘM=6)~1

([scpw]). Then we have the following main theorem in this chapter, which is a
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generalization of [12, Theorem 2.2].

THEOREM A. Suppose that the composition of the fibrations

T— i->£— P->D

in the diagram (2.1) is stable by the map d in (2.3). Let X be a CW-complex

and u: X->D admit a lifting X-*T. Then the set

IX, T]D

of homotopy classes of liftings ofu to Tis equivalent to the product

Ker Θu x Coker Θ'u,

where Θu and Θ'u are the functions of (2.5).

§3. Correlations

Consider the diagram (2.1) and let v: X^E be a lifting of u: X^>D. We

say that two maps ft, h': X-+T are v-related if (1) qh = qh' = υ and (2) h is D-

homotopic to h'. The relation "v-related" is an equivalence relation, and if
v is D-homotopic to v', then the set of u-relation classes is equivalent to the set
of t/-relation classes.

For η = [v'] e \X, £]D, let N(η) denote the set of u-relation classes of D-maps
of X to T. Then

qϊl(η) and [*, T]D = V{q^(η)\ηe [X, E]D} ,

where q%: [X, T]D-*\_X, E]D. Thus we have the following

LEMMA 3.1 [12, Theorem 3.2]. The set [_X, T]D is equivalent to the dis-

joint union of the set N(η), where η runs through the elements of [X, E~]D.

Since the set [X, E~]D is equivalent to the group [X, ΩK(B)L(By]K(B) by
Proposition 1.8, we study the set N(η) for each η G [X, E~]D in the rest of this sec-

tion.

As is constructed in (1.7), there is a D-map

mc:ΩK(C)L(QxK(C)T - > T.

This D-map mc induces an action of the group [X, ΩK(C)L(Cy]K(C) on [X, T]D

by the same way as Proposition 1.8. It is easily seen that (1) if ft: Jf->Tis a D-

map and if /c, k': X-*ΩK(C)L(C) are X(C)-homotopic, then mc(k, h) and mc(k'9 ft)
are t -related, where v = qh, and (2) if k: X^>ΩK(C)L(C) is a K(C)-map and if ft,

ft': X->Tare i -related, then mc(fc, ft) and mc(/c, ft') are t -related. Hence, using
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Proposition 1.8, we see that the above action of [X, ΩX(C)L(C)]K(C) is transmitted
to a transitive action on N(η). We, therefore, have the following

LEMMA 3.2. Let η be the element in the image of q%: [X, T~\D-+[X, E]D.
The set N(η) is equivalent to the quotient of [X, ΩX(C)L(C)]X(C) by the stabilizer
of an element of N(ή).

Let p: E-+A be a fibration with fiber F and let

Ω$E ={λ:I - > E I pλ(ί) = pλ(0) for all tεl, A(0) = A(l)} ,

Ω*F ={λ:I - > F \λ(Q) = A(l)} .

Then the following results are known and will be used later on.

LEMMA 3.3. Let r: Ω^E^E be a map defined by r(λ) = λ(l). Then r: Ω%E
->£ is a fibration with fiber ΩF and pr: Ω*E-*A is also a fibration with fiber
Ω*F.

The map p: £->L(C) in (2.1) induces a map

P':Ω*DE— >OJ(C)L(Q,

which is given by p'(λ)(t) = ρ(λ(t))9 and there follows a commutative diagram
below,

Q*E — E_> E — H— > D

V \p ϊβ

^ L(C) — > K(C).

Therefore we have a commutative diagram

[AT,

1- 1"
^ [X, L(C)]K(C),

where i: ΩK(C)L(C)-+Ω$(C)L(C) is the natural inclusion. We say that an ele-
ment 7 e [X, ΩK(C}L(C)~]K(C) is p-corr 'elated to η e [X, E~]D if there is an element
χe [X, ΩIE]D such that rj|t(χ) = ιy and p'*(χ) = ϊ*0)

LEMMA 3.4. Lei h: X-*T be a D-map and let v = qh. Suppose that kV h
= mc(k, h) is v-related to h for a K(C)-map k: X^ΩK(C)L(C). Then the class
of k in [X, ΩK(C)L(Cy]K(C) is p-correlated to the D-homotopy class of v: X-*E.

LEMMA 3.5. For a K(C)-map k: X-^ΩK(C}L(C), suppose that the class of
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k in [X, ΩK(C}L(CJ]K(C) is p-correlated to the D homotopy class ofv:X-+E.

Then kV h is v-related to h for any lifting h: X^Tofv.

Combining Lemma 3.2 and Lemmas 3.4-5, we have the following

PROPOSITION 3.6. // η e [X, E~\D lies in the image of q*: [X,
then the set N(η) = q*l(η) is equivalent to the factor group of

by the subgroup of elements which are p-correlated to η.

PROOF OF LEMMA 3.4. Let gt: X-*T be a D-homotopy such that gQ = h
and g f 1 = = f e V / ι and let g: X-+Ω$E be a D-map given by g(x)(t) = qgt(x) for any
xeX and tel. Then rg(x)=g(x)(l) = qgl(x) = v(x). Hence it is sufficient to
show that /*([*]) = P'*([0]) in [JT, Ω%(C)L(C)-]κ(Cy Let p: T-+PK(C)L(C) be the
map induced by p, which makes the following diagram commutative :

T -£-> PK(C}L(C)

i i
E — £— »L(C).

Then there is a homotopy /s: X-+Ω^(C)L(C) (s e /) given by

st-l) 1 < 2s <. 2

which is a ^(C)-homotopy between ik and p'g. q.e. d.

PROOF OF LEMMA 3.5. Let g: X-*Ω%E be a D-map such that rgcχDv and
p'β—κ(c)ΐk. Since ΩJ£^£ is a fibration by Lemma 3.3, we may assume that
rg = υ. Let τ: ΩK(C)L(C)^ ΩK(C)L(C) be a K(C)-map given by τ(A)(ί)=A(l-ί)
for all <e/. Let fc': Λ^-» ΩK(C)L(C) be a X(C)-map defined by k'=phVp'gV
τ(ph). Then ί/c' is K(C)-homotopic to ί0: X->fl|(C)L(C) defined by

p/j(x)(3ί) 0<3ί^l

pft(x)(3-3ί) 2<3ί^3.

Let ls: X-»Ω£(C)L(C) be a K(C)-homotopy which is defined by

/0(x)(ί+s/3) 0^3ί^l-s

/0(jc)((ί+s)/(l + 2s)) l-s<3ί^2 + s

/0(x)(ί-s/3)
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Then /1W(0 = /oW((l + 0/3) = P^W(0 and so /*([/c1) = p'*([0]). Therefore,
there follows ik^K(C)ik' because **([&]) = p'*([#]) by the assumption. Let
ft: X-+Ω$(C)L(C) be a £(C)-homotopy between ίk' and i/c, and let /: X-*
ΩK(C)L(C) be a X(C)-maρ given by /(x)(0 =/,(*) (0). Then it is easily seen that
*' V / * K ( c ) / V f c , i.e., [/c'V/] = [/V/c] in [X, ΩK(C)L(C)]X(C). Because
[JΓ, βK(C)L(C)]K(C) is an abelian group by Lemma 1.6, it follows that [fe] =
(Ίk']. Therefore, we have

fc V pfc afc(C) fc' V ph ̂ K(C} (ph V p'g V τ(p/ι)) V p/i afc(Q p/i V p'0.

Let w: ^ί^Tbe the map defined by vφc) = (φ;), (p/i V p^)(x)). Then w is a lift-
ing of v and w is D-homotopic to (t;, k Vp/ι) = fc V A, i.e., w is u-related to fcv A.
On the other hand, let ws: X-*Tbe a homotopy which is given by

p'g(x)(2t-l-s) l + s<2ί<2.

Then vvs is a D-homotopy between w and h. Therefore, w is t -related to h and so
k V A is t -related to Λ. q. e. d.

§4. Compositions of twisted principal fibrations

Let p: E-*D be the twisted principal fibration with fiber F (-ΩB) in the dia-
gram (2.1) and let

mB: (ΩK(B)L(B)xK(B)E, ΩK(B)L(B)xK(B}F) - > (E, F)

be the map of (2.2). Obviously, ΩK(B)L(B)xK(B)F = FxF and mB:FxF-+F
is the ordinary multiplication of F=ΩB. Consider the map

m'B: (ί21(B)L(B)xJC(B)£, Ω£(B)L(B)xK(B)F) - > (QJE, Ω*F),

which is given by

m'B(λ9 x) (0 = mB(λ(t\ x) for A e Ωl(B}L(B), xeE and ί e /.

It is easily seen that Ωζ(B}L(B) xK(B)F = ΩF x F and mB: ΩF x F-*Ω*F coincides
with the map defined in [10, Theorem 2.7]. Now, pr: Ω$E-*D is a fibration with
fiber Ω*F by Lemma 3.3 on the one hand and on the other hand pπ2 : ί2|(B)L(β)
xK(β)E-»D (π2 is the projection to the second factor) is a fibration with fiber

ΩF x F, and m'B makes the following diagram of fibrations commutative :
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-^ Ω2

K(B}L(B) XK(B} E*^D

Ω*F - Ξ - v Ω$E Pr > D.

The map m'B: ΩFxF-*Ω*F is a weak homotopy equivalence by [10, Theorem
2.7] and so is the map m'B: Ω]t(B}L(B)xK(B}E^>Ω$E, which is seen immediately
by using the homotopy exact sequences of fibrations and the five lemma. There-

fore the function

WB*: [*> ®2κ(B}L(B)-]K(B) x IX, E]D - > [X, ΩgEL

is a bijection for all CFF-complex X, by [11, Theorem 3.2].
The K(C)-map pl in (2.3) induces a K(C)-map

p\ : (Ω2

K(B)L(B) XK(B) E, E) — + (ΩK(C}L(C\ K(Q) ,

which is defined by

If t?: X->£ is a D-map and α, b: X-+Ω%(B)L(B) are X(β)-maps, then the relation

holds. Therefore the function

(4.1) Δ(p, M): [X, Qi(B)ί<β)]κ(B) — [X,

defined by

is a homomorphism of groups. We consider also a K(C)-maρ

n': ΩX(C)L(C)xκ(C)L(C) — , Qf(C)L(C),

defined by the relation

n'(/ί, x)(ί) = n(λ(0, x) for λ e ΩX(C)L(C), xeL(C) and ίe/,

where n==μφ(C): L(C)xK(C)L(C)^L(C) is the induced multiplication of (1.3).
Because C is a topological group, the map n' is a £(C)-homeomorphism. There-
fore the induced function

[X, L(C)]K(C)— * [X,

is a bijection for any space X. By the direct calculations, we obtain
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n'(p'ι , prmB) A = p'm'B : Ω|ίB)L(B) XK(B) E

where A is the diagonal map. This implies the following lemma.

LEMMA 4.2. There are the following relations:

(1) r#mi*(jS, η) = ί/,

(2) p roi CΪ, η) = n;(J(p, ly) (β), pφη) ,

(3) ni(7,&cptt]) = ι*(y).

Using the above lemma, we can prove the following

PROPOSITION 4.3. Under the situation of (2.1), the conditions (i) and (ii)

are equivalent.

(i) TTze element η e [X, £]D is contained in the image of q# : [X, T]D-*\_X9 E~]D

and ye [-Y, Ωκ(C)L(Cy]K(C) is p-correlated to η.

(ii) The element η E [X, E~]D is contained in Pϊ1([scpu]) and y lies in the image

ofA(p, η): [X,

From Lemma 3.1, Proposition 3.6 and Proposition 4.3, we have the follow-

ing

THEOREM 4.4. Under the situation o/(2.1), the set [X, T]D is equivalent

to the disjoint union o/Coker A(ρ, η) of the homomorphίsm A(ρ9 η) of (4.1), as η

runs through ρ^([scpu]\ where p*: [_X, E]D-*[_X, L(C)]X(C).

§ 5. Proof of Theorem A in § 2

Assume that the composition of fibrations T-2-*E—?->D in the diagram (2.1)

is stable by a X(C)-map d: (ΩK(B)L(B)xK(B}D, D)-»(L(C), K(C)), i.e., the follow-

ing diagram is J£(C)-homotopy commutative :

(ΩK(B}L(B) XK(B} E, E) JLL

l l x p

(ΩK(B}L(B) XK(B) D, D) -JL

where ρl is the map defined in (2.3). Let

d': (Ω*(B)L(B)xK(B)D9 D) — > (ΩK(C)L(C), K(Q)

be the map induced from the map d by d'(λ, x)(t) = d(λ(t), x). Then the diagram

below is X(C)-homotopy commutative:
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xκwE9 E) J!L> (ΩK(C)L(Q, K(Q)

| i χ p I

D, D) -<U (

For any map u : X-+D, there are two functions

Θ : IX, Q

which are defined by

ΘΛM) = \d(a, ιι)], β;([6]) = [d'(6, ιι)] .

If w : ^->D has a lifting to E, then the homomorphism Θ'u is equal to the homo-
morphism A(p, η) of (4.1) for any η e \_X, E~]D by the definition of A(ρ, η) and the
above commutative diagram. Therefore

Coker Θ'u = Coker A(ρ, η) for any η E \_X,

Let η = [>] e [Jί, £]D. Then

) = [Φ. «)] = [Pι(«» )̂] = [n(pmB(a, v), pmB(cβ(0),

by definition. If v: X-*E has a lifting to T, then [pmβ(cβ(0), t;)] is equal to the

unit [scpw]. Thus the function

is equal to ΘU9 if M has a lifting to Γ. Since mB*( , ^) is a bijection by Proposition
1.8, we see that Pΐ1([scpu]) is equivalent to Ker0tt = 6>~1([scpii]).

The above argument and Theorem 4.4 complete the proof of Theorem A.

REMARK. We see easily that the function Θu is also a homomorphism.

Chapter II. Enumeration of cross sections of sphere bundles

§ 6. Some remarks on the cohomology with local coefficients

The non-trivial homomorphism φ: Z2->Aut(Z), where Aut(Z) is the group
of automorphisms of the infinite cyclic group Z, induces a homomorphism φ : Z2

->Homeo(X(Z, π)) (n>l). As indicated in (1.1), there is a fibration

, π) -U Lφ(Z, n) -^ K = K(Z2, 1), LΦ(Z5 n) = LΦ(K(Z, n)) ,

with a canonical cross section s. A map u: X-+K determines a local system on



242 Tsutomu YASUI

X which is given by φu%: πί(X)^>πi(K) = Z2-+Δut(Z). We denote the coho-
mology with coefficients in the above local system by H*(X\ Zu*φ) or H*(Xι Z)
simply. Notice that the following results.

PROPOSITION 6.1 [13, §1 and §3]. There is a unique element λeHn(Lφ(Z,
n), K\ Zq*φ) such that ϊ*λ = ιneHn(K(Z, n); Z), the fundamental class of K(Z, n),
where ϊ: K(Z9 n)->(Lφ(Z, n), K) is the natural inclusion, and there is a natural
isomorphism

Φ:LX,A; LΦ(Z, n), K]κ -=-> H«(X, A; ZH.Ψ)

for any pair of regular cell complex (X, A) and for any map u: X-+K which is

defined by

If A is empty, this is the isomorphism

Φ : IX, Lφ(Z, n)]x — > H"(X Zu.φ), Φ([α]) = a*j*λ,

where j: Lφ(Z9 n)-^>(Lφ(Z, n), K) is the natural inclusion.

We say that the elements λ andj*λ are the fundamental classes of the fibration
q : LΦ(Z, n)-+K and we denote λ, j*λ and their mod 2 reductions by the same sym-
bol A, whenever no confusion can arise.

For a map u : X-*K9 consider the pull back of q : LΦ(Z, n)-» K by M,

K(Z, n) -U Lφ(Z, n)xκXJ^ Lφ(Z, n)

I" I-
X - * - > K,

(ui is the projection to the z'-th factor). Then ϊ*π?Λ, = ̂  follows immediately from
the relation i*λ = tn. Therefore, we see easily the following

LEMMA 6.2. Let v: H*(K(Z, n); Z2)-»//*(L/Z, ri)*KX\ Z2) be the homo-
morphism of Z2-algebras given by v(SqIcn) = SqIλx, where cn is the image of the
mod 2 reduction of the fundamental class cn of K(Z9 n) and λx = πfλeHn(Lφ(Z.,
n)xκX',Z2). Then

v® πf : H*(K(Z, n); Z2)® H*(X; Z2) - > H*(LΦ(Z, n)xκX; Z2)

is an isomorphism ofZ2-algebras and so any element x in H*(Lφ(Z, n)xκX; Z2)
is described uniquely in the form

, ateH (X; Z2).
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§ 7. The third stage Postnikov factorization of BO(n -1) -+BO(n)

Let p: BO(n-ΐ)-+BO(ή) be the universal S^-bundle (n>4). Our purpose
in this section is the construction of the third stage Postnikov factorization of

this bundle using the methods of J. F. McClendon [13] and E. Thomas [19].
Let φ: π1(50(n)) = Z2-^Aut(πn_1(S:n-1)) = Aut(Z) be the local system on

BO(n) associated with p: BO(n-\)-*BO(n\ and let sn_± be the generator of
H'-^S11-1; Z) = Z. Then, by [13, Theorem 4.1 and §§2-3], there is a map
W: BO(n)^Lφ(Z, n) such that \_W~\e[_BO(n\ Lφ(Z9 n)]κ = Hn(BO(n)\ Z) is the
transgression image of s n _ l 5 and we have a commutative diagram

S«-ι >BO(n-l)

QK(Z, n) > E » PκLφ(Z, n)

i" 1
B0(ή) -5U Lφ(Z, Λ) -JU *,

where p^q^=p and ]?! is the twisted principal fibration induced by W. By using
the homotopy exact sequences of fibrations, we see easily that both maps s n _ x

and q± are homotopically equivalent to the fibrations F—^S""1 Sn"1 >ΩK(Z, n)
and F -E-* B0(n-1)-^->£ (cf. [19, § 1]) and

ί 0 for i< n-l
πι(F) =

[ π^-1) for i> n.

Therefore q±: BO(n — \)^E is an n-equivalence.*) Since the generator of Hn(F;
Z2) = Z2 is transgressive for the fibration q1: BO(n -!)->£, its transgression image
is a non-zero element p in Hn+1(E', Z2) and there is a commutative diagram

F >BO(n-l)

I 1"
K(Z2, n) > Γ

|P2

E' P f/" *̂  κ I 1 \li ^ > A.(Z2, «+ 1) .

Here P2g2 = <7ι, ^2 is ^e principal fibration with the classifying map p and it is
easily seen that q2 is an (n + Inequivalence and q2\F represents the generator of

*) A map g: X-+Y (X, Y are connected) is called an ^-equivalence if g+:
isomorphic for i<n and epimorphic for /=/f.
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H»(F; z2).

In the rest of this section, we concentrate ourselves on the characterization
of the map p : E-+K(Z2, n + 1). Let

m : ΩKLΦ(Z, n) xκE - > E

be the action defined in (1.7) and set

(7.1) μ = m(l x qj: ί2*L0(Z, n)xK5O(n-l) - > £.

The map μ makes the following diagram commutative :

ΩKLΦ(Z, n) xκBO(n- \) -^ E

BO(n-l)

The projection π2 to the second factor admits a cross section s defined by s(x)
= (cqwP(x)-> *)» where cy is the constant loop at y, and the relation

(7-2). μs*Bθ(n><lι

holds obviously. The local system π1(5O(n)) = Z2->Aut(//ί(JK:(Z, w-1); Z2))
on BO(n)9 which is associated with pi: E-+BO(ri), is trivial for ί = n — 1 and hence
so for all i. Also Hf(K(Z, n-1); Z2) = 0 for 0<i<n-l and Hl(BO(n)9 BO(n
— 1); Z2) = 0 for i<n. Therefore, by the similar proof to [19, Property 4], we
see that the sequence

-l); Z2) -^ Hi+l(BO(n), ίθ(n-l); Z2)

; Z2) -̂ > Hi+1(ΩκLφ(Z9 n)xKJBO(n-l); Z2) — >

---- , H2»-2(E; Z2)

is exact, where j: BO(ri)-+(BO(ri), BO(n — 1)) is the natural inclusion, and τ0 is the
relative transgression. On the other hand, p*: Hl(BO(ri)\ Z2)->Hi(50(n-l);
Z2) is epimorphic for all z. Also Kerp* is the ideal generated by the universal
n-th Stiefel- Whitney class WM. Since wrt is the transgression image of sn-± of
p: BO(n — l)-*BO(ri)9 we have wn = τ(ίΛ_1)6Ker pf, where τ is the transgression
of K(Z, n-\)-±-*E^-*BO(ri). Thus we see that Ker/?* = Kerjp?. Therefore,
the same argument as in [19, Property 5] provides the exact sequence

(7.3) 0 — H<(£; Z2) -fil> H'(ΩKLΦ(Z, n)xκBO(n-l); Z2)



The Enumeration of Liftings in Fibrations and the Embedding Problem I 245

for t < 2n - 2, where τ^ = j*τ0. (7.2) and (7.3) imply that

(7.4) μ* : Ker gf - > Ker s* Π Ker τi

is isomorphic in dimension less than 2n — 2.
By considering ΩKLΦ(Z9 n) = Lφ(Z, n — l) by the natural K-homeomorphism

ψ of Lemma 1.6, there is an element λBO(n_ί} in Hn~1(ΩκLφ(Z9 n)xκBO(n — l)',
Z2) by Lemma 6.2 for the fibration ΩKLΦ(Z, ή) xκ B0(n - l)-+BO(n - 1) such that

ί*^Bθ(n-i) = 'n-ι> Λe mod 2 reduction of the fundamental class of K(Z, n — l).
Here the diagram

ΩK(Z, n) -U ΩKLΦ(Z, n) xκBO(n- 1) -£2

1 l I-
) - > ^ - ^ - > B0(ή)

implies that τ1(ABO(B_1))=7%(AJIO(n_1))==τi*(λllo(B_1)) = τ(^ Any ele-
ment x in Hn+ί(ΩκLφ(Z, n) xκ B0(n-l)\ Z2) is described in the form

x =

where εf = 0 or 1 for ί = l, 2, 3 by Lemma 6.2. If xeKers* n Kerτ1? then 0 = s*x
= &. Because τί is an H*(BO(n)\ Z2)-homomorphism and τίSqί = Sqiτί by

[19, §3], it follows that

wMwf , τ^A^,,. 1}π|w2) = w,tw2,

Sq2wn = wnw2.

Hence Kers* n Kerτ1=Z2 generated by A J B O ( r t_1 )πfw2 + S^2/lβ0(M_1) and so the
map p: £->K(Z2, n + 1) is characterized by the relation

(7.5) μ*p = λBO(n_ί}π%

Summing up the above arguments, we have

THEOREM 7.6. The third stage Postnikoυ factorization of p: B0(n — 1)

is given as follows:
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where φ: πί(K(Z2, l)) = Z2->Aut(Z) is the non-trivial local system on K(Z2, 1),
p! : E-+BO(ri) is the twisted principal fibration induced by the map W, p2: T-+E
is the principal fibration with classifying map p, qί: BO(n — !)->£ is an n-
equivalence, q2' BO(n — l)-*Tis an (n + ^-equivalence and the map p is charac-
terized by the relation (7.5).

§8. The stability of the third stage Postnikov factorization of p:

There is a map

(8.1) d: (ΩKLΦ(Z, n)xκBO(n\ B0(n)) - > (K(Z2, n

which represents the element λBO(n)π%w2 + Sq2λBO(n) in Hn+1(ΩκLφ(Z, ή) xκ BO(n),
B0(ri)\ Z2), i.e., d*(c) = λBO(n}π%w2 + Sq2λBO(n), where e is the fundamental class

of X(Z2, n + 1). The relation

(8.2) (1 XΛ)*d*(0 = λEπ^w2 + Sq2λEeHn+ί(ΩκLφ(Z, n)xκ£, £; Z2)

follows easily. Let

Pl : (ΩKLΦ(Z, n) xκ E, E) - > (K(Z2, n + 1), *)

be the map given by the relation p^(k, y) = pm(k, y) - [pm(cfc(0), y)]"1 (cf. (2.3)).
Then the following relation holds :

(8.3) pϊ(0 = m*p*ω-πΪp*(t)eH*+*(ΩκLφ(Z9 n)xκE, JB; Z2).

To see that the composition of fibrations T-^->£-^UBO(n) in the diagram
(7.7) is stable by the map d in the sense of § 2, it is sufficient to show that

(8.4) (m* - πj)p*(0 = E 2 E,

by (8.2) and (8.3). Now, consider the map μ of (7.1). Then the diagram

H»+1(E; Z2) ^±ϊL> H»+ί(ΩκLφ(Z, n) xκE; Z2)

U l(iχβι)*

£ - >H»+ί(ΩκLφ(Z,n)xκBO(n-l); Z2)

is commutative because (1 x qι)*(m* — πf)(x) = (l x ^1)*m*(x) — (1 x
=μ*(x) for any Λ: in Kergf. Therefore we have

(1 x qi)*(m* - πj)p*(0 = μ*p*(0 by p*(0 e Ker <tf

2 + Sq2λBO(n_ 1} by (7.5)
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Consider the following commutative diagram :

Hn+1(ΩκLφ(Z, n)xκE; Z2) <J^ϊL- ^=QHn-l(K(Z, Λ-l); Z2)®Hί(E; Z2)

9 n)xκBO(n-l); Z2) ̂ - Σi^o^ 'WZ, Λ-l) ; Z2)®

The horizontal maps are monomorphisms by Lemma 6.2. Further g?
Z2)-+Hi(BO(n— 1); Z2) is monomorphic for i<2 because ^x is an n-equivalence,
and so the vertical map in the right hand side is a monomorphism. This result
and the above equality imply (8.4), and we have the following

PROPOSITION 8.5. The composition of the fibrations T-^E-^->BO(n)
in the diagram (7.7) is stable by the map d in (8.1).

§ 9. Enumeration of cross sections of sphere bundles

Let ξ be a real n-plane bundle over a CW -complex X. If ξ has a non-zero
cross section, cross (ξ) denotes the set of (free) homotopy classes of non-zero cross
sections of ξ. The space X is a B0(n)-space with the classifying map ξ : X-*BO(ri)
of ξ. Then the relation

cross (ξ) = \X, BO(n-l)-]BO(n)

follows from [11, Lemma 2.2]. If the dimension of X is less than n + l and n > 4,
then

follows from [11, Theorem 3.2], because q2: BO(n-l)->T is an (n + ^-equiva-
lence. On the other hand, it follows from Theorem A of § 2 that

= Ker Θξ x Coker θ'ζ.

Here

Θξ: IX, ΩKLΦ(Z, n)-]κ - > [*, X(Z2, n + l)] = H»+ί(X; Z2) = 0,

Θ'ξ: [X, 0|LΦ(Z, ny]κ - > [X, ΩK(Z2, n + l)] = fl«(X; Z2),

and ®i([a]) = [d'(fl, £)], where d': (Ω|L^(Z, n)xκBO(n),
+ 1), *) is the map given by d'(α, x) (ί) = ί/(α(ί), x) (cf. (2.4)). Also,
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[*, ΩKLΦ(Z, rij]κ = H»~l(Xi Z), [X, Ω2Lφ(Z, n)lκ = H-2(^; Z)

by Proposition 6.1, where Z is the local system on X associated with ξ given by
the composition

π,(X) -£±-» π,(BO(n)) -ϋϊs-> π^K) = Z2 -*-» Aut (Z), (X = X(Z2, 1)) .

Now, we show that the homomorphism Θf

ξ:H
n~2(X; Z)-+Hn(X\Z2) is

given by

(9.1) Θ'ξ(a) = (P2a)w2(ξ) + Sq2p2a, for any, aeHn~2(X; Z),

where p2 is the mod 2 reduction and w2(£) is the second Stiefel- Whitney class of

ί
Let ε'eH"(K(Z2, n); Z2) be the fundamental class of K(Z2, n). Then

(9.2) βj([α]) = (α, ξ)*d'*0')

for any K-map α: X-+Ω2

ίLφ(Z9 n). Consider the two commutative diagrams of
the mod 2 cohomology groups

Hl(K', *) — ^— > H^PK', ΩK') < ' Hl-i(ΩK'9 *)

Jd* ~ \d'* ~ {*'*

H'(Ω' XKB, B) -ίl* Hl(PKQ' xκB, ΩKΩ' xK5) <̂ - H'l-l(ΩκΩ' xκB, B) ,

//»-HΩ', AT) -ϊL» H"-1(PKΩ', ΩKΩ') r̂ H"-2(ΩKΩ', K)

I-
<—Ϊ — Hn~2(ΩK") ,

where Kr = X(Z2, n + 1), Ω' = ΩKLΦ(Z, n), β = 5O(n), K" = ΩK(Z, n) and d' :
PκΩ'xκB-+PK' is the map defined by the same equation d'(b, x)(i) = d(b(t\ x)

as (2.4). Since <5~1r*(ίΠ_1) = £/1_2, we have

where AeH"-1^ )̂ and λ' eH»-2(ΩκΩ'9 K) are the fundamental classes of
the fibrations Ω'-+K and ΩKΩ'-+K of Proposition 6.1 and λB = π*[λεHn-ί(Ω'
xκB,B\λ'B = π^λ'eHn-2(ΩκΩ'xκB9B\ Therefore, by the equation d*(ι)

= λBπ'2\v2 + Sq2λB by (8.1) and δ^r*(c) = e'9 we have d/*(O = *"1'>*d*(0 =
2πϊ/l/. This equality and (9.2) yield
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Therefore, the homomorphism Θ'ξ: Hn~2(X\ Z)-*Hn(X\ Z2) is given by

by Proposition 6.1, where w2(ξ) is the second Stiefel-Whitney class of ξ and ρ2

is the mod 2 reduction.

From the consideration made above, we obtain the following

THEOREM B. Let ξbea real n-plane bundle over a CW-complex X of dimen-

sion less than n + 1 and let n>4. If ξ admits a non-zero cross section, then the
set cross (ξ) of homotopy classes of non-zero cross sections of ξ is, as a set, given

by

cross (ξ) = Hn~ ' (X Z) x Coker Θ,

where Θ: Hn~2(X; Z)-»#"(X; Z2) is defined by

Θ(a) = (p2a)w2(ξ) + Sq2p2a, for aεH»-2(X; Z),

ρ2 is the mod 2 reduction and Z is the local system on X associated with ξ.

Chapter III. Enumeration of embeddings

§ 10. Enumeration of embeddings of manifolds

Let M be an n-dimensional differentiable closed manifold. Let M* be the
reduced symmetric product of M obtained from M x M — A (A is the diagonal of

M) by identifying (x, y) and (y, x) and let η be the real line bundle over M*
associated with the double covering MxM — A -*M*. Then the set [M c R2n~ x]

of isotopy classes of embeddings of M into the real (2n — l)-space R2n~l for n>6

is equivalent to the set of homotopy classes of cross sections of the 52w~2-bundle
(MxM-2J)xZ25

2w~2->M* by the theorem of A. Haefliger [5, §1]. Because

this bundle is the associated 52π~2-bundle of (2n — l)τy, we have

[Md#2«-i] = cross ((2n-l)η).

Since M* is an open 2n-dimensional manifold, there is a proper Morse function
on M* with no critical point of index 2n by [15, Lemma 1.1], and so M* has the

homotopy type of a CW-complex of dimension less than 2n by [14, Theorem

3.5]. Therefore we have the following proposition from Theorem B of §9 and
the fact
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PROPOSITION 10.1. Let n>6 and let M be an n-dimensίonal differentiable
closed manifold which is embedded in R2n~l. Then the set [Λίc.R2'1"1] of
isotopy classes ofembeddings of M into R2"'1 is, as a set, given by

[McK2"-!] = #2"-2(M*; Z)xCokerΘ,

where the homomorphism

Θ: H2«-3(M*; Z) > H^'^M*; Z2)

is given by

w^η) is the first Stief el- Whitney class of the double covering MxM — A-+M*
and Z is the local system on M* defined from this double covering.

COROLLARY 10.2. In addition to the conditions of the above proposition,
we assume that #ι(M; Z2) = 0. Then we have

PROOF. Because Hί(M;Z2) = Q, we have Hj(MxM, Δ; Z2) = 0 by the
exact sequence of the pair (M x M, A). The Thom-Gysin exact sequence

- > H2n~l(MxM-Δ\ Z2) - > H2«-\M*\ Z2) - > H2«(M*; Z2) (= 0)

and the Poincare duality H2n~\MxM-Δ', Z2) = //1(MxM, A; Z2) ( = 0) yield
H2n~l(M*\ Z2) = 0, which implies that CokerΘ = 0.

REMARK. There is a description in [6, 1.3, e, Theoreme] that

Hn~2(M;Z) if ii-l is odd
| = #2"-2(M*; Z) =

' #"-2(M;Z2) if n-1 is even,

under the assumption H±(M\ Z) = 0.

§ 11. Enumeration of embeddings of real projective spaces RPn

Our purpose in this section is to prove the following

THEOREM C. Let n^2r and let n>6. Then the n-dimensional real pro-
jective space RPn is embedded into the real (2n—ί)-space R2n~l. Furthermore,
the cardinality #[JRPwc.R2/|-1] of the set [RP/lc=JR

2w~1] of isotopy classes of
embeddings of RPn into R2n~l is given by
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4 n ΞΞ 3(4)

2 otherwise.

The first half of this theorem is shown in [1, Theorem 1] for even n and in
[9, Theorem 1.1] for odd n. Thus we concentrate ourselves on the study of the
set [#Pπc:JR

2/J-1]. Let η be the real line bundle associated with the double cover-
ing RPnxRPn-A-+(RP")*. Then the set [RP"c:R2n-ί] is equivalent to the

set cross ((2n-i)η) (cf. § 10).
In [8, (2.5-6)],

(11.1) there is a commutative diagram of the double coverings

1
= SZn+l>2 -^ (RP»)*,

where Vn+ίt2 is the Stiefel manifold of2-frames in #w+1, D4 is the dihedral group
of order 8, both maps f and f are homotopy equivalences and both spaces Zw + 1 > 2

and 5Zn+1)2 are (2n — l)-dimensional manifolds.

The mod 2 cohomology of (RPn)* (and so SZΠ+1>2) is calculated by S. Feder
[2], [3] and D. Handel [8] and is given as follows:

(11.2) Let Gn+lf2 be the Grassmann manifold of 2-planes in the real (n + 1)-

space Rn+1. Then the mod 2 cohomology 0/Gπ+1>2

 l's given by

M + 1 > 2; Z2) = Z2[x,

w/ieredegx = l, degy = 2 and α r=Σ T~ xr~2ίy (r = n, n + 1), and there is a

relation

χ2ίyn-i-ι φ 0 if and only if 1 = 2* — 1 for some t.

H*((jRP")*; Z2) has {1, υ} as a basis of an H*(Grt+lj2; Z2)-module, where ve
Hl((RPn)*\Z2) is the first Stiefel-Whitney class of the double covering RPn

xRPn-A-+(RP")* and there are the relations

v2 = vx, Sqly = xy and x 2 r + 1 ~ 1 =0 for n = 2r + s, 0 < s < 2r.

By the Poincare duality and (11.1-2),

(11.3) Hί((KPM)*;Z2)(n = 2' + 5, 0<s<20 for 2n-3<t<2n-l are given
as follows 12Q-], [21]:
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t

2n-l

2n-2

2n-3

H'((RP")*;Z2)

Z2

Z2 + Z2

Z2 + Z2 + Z2

basis

υx2rtl-2y*

vx2r*'-3y*,x2r"-2y*

vx2r+1-^ys, x2r"-3ys, tur^'-V1

To apply Proposition 10.1, we must study the cohomology groups //'((RP")*
Z) (ι = 2n — 2, 2n — 3) with coefficients in the local system associated with the

double covering RPn x RPn- A^(RPn)*.
Let p2: H^RP")*; Z^H^RP")*; Z2) be the mod 2 reduction.

LEMMA 11.4. Let n = 0(2). Then H2n~2((RPn)*\ Z) = Z2 and p2H
2n~3

((RP*)*; Z) = Z2 + Z2 generated by {vx2"+1~4ys

9 vx2r+i-2ys~i}.

LEMMA 11.5. Let n = l(2). Then H2n~2((RPn)*\ Z) = Z2 and p2H
2n~*

«)*; Z) = Z2 + Z2 generated by S> t;x

The proofs of Lemmas 11.4-5 will be made in the next section and we go on
proving Theorem C. By Proposition 10.1,

iR2"-1] = H2»-2((RP»)*', Z)xCoker<9,

where

Now, there are relations

Sq2(vx2r+i-2ys~l) = (s-l)vx2r+ί-2ys,

Sq2(vx 2r+ί-*° =y°) =

which are easily seen by using (11.2) and the fact Sq2(y*) = tyt+1 +(t2

Therefore we have

= f

«Ξθ(2)

us 1(2),

(Sq2+(2n~l )i;
us 3(4).
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From Lemmas 11.4-5 and (11.3), these relations show that

( Z2 n = 3(4)
Coker Θ =

[ 0 elsewhere.

Since H2n~2((RPn)*\ Z) = Z2 by Lemmas 11.4-5, we have Theorem C.

§ 12. Proofs of Lemmas 11.4-5

There are two exact sequences of cohomology groups associated with the
double covering RPnxRP»- A-+(RPn)* (cf. [17, pp. 282-283]), which is called
the Thom-Gysin exact sequence :

(12.1) » -»Hί-1(M*; Z)-»H'(M*; Z)->#'(MxM- Λ\ Z)-*H'(M*; Z)

...-»#'•- i(M*; Z)-»#'*(M*; Z)->#''(MxM-,d; Z)-*H'(M*; Z)-

where M = RPn. Moreover, there is the Bockstein exact sequence [18]

(12.2) ---- > tf'-KM*; Z2) J±+ H'(M*; Z) -̂ -> /f'(M*; Z)

; Z2) -**-»-, (M = RP»),

associated with the short exact sequence 0 - >Z-^-»Z-^-»Z2 — >0. The
homomorphism β2 ^ called the twisted Bockstein operator, and by [4] and [16],
the homomorphism p2β2: ίί'-^ίRP")*; Z2)^Hί((^Pn)*; Z2) is given by

(12.3) p2β2(a) = Sqίa + va for aeH^^^RP")*; Z2),

where v is the first Stiefel-Whitney class of the double covering RPnxRPn — A
-KΛPΌ*.

From now on, set n = 2r + s, 0<5<2Γ.

PROOF OF LEMMA 11.4. Since n is even, the space 5Zn+1>2 is an orientable
(2n — l)-dimensional manifold by [2, § 3] and so it follows that

>2; Z) = H,(SZn+l^ Z) = D4/[D4, D4] = Z2 + Z2.

Since the total space Zπ+1)2 is also orientable and π1(Zn+1>2) = Z2 + Z2, the follow-
ing relations hold:

Hence (11.1) and the Thom-Gysin exact sequence (12.1) give rise to the two exact
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sequences

Z2 + Z2->H2"-2((ΛP")*;

A simple calculation yields

(12.4) H2n~2((RPn)*; Z) = Z2 or Z2 + Z2 or 0.

On the other hand, there are relations

p2jδ2(*2r+1-V) = u*2r+1-V, P2$2(*2r+l- V"1) = t>jc2 Γ + 1- V1,

by (11.2) and (12.3) since n is even. Consider the Bockstein exact sequence (12.2)

---- >H2n~3((RPn)*; Z) -£2-» H2n-3((RPn)*; Z2) J^-» H2"-2((RP")*; Z)

-21* H2n~2((RPn)*; Z) -£2-> H2n~2((RPn)* Z2) - > -.-.

The last three relations of the above and (11.3) show the last half of Lemma 11.4.
Also, the first two relations of the above show that the image p2H

2n~2((RPn)*\
Z) = Z2 generated by x2r+1~3j;s + ι;;c2r+1'-3j;s. Therefore we have the first half
of Lemma 11.4 by the above Bockstein exact sequence, (11.3) and (12.4).

PROOF OF LEMMA 11.5. Consider the Bockstein exact sequence (12.2)

H2"-*((RPn)*; Z) -£*-> H2»-3((RPn)*; Z2) -̂ -» H2"-2((RP")* Z)

_χ2^ H2»-2((RP»)* Z) -̂ -> H2n~2((RPn)* Z2) .

Since n is odd, there are relations

by (11.2) and (12.3). Therefore, the lemma can be proved in the same way as

the proof of Lemma 11.4, by using the Bockstein exact sequence (12.2) and
(11.3).
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