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Introduction

Recently, in [3], the notion of divisorial modules was introduced in Mod(K),
the category of ^-modules, where R is a completely integrally closed domain.

In [3], the class of all pseudo-null modules is a Serre subcategory, more precisely,
a localizing subcategory of Mod(JR). This fact is meaningful. In fact, if R

is a commutative ring with unit, then some closure operations on the lattice of

ideals of R which have the same characters as the divisorial envelope of ideals,
correspond to localizing subcategories of Mod^R). Another important fact is

the following: If R is noetherian, then there is a one-to-one correspondence
between the class of localizing subcategories of Mod (R) and the class of subsets

of Spec (R) which are stable under specialization. And if Z is a subset of Spec (R),
stable under specialization, then we can define the local cohomology modules

with supports in Z. Therefore, there must be some relationship between the di-

visorial envelopes (more generally, ^-divisorial envelopes, defined in §2) of mod-

ules and the local cohomology modules. In this paper, we shall study the above
problem, mostly in § 2. Since both the divisorial envelopes of JR-modules and the

local cohomology modules are defined functorially, we shall deal with all things
in an abelian category and its localizing subcategories.

The author expresses his hearty thanks to Professor M. Nishi for his valuable
advice and comments in writing this paper.

§1. Weak #-envelopes

Let j/ be an abelian category, ^ a Serre subcategory of jtf. For the defini-

tions of #-closed objects, ^-isomorphisms and #-envelopes, we shall refer to

[1]. Also, we shall assume basic properties of them (see [1] or [2]). For the
purpose of convenience, we say that an object L is tf-pure if L has no ^-sub-

objects. The following lemma is an easy consequence of this definition.

LEMMA 1.1. An object L is tf-pure if and only if, for every &-isomorphism

α: M-*N, Hom(]V, L)->Hom(M, L) is injective.

PROOF. (Necessity) Let /: N-+L be a morphism. Suppose α/=0, then

there is an epimorphism Coker(a)->Im(/). Hence Im(/) is a ^-subobject of
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L. Since ^-subobjects of L are null, Im(/) = 0. Therefore /= 0.
(Sufficiency) Let C be a ^-subobject of L. Since 0->C is a ^-isomorphism,

Hom(C, L)-»Hom(0, L) is injective. Hence Hom(C, L) = 0. Therefore C = 0.

DEFINITION 1.2. We say that a morphism p: A-*L is a strict ^-isomor-
phism if p and L satisfy the following conditions:

(1) L is &-pure.
(2) p is a ^-isomorphism.
(3) Let α: M-+N be a monomorphίsm such that Coker(α) is an object in

<$ . Then, for every morphism f: M-+A, there is a morphism (necessarily unique
by Lemma 1.1) g: N-+L such that ga = pf.

For example, if p: A-+L is a ^-envelope of A, then p is a strict ^-isomor-
phism.

DEFINITION 1.3. We say that a morphism p: A-^L is a weak ^-envelope
of A, if p and L satisfy the following conditions:

(1) (Strictness) p is a strict ^-isomorphism.
(2) (Universality) If p' : A'-^L' is a strict & -isomorphism, then, for

every morphism f: A-*A ', there is a morphism (necessarily unique by Lemma
1.1, since p is a ^-isomorphism) g: L-+L' such that gp = p'f.

A weak ^-envelope of A, if it exists, is unique up to isomorphisms because
of its universality. It is easy to see that if a strict ^-isomorphism is a mono-
morphism, then it is a weak ^-envelope. On the other hand, if u: A-*L is a Ή-
isomorphism with L ^-pure, then Ker(w) is a largest ^-subobject of A. There-

fore, a ^-envelope of a ^-pure object A is a weak ^-envelope of A. More
precisely

PROPOSITION 1.4. Let A be a <£-pure object. Then a morphism p: A
->L is a ^-envelope of A if and only if it is a weak <tf -envelope of A.

PROOF. It is sufficient to show the "if" part. All that remains to be
proved is that L is ^-closed. Let 0-»L— ̂ ->X->C-»0 be an exact sequence and
C an object in # '. Then αp is a ^-isomorphism, and also, is a monomorphism.
Hence there is a morphism β: X-+L such that βap = p, by strictness of p.
Then the universality of p implies βoc=lL. Thus the above exact sequence is
splitable. Therefore L is ^-closed.

It is also easy to see that if a strict ^-isomorphism is an epimorphism, then it
is a weak ^-envelope (since Hom(A/N, L)->Hom(^4, N) is bijective for every

object L and ^-subobject N of A).

PROPOSITION 1,5. Let E be an injective object. Suppose that E has a
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largest tf-subobject EQ. Then the canonical morphism p: E^>E/E0 is a weak
<£ -envelope of E.

PROOF. Clearly, E/E0 is #-pure. Let α: M-+N be a monomorphism such
that Coker(α) is an object in #, and let/: M-+E. Since E is injective, there is a
morphism δ: N-+E such that <5α=/. Then g = pδ: N-+E/E0 has the property
ga = ρf. Thus, p is a strict ^-isomorphism and epimorphism. Therefore p
is a weak ^-envelope of E.

PROPOSITION 1.6. Let Q^>A-£->B-$->C be an exact sequence, and let
u: B-*Y(resp. v: C-*Z) be a weak ^-envelope of B (resp. of C). By the univer-
sality of v, there is a unique morphism g' : Y->Z such that g'u = vg. Now, let
f: X->Y be a kernel of g', and let p: A->X be a unique morphism such that uf
=/'. Suppose that u is an epimorphism. Then p is a weak ^-envelope of A.

PROOF. (Strictness) Consider the following diagram:

0 - > A - » B - > Im(0) - > 0

[P

0 - > X -

By snake lemma, we have an exact sequence: 0-»Ker(p)-»Ker(M)-»Ker(ι/0
-»Coker(p)->Coker(w). Since Ker(w), Coker(u) and Ker (ψ) = Ker (v) n Im (g)
are objects in #, Ker(p) and Coker(p) are objects in # '. Hence p is a ^-isomor-
phism. On the other hand, it is obvious that X is ^-pure. Now, let α: M-+N
be a monomorphism such that Coker(α) is an object in #, and let β: M^A be
a morphism. Then there is a morphism /: N-+A such that M/j8 = /α, since u is
a weak ^-envelope of B. Note that #yα = 0. Then by Lemma 1.1, we have g'γ'
= 0. This means that there is a unique morphism y: N-*X such that/'y = y/,
and sof'yoί=f'pβ. Since/' is a monomorphism, we have γa = pβ.

(Universality) Consider the following pull back diagram:

From the universality of the pull back diagram, we have a morphism / : A-^K
such that pi=f and ji = p. Since / and /' are monomprphisms, p and i are also
monomorphisms. Hence Ker (j) is a subobject of Ker (w), so that Ker(j) is an
object in #. On the other hand, j is an epimorphism; hence j is a ^-isomor-
phism. Therefore i is also a ^-isomorphism. Now let p'\ A'-+Xr be a strict
^-isomorphism, and let σ: A-+A be a morphism. Then there is a morphism

τ'\ K-+X' such that τ'ΐ = p'σ. However τ'(Ker(j)) = 0 since X' is ^-pure and



542 Shiroh ITOH

Ker(y') is an object in ¥> . Therefore we have a morphism τ: X-*X' such that
τj = τ'. It is clear that τρ = p'σ.

COROLLARY 1.7. Assume that stf has enough injectίves. If every object
of $0 has a largest &-subobject, then every object has a weak ^-envelope.

PROOF. Let A be an object, and let Q-^A-^E0-^Eί be an injective resolution
of A. By Prop. 1.5, Et has a weak ^-envelope pt: E^Li which is an epimor-
phism (ί = 0, 1). The assertion follows from Prop. 1.6.

COROLLARY 1.8. Assume that jtf has enough injectives. Then a Serre
subcategory *&' of ̂  is a localizing subcategory if and only if every object in
st has a largest <£' -sub object.

PROOF. If <&' is a localizing subcategory of ja/, then it is clear that every ob-
ject in 30 has a largest ^'-subobject. Conversely, if every object in s# has a
largest ^'-subobject, then by Coroll. 1.7 every object has a weak ^'-envelope;
hence by Prop. 1.4 every ^'-pure object has a ^'-envelope. Therefore, by [2],
Prop. 4, Chap. Ill, <€' is a localizing subcategory of stf '.

For the rest of this section, we assume that $# has enough injectives and ^
is a localizing subcategory of jtf. For each object A in $#, choose a weak %>-
envelope p(A): A-+Ύ(A). If B is another object in j/, then we have the map
Horn (A, 5)-*Hom(T(X), T(5)) from the universality of p(A\ which is a group
homomorphism. Therefore we have a co variant additive functor T: j^-»j^
and a morphism p: 1^->T of functors such that for each A, p(A): A-+Ύ(A) is
a weak ^-envelope of A. On the other hand, we also have a functor L^: $#-*$#
and a morphism L^->1^ of functors such that L^(A)-^A is a largest ^-subobject
of A, for each A. It is easy to see that Lv is a left exact, additive, co variant functor.

Let 0-^/4 ->£->C->0 be an exact sequence in $# '. We can construct an injec-
tive resolution £λ. (resp. E2., E3.) of A (resp. B, C) and a splitable exact sequence
of complexes Q-^Eί.-^E2.-^E3.-^Q. Since Lv is left exact, Q-+Lv(Eί.)-+Lv(E2 ')
->Ly(£3.)-^0 is exact, and hence 0->Eί.ILv(Eί.)-*E2.ILv(E2.)->E3.ILv(E3.)-+Q
is exact. Therefore Prop. 1.5 and 1.6 imply that 0-»T(y4)-*T(β)->T(C) is exact.
We can thus see that T is left exact, and also it is the zero-th right derived functor

^l^). Summarizing the properties of T and p, we have

(1) T is left exact, covariant and additive.
(2) For an injective object E, p(E) is an epίmorphism.
(3) Ύ(p(A)) = p(Ύ(AJ), and it is a monomorphism.

Now, let R*T (resp. RPL^) be the p-th right derived functor of T (resp. Lv).
For every object A, choose an injective resolution E. of A. Since the sequence

»0 of complexes is exact, we have an exact sequence and
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isomorphisms

(4) Q

REMARK. If $4 is the category of ^-modules, where R is a noetherian ring,
and if # is its localizing subcategory consisting of ^-modules whose supports are
contained in a closed subset Z of Spec (R)9 then the exact sequence (4) above is
the fundamental exact sequence connecting the local cohomology modules with
supports in Z and the global cohomologies on Spec(β) — Z.

PROPOSITION 1.9. There is a one-to-one correspondence between the class
of localizing subcategories of jtf and the class of pairs (T, p) consisting of a
functor T: stf-*s# and a morphism p: 1^-^T of functors satisfying the condi-
tions (1), (2) and (3) above.

PROOF. Let (T, p) be a pair of a functor and a morphism of functors satisfy-
ing (1), (2) and (3). Let V be the class of all objects A such that 7(4) = 0. We
regard ^ as a full subcategory of jtf. We shall prove that ^ is a localizing sub-
category of A and p(A): A^Ί(A) is a weak ^-envelope of A for each A.

(a) For every object A, Ker(p(v4)) is an object in jtf. In particular, A is
an object in # if and only if ρ(A) = 0. In fact, consider the following diagram :

0

Then T(Ker (p(A))) = 0, since Ύ(p(A)) is a monomorphism. Therefore Ker(p(4))
is an object in # '.

(b) <€ is a Serre subcategory of j/. In fact, let 0-^A^β-^C-^O be an exact
sequence. By (a) above, B e <£<?>p(B) = Oop(A) = 0 = p(C)oX, C 6 ̂  .

(c) T(A) is #-pure for each >4. In fact, let ί: N-*Ύ(A) be a non-trivial sub-
object of T(y4). Since p(Ύ(A))i = Ύ(ί)p(N) is a monomorphism, p(N) is also a
monomorphism. Therefore Ύ(A) has no ^-subobjects.

(d) Ker (p(A)) is a largest ^-subobject of A, for each A. In fact, if i : N-+A
is a ^-subobject of A, then p(yl)ΐ = 0. Therefore ί factors through Ker(p(yl)).

(e) We have thus proved that ^ is a Serre subcategory such that every object
A has a largest ^-subobject Ker(p(X)). Hence, by Prop. 1.7, for every object
A, a weak ^-envelope of A exists. From the condition (2) for p and Prop. 1.5,
p(E): E-+Ύ(E) is a weak ^-envelope of E for every injective object E. Therefore
by left exactness of T and Prop. 1.5, ρ(A) is a weak ^-envelope of A for every ob-
ject A.
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REMARK. Let ^ be a localizing subcategory of ja/, where s# may not have
enough injectives. Then we have a functor F: j/->j/ and a morphism σ: 1̂
->F of functors such that, for every object A, σ(A): A-+¥(A) is a ^-envelope of

A (cf. [1] or [2]). F and σ have the following properties:

(5) F is left exact, additive and covariant.

(6) ¥(σ(A)) = σ(¥(A))9 and it is an isomorphism.

An analogus theorem for F and σ, corresponding to Prop. 1.9, is also true.
In fact we have

PROPOSITION. There is a one-to-one correspondence between the class of
localizing subcategories of jtf and the class of pairs (F, σ) of a functor F: ja/->j/

and a morphism σ: lj/-»F of functors satisfying (5) and (6) above.

PROOF. For a pair (F, σ) satisfying (5) and (6), we put ^ = { A e Obj (X) :
F(γ4) = 0}, which is regarded as a full subcategory of jaΛ We shall prove that ^

is a localizing subcategory and σ(A): A-+¥(A) is a ^-envelope of A for each A.

Steps (a) to (d) in the proof of Prop. 1.9 are also valid in this case. Therefore it
is sufficient to show that F(A) is ^-closed and σ(A) is a ^-isomorphism for each

A. Let Q-+F(A)— 5L_>X->C-»0 be an exact sequence such that C is an object in

<£ . Since F(C) = 0, F(α) is an isomorphism. Hence σ(¥(A))~ ί F(α)~ l σ(X) α

= lp(x) Therefore the above exact sequence is splitable, and so F(^4) is ^-closed.
On the other hand, σ(A) is factored as follows:

0 - > Ker(σ(^)) - >A - > Im(σ(^)) - » 0
II

0 - » lm(σ(A)) - > ¥(A) - > Coker(σ(A)) - > 0,

so that we have two exact sequences :

0 — F(A) -

0 -

j/ = F(σ(A)) is an isomorphism, and since ί and j are monomorphism, ί and
j are isomorphism. Hence w = 0, and so we have σ(Coker(σ(X)))==0. There-
fore Coker(σ(y4)) is an object in ••&. This shows that σ(A) is a ^-isomorphism.

§2. r^-divisorial envelopes

A characterization of divisorial modules in the category of .R-modules, where
R is a completely integrally closed domain, is given in [3], Prop. 8. However, the

corresponding characterization of divisorial envelopes has not been given yet,
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We, here, state this characterization and adopt it as the definition of "tf-divisorial

envelopes".

Let jtf be an abelian category, # a localizing subcategory of j/.

DEFINITION 2.1. A Ή-divisorial envelope of an object A is a morphism
d: A-+D satisfying the following conditions:

(1) d is a monomorphism and Coker (d) is an object in *£ .
(2) If a monomorphism α: M-*N is a & -isomorphism, then, for every mor-

phism f : M-*A9 there is a morphism g: N-+D such that ga = df.
(3) If δ: D-»D satisfies δd = d, then δ is an isomorphism.

It is easy to see that a ^-divisorial envelope of A, if it exists, is unique up to
isomorphisms.

COROLLARY 2.2. If d: A-*D is a tf-divisorial envelope of A, then d is an

essential morphism.

PROOF. Let N be a subobject of D such that N n A = 0, and let β be the ca-
nonical projection D-+D/N. Then βd is a monomorphism and Coker (βd) is an
object in # '. Hence there is a morphism g: D/N-+D such that gβd = d. Then,
by (3) above, gβ is an isomorphism, and so β is a monomorphism. Therefore

JV=0.

COROLLARY 2.3. Let Abe a tf-pure object, and let p: A-+L be a morphism.
Then the following conditions for p are equivalent:

( i ) p is a weak tf -envelope of A.
(ii) p is a ^-envelope of A.
(iii) p is a tf-divisorial envelope of A.

PROOF. By Prop. 1 .4, the conditions (i) and (ii) are equivalent to each other.
The implication (ii)=>(iii) follows easily from the definition of ^-envelopes. Now
suppose that p is a ^-divisorial envelope of A. Since A is #-pure, it follows from
Cor. 2.2 that D is ^-pure. Hence a monomorphism p is a strict ^-isomor-
phism; whence p is a weak ^-envelope of A. Therefore we have the implication

LEMMA 2.4. Let p: A-+B be a monomorphism such that Coker (p) is'Φ-
pure; let α: M-*N'be a morphism such that Coker(α) is an object in &. Let
f: M-*A be a morphism. If g: N-+B is a morphism such that gct = pf, then g
factors through p.

PROOF. Let ψ be the canonical projection B-^Coker(p). Then, by Lemma
1.1, ψg — Q, since Coker (p) is ^-pure and ψ#α = 0. Therefore g factors through
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THEOREM 2.5. Let d: A-+D be a tf-divisorial envelope of A. Then p:
v4-»D/Ly(D) (the composition of d and the canonical projection ψ: £>->D/L^(D))
is a weak ^-envelope of A.

PROOF. (Strictness) Clearly, p is a #-isomorphism and D/LV(D) is ^-pure.
Let α: M-*N be a monomorphism such that Coker(α) is an object in #, and let
/: M-+A be a morphism. By Def. 2.1, there is a morphism g': N-+D such that
g'(x = df. Then ψg'a = pf. Therefore φg' is a morphism we wanted.

(Universality) Let p': A'-*L' be a strict ^-isomorphism, and let /: A^ A'
be a morphism. By the strictness of p', there is a morphism /ι: D->L' such that
hd = p'f. Then /ι(L .̂(D)) = 0, since L' is ^-pure. Hence there is a morphism
#: D/Ly(D))-»L' such that h = gψ, which implies gp = p'f.

The following proposition gives a sufficient condition for the existence of
^-divisorial envelopes, and also it shows that our definition of ^-divisorial enve-
lopes is a generalization of divisorial envelopes in [3].

PROPOSITION 2.6. // jtf is an abelian category with injective envelopes,
then, for every object A, a tf-divisorial envelope of A exists.

PROOF. Let A be an object. Choose an injective envelope u: A^E of A.
Let ψ be the canonical projection E-+E/A. Consider the following pull back
diagram:

Then u factors through j i.e., there is a unique morphism d\A^L such that jd = u.
We shall prove that d is a ^-divisorial envelope of A. In fact, it is obvious that
d is a monomorphism and Coker(d) is an object in .̂ Let α: M-+N be a mono-
morphism such that Coker(α) is an object in #, and let/: M->y4 be a morphism.
Since E is injective, there is a morphism g': N^E such that uf=g'ct. Then, by

Lemma 2.4, there is a morphism g: N-+L such thatj'g = g f , and so gct = df. There-
fore d satisfies the condition (2) of Def. 2.1. If δ: L-+L satisfies δd = d, then it
is clear that δ is a monomorphism. Since E is injective, there is a morphism δ':
L-+E such that δ'δ=jι δ' is also a monomorphism. Hence we have an endomor-
phism δ" of L#(E/A) which is a monomorphism and commutes with the inclusion
map Lv(E/A)-+E/A, so that δ" is an isomorphism by the definition of Lv(E/A)ι
this shows that δ is an isomorphism. Therefore d is a ^-divisorial envelope of A.
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We now give the definition of ^-divisorial objects.

DEFINITION 2.7. We say that an object D is tf-divisorial if \D: D-+D
is a tf-divisorial envelope of D, equivalent y, for every monomorphism α: M-»N
such that Coker(α) is an object in tf, Hom(N, D)-»Hom(M, D) is surjective.

REMARK 2.8. Injective objects are obviously ^-divisorial. Also, it is obvi-
ous that A@B is ^-divisorial if and only if both A and B are ^-divisorial. More-
over, if D is ^-divisorial, then L^(D) is #-di visor ial. In fact, let α: M->N be a
monomorphism such that Coker(α) is an object in #, and let /: M-^L^(D) be a
morphism. Since D is ^-divisorial, there is a morphism g': N^>D such that if
= g'u where i is the inclusion map L^(D)->D. Then by Lemma 2.4, there is a mor-

phism g: ΛΓ-»Ltf(D) such that g' = ig. Therefore #α=/; this shows that L^(D)
is ^-divisorial.

PROPOSITION 2.9. Assume that $0 has enough injectives. If ά\ A^D

is a %>-divisor ial envelope of A, then D is <£-divisor ial.

PROOF. Let u: A-+E be an embedding of A into an injective object E, and
let ψ be the canonical projection E-*E/A. Consider the following pull back
diagram:

Let u': A->L be the canonical monomorphism such that u =juf. Since E is injec-
tive, there is a morphism v: D->£ such that vd = u (=juf). Then, by Lemma
2.4, v factors through j i.e. there is a morphism i: D-»L such that v=ji. Since
j is a monomorphism, jiά—ju' implies id = u'. On the other hand, by the proper-
ty of d, we have a morphism δ: L-+D such that d = δu' ( = δid), which implies that
δi is an isomorphism. Now let α: M->N be a monomorphism such that Coker(α)
is an object in #, and let /: M-»D be a morphism. Then there is a morphism
g': N-+E with g'a=jif. By Lemma 2.4, gf factors through j i.e., there is a mor-
phism g": N^L with g'=jg". Since j is a monomorphism, we have g"cί = if.

Therefore ((δi)-lδg")u=f\ this shows that D is tf-divisorial.

PROPOSITION 2.10. Assume that stf has enough injectives. Then the fol-

lowing statements concerning an object D are equivalent:
( i ) D is <£-divisorial.
(ii) Ext1 (N, D) = Qfor every object N in tf.

(Hi) R1Lίf(D) = 0 and L^(D) is V-diυisorial.
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PROOF. (ii)=>(i): If a monomorphism α: M-^N is a ^-isomorphism, then
Hom(N, D)->Hom(M, D^Ext^N/M, D) is exact, and Ext1 (N/M, D) = 0 since
N/M is an object in %> . Therefore D is ^-divisorial.

(i)=>(iii): By Th. 2.5, the canonical morphism d: D->D/L^(D) is a weak #-

envelope of D; hence R1L^(Z)) = Coker(ί/) = 0. The last assertion follows from
Remark 2.8.

(iii)=>(ii): Let 0-*D->E0-*E1-»E2 be an injective resolution of D. Since
R1Lίf(D) = 0, the complex Q^L«(D)-^L«(E0)-^L«(E1)-+L«(E2) is exact.
Since Ly(D) is ^-divisorial, α is splitable; hence β(L^(E0)) is isomorphic to a direct
sumand of L^EQ), so that it is also ^-divisorial by Remark 2.8. The same argu-
ment shows that ^(L^(£0)) is a direct sumand of L^EJ. Then the complex
Horn (A 9 Ly(E.)) is exact for every A. Therefore, for every object N in ,̂
Ext HAT, D) = HHHom(N, £.)) = H1(Hom(N, M£.))) = 0.

COROLLARY 2.11. Assume that stf has enough injectives.
(1) An object A is tf-pure if and only if Ext°(N, A) = Q for every object

N in &.
(2) An object A is V-closed if and only if Ext°(N, A) = Extl(N, A) = 0

for every object N in % '.

PROOF. The assertion (1) follows from the definition of ^-pure objects. As
for the last one, we may assume that A is ^-pure. Then, by Cor. 2.3, A is <£?-
closed if and only if A is ^-divisorial. Therefore the assertion (2) follows from

Prop. 2.10.

REMARK 2.12. Let AT be a subobject of M. Then we can introduce the
notion of the ^-divisorial envelope of N in M, naturally extending the definition
of divisorial envelopes in a module (cf. [3], 1 n°7), i.e., the subobject D of M
containing AT such that D/N = LV(M/N). We also say that N is ^-divisorial in
M if M/N is #-pure. It is easy to see that if M is ^-divisorial and N is <g7-
divisorial in M, then N is ^-divisorial.

For an example, we shall show a property of functors RPL^, which is a well-
known theorem in the local cohomology theory. Before stating this, we introduce

a definition for complexes; we say that a complex C0-^C1-^->C2-> -̂ L»
CΛ + 1 is a splitting exact complex if Q->Im(di-ί)-+Cί-+Im(dί)->Q is a splitting
exact sequence for each i = 1,..., n, and Ker(d0) is a direct summand of C0.

PROPOSITION 2.13. Assume that stf has enough injectives. Then the fol-
lowing statements, concerning an object A and a positive integer n, are equiva-
lent:

(i) Extp(N, A) = Qfor every object N in Ή and p<n.
(ii) RpL«(A) = Qfor p<n.
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PROOF. (i)=>(ii): Let Q-^A-^E0-^E1-^'" be an injective resolution of

A. If N is an object in V, then H'(Hom(N, ̂  (£.))) = H*(Hom(N, £.))
= Exf(N, Λ) = 0 for p<n. Now, let jp: NP-+LV(EP) be the kernel of L^(dp),

where p<n. Since Hp(Hom(Np, LίP(£.))) = 0» there is a morphism αp: Np->
L^(£p_j) such that ^(dp^^p=jp. Hence 0->L^(E0)-> ---- >Ly(£B) is a splitting
exact complex. Therefore RPL^(A) — 0 for p < n.

(ii)=>(i): Let O^A-^EQ-^^EI-^-^ be an injective resolution of A.

By RpLyG4) = 0 for p<n, the complex 0->Ly(E0)-* ---- »L^(Ert) is exact. Since
each Ep is injective, Lv(Ep) is #-divisorial by Remark 2.8. In particular, 0->

L<e(E0)-+Lty(E1)-+L<e(E2) is a splitting exact complex. Now suppose that 0
-+L^(£0)-+ -»Ltf(£p) (p<n) is a splitting exact complex. Then \m(Lv(dp-^)
is a direct summand of L^E^^. Hence it is ^-divisorial by Remark 2.8,
whence the morphism Im^^dp-^-^L^Ep) is splitable. By induction, 0-»
Ly(£0)-> ---- >Ly(EΛ) is a splitting exact complex. Therefore Extp(N9A) =
H"(Hom(N, £.)) = Hp(Hom(JV, L^(£.))) = 0 for every object N in V and p<n.

COROLLARY (to the proof). // Extn(JV, A)=Q for every N in &9 then

For the rest of this section, we assume that $0 has enough injectives. We
have constructed two functors T (defined by weak ^-envelopes) and F (defined by
^-envelopes). By Prop. 1.4, these are related by TT^F. Moreover, the left
exactness of T and F implies that T and F are isomorphic to each other if and only
if, for every injective object £, E/LV(E) is ^-closed. The following result is
essentially contained in [3], Th. 2.

PROPOSITION 2.14. Assume that jtf has injective envelopes. Then the fol-
lowings are equivalent to each other:

( i ) If E is injective, then LV(E) is also injective.
(ii) If A is not an object in #, then A has a non-zero &-pure subobject.
(iii) Let A-+B be an essential morphism. If A is an object in #, then so is

B.
(iv) E(LV(AJ) = LV(E(A)) for every object A (where E(X) is an injective

envelope of X).

PROOF. (i)=>(ii): Let A be an object, u: A^E an injective envelope of A.
By assumption, £ = L^(£)©L for some ^-pure subobject L of E. Now, if A
is not an object in #, then L^O; hence u~l(L) is a non-zero #-pure subobject of

A.

(ii)=>(iii): If B is not an object in #, then B has a non-zero #-pure subobject
L. Since B is an essential extension of /4, A n L is a non-zero #-pure subobject
of A, which is a contradiction.
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(iii)=>(iv): Let A be an object, u: A-+E an injective envelope of A. It is
clear that Ltf(w)': Ly(Λ)->Ltf(E) is essential. Let v: L<#(A)->E' be an injective
envelope of L^(A). Then, by our assumption, E' is an object in # '. Since E'
is injective, we have a morphism/: L^(£)->£' such that/L^(M) = ι;, which is also
an essential monomorphism; hence /is splitable by the ^-divisoriality of Ly(£),
and is essential. Therefore / is an isomorphism.

(iv)=>(i) : If £ is injective, then by our assumption L^(£) = £(L^(£)). There-
fore L^(£) is injective.

We say that an object A is ^-flasque if A/LV(A) is ^-closed. If the condi-
tions in Prop. 2.14 are satisfied, then E/L«(E) is injective and ^-pure for every
injective object E; hence it is # -closed. Therefore injective objects are ^-flasque.
^-flasqueness of injective objects can be also interpreted by the functor R2L^.

PROPOSITION 2.15. Every injective object is tf-flasque if and only if

0/0r every object N i n t f .

PROOF, (Necessity) Note that two functors T and F are isomorphic to each

other. Let N be an object in ,̂ and let N-+E0-*E1-+E2 be an injective resolu-

tion of N. Then Q-+F(E0IN)-+F(Eί)-+¥(E2) is exact. Hence 0->F(£0)->
is also exact since F(£0)^F(£0/ΛΓ). Therefore R2Lv(JV)sR1T(N)

(Sufficiency) Let E be an injective object. Consider the following exact
sequence: Q-*L«(E)-+E-*E/Ltt(E)-+Q. Then we have an exact sequence: 0-»
Ί(E)-+Ύ(E/L«(E)-+R1Ί(L«(E)). By our assumption, R1T(LV(E))^R2

= 0; hence £/Lv(£)sT(£)sT(£/Lv(£)). Therefore, by Prop. 1.4,
is ^-closed.

REMARK. If the conditions in Prop. 2.14 are satisfied, then RPL^C/V) = 0
for every object N in ̂  and p> 0. In fact, if £. is a minimal injective resolution
of an object JV in ,̂ then each Ep is also an object in .̂

§ 3* The category of Mod (A)

Let A be a commutative ring with 1. Consider a closure operation D on the
lattice of ideals of A satisfying the following conditions:

(1) a^D(ά)for every ideal α.
(2) DD = D.
(3) α<Ξ
(4)

Then D defines a family of ideals I satisfying the following conditions :
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(5) α^b and αel=>bel.
(6) α<=b, b e l and α: b el for every b in b=>αel.

In fact, let I={α; D(a) = A}. We shall show that I satisfies the conditions
(5) and (6) above. The assertion (5) follows from (1) and (3). Now, if α^b,
b e l and α: bel for every b in b, then D(a: b) = D(a): b = A for every b in b;
hence b c D(α). Therefore D(a) = A.

A family I of ideals satisfying (5) and (6) also satisfies the following condition :

(7) α, b e I=>α b and α Γt b e I.

In fact, for every b in b, αb : b contains α. Hence by (5), αb : b e I for every
b in b. Therefore αb e I by (6).

The corresponding property for D is

(8) D(αnb) = D(α)n/)(b).

In fact, x E D(ά) Π D(b)oD(α : x) = A = D(b : x)oα : x and b : x e loα n b :
x = (α: x ) Π ( b : x)e!oD(a nb): x = AoχεD(a n b).

PROPOSITION 3.1. There is a bijectiυe correspondence between the class
of closure operations on the lattice of ideals of A, satisfying (1) (2) (3) and (4),
and the class of families of ideals, satisfying (5) and (6).

PROOF. Let I be a family of ideals satisfying (5) and (6). Then we define
an operation D as follow: D(α) = {αe,4; α: αel} for every ideal α. We must

show that D(α) is an ideal of A. If x, y eD(α), then α: x + y^(a: x) n (α: y);
hence α: x + yel by (7) and (5); therefore x + j>eD(α). If xeD(α) and aeA,
then α: αxsα: x; hence α: axel by (5); therefore αxeD(α). These show that
D(α) is an ideal of A. Obviously, D satisfies (1) and (3). If xeDD(α), then
D(α): xel. For every beD(ά): x, (α: x): fr = α: xfcel , since xbeD(ά); hence

α: xe l by (6). Therefore xeD(α), so we have D(α) = DD(α). Next, yeD(a:
x)o(α : x) : y = α : xy e loxy e D(ά)<^>y e D(α) : x hence D(α : x) = D(α) : x. Finally,
we must show that I = {α; D(ά) — A}. In fact, if D(ά) — A9 then α=α: l e l b y
definition. Conversely, if αel, then α: l = αel; hence leD(α) by definition;
therefore D(a) = A.

EXAMPLE 1. If A is a domain, then the operation A:κ (A: κ*) satisfies the
conditions (1) (2) (3) and (4), where K is the field of fractions of A and A:κ N
= {xe£; xN^A} for a fractional ideal N. The corresponding family of ideals
is {a;A:κ a = A}.

EXAMPLE 2. Let /: A^B be a ring homomorphism. Then the family of
ideals {α; α is an ideal of A such that f(ά)B = B} satisfies the conditions (5) and
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(6).

A family of ideals satisfying the conditions (5) and (6) is a Gabriel topology
on A (cf. [4], §5, Chap. VI). We shall quote some propositions from [4].

PROPOSITION 3.2. ([4], Prop. 2.1 and Th. 5.1, Chap. VI) There are bi-
jective correspondences between

( i ) Gabriel topologies on A,
(ii) Left exact radicals,
(iii) Classes of A-modules closed under quotient, coproduct, extension and

subobject (or, equivalently, localizing subcategories of Mod (A)).

If I is a Gabriel topology on A, then the corresponding localizing subcategory
^ is {/1-module M such that Ann (x) e I for every x in M}. Conversely, if <$
is a localizing subcategory of Mod (4), then 1= {ideal α of A such that Aja is an
object in <£} is the corresponding Gabriel topology on A. Moreover, the opera-
tion D on the class of ideals, corresponding to a localizing subcategory ,̂ has the

property: D(α)/α = LίP(A/α) i.e. D(α) is the ^-divisorial envelope of α in A.

PROPOSITION 3.3. Let ^ be a localizing subcategory of Mod (A), I the
corresponding Gabriel topology on A. Let M be an A-module. Then the
canonical map M-»lmjHom(α, M) is a weak ^-envelope of M.

PROOF. It is easy to see that RpLv(M) = liιgExt*(Λ/α s M). Since M =
αel

linj Horn (A, M), the exact sequences 0->α->;4->;4/α-»0, αel , induce an exact
αel

sequence 0-»Lί?(M)->M->liιgHom(α, M)->R1L^(M)->0. Hence, for every in-
αέl

jective ,4-module E, E-+lw% Hom(α, E) is a weak ^-envelope of E. On the other
αel

hand, it is clear that lmjHom(α, *) is a left exact functor. Therefore M-»liπj
αel αel

Hom(α, M) is a weak ^-envelope of M by Prop. 1.6.

COROLLARY 3.4. M->!iiϋHom(α, M/L^(M)) is a ^-envelope of M.
αel

PROPOSITION 3.5. (cf. [4] Prop. 6.13, Chap. VI) Let V be a localizing
subcategory o/Mod(X), I the corresponding Gabriel topology on A. Then the
following conditions are equivalent:

(i ) There is a subset Z of Spec (/I), stable under specialization, such that
Ή = {A-modu le M Supp (M) s Z}.

(ii) There is a subset Z o/Spec(v4), stable under specialization, such that
1 = {ideal a of A; V(α)cZ}.

(iii) //V(α)si, then αel.

COROLLARY 3.6. ([4], Cor. 6.15, Chap. VI) // I has a cofinal subfamily
consisting of finitely generated ideals, then the conditions in Prop. 3.5 are all
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satisfied. In particular, if A is noetherian, then there is a one-to-one cor-
respondence between the class of localizing subcategories of Moά(A) and the
class of subsets of Spec(/4) which are stable under specialization.

PROPOSITION 3.7. Let Z be a subset of Spec (^4), stable under specializa-
tion, and let tf be the localizing subcategory whose objects are A-modules M
such that Supp(M)£Z. Assume that Spec (A) — Z is quasi-compact. Then,
for every A-module M, the map M ( = Γ(Spec(X), M))-» liπi Γ(Spec(v4) —

V ( α ) S Z
V(α), M) induced by restrictions is a ^-envelope of M, where M is the quasi-
coherent ΘSpce(A)-module associated to M. In particular, if Spec (A) — Z
is quasi-compact and open, then a ^-envelope of M is given by M-»Γ(Spec(/4)
-Z, M).

PROOF. Let J (resp. J') be the family of open (resp. quasi-compact open)
subsets of Spec (/I) which contain Spec(X) — Z. Since Spec (A) — Z is quasi-com-
pact, J' is a cofinal subfamily of J. Let U be an element of J', and let i: l/->
Spec(>4) be the inclusion map. Then, for every quasi-coherent (^-module ̂
Ί*(&) is also a quasi-coherent $SpecU)-module. Hence the same argument
described in EGA. IV, 5.9 is also valid in our case. Therefore the functor

lim Γ(Spec(A) — V(α), *) satisfies the conditions (5) and (6) in the last remark
V ( α ) £ Z

in § 1, and the map M-> lim Γ(Spec(A) — V(α), M) is a ^-isomorphism.
V ( α ) ί Ξ Z

PROPOSITION 3.8. Let % be a localizing subcategory of Mod (/I). Then
the conditions in Prop. 2.14 are also equivalent to the fallowings:

(v) Let α be an ideal of A such that A/a does not belong to % 7. Then A/a:
a is ^- pure for some aeA — α.

(vi) Let α be an ideal of A. Then there are ideals at and α2 such that

α = Q! Π α2, A/a{ etf and A/a2 is tf-pure.

PROOF. See [3], Th. 2.

REMARK. Let ̂  be a localizing subcategory of Mod (A), I the correspond-
ing Gabriel topology on A. Then our definition of ^-divisorial envelopes is
equal to the definition of I-injective envelopes by Prop. 2.6 and [4], Prop. 2.1,
Chap. IX.

Let A be a graded ring. We denote the category of graded ^-modules by
*ModC4).

PROPOSITION 3.9. There are bijective correspondences between
(i) operations D on the homogeneous ideals of A, satisfying the following

conditions'.
(1) αs
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(2) DD = D

(3) α<=b=>D(α)c/)(b)
(4) D(a: x) = D(ά): x, where x is a homogeneous element of A
(ii) families I of homogeneous ideals satisfying the following conditions:
(5) α<Ξb and αel=>bel
(6) α^b, b e l and α: feel for every homogeneous element b of b=>α

el
(iii) localizing subcategories of*Mod(A).

PROOF. The same arguments, which we used in the proofs of Prop. 3.1 and
3.2 are also valid in this case.

PROPOSITION 3.10. Let & be a localizing subcategory of *Mod(/l), I
the corresponding family of homogeneous ideals. Then the functor T, defined
by weak ^-envelopes, is 0 (lim. Hom(α, *(n))).

neZ αel

PROOF. Since M^ φ Hom(^, M(n)) and L^(M)^ Θ (Ito Hom(A/α,
nεZ nεZ αel

M(n))) for every graded A-module M, we have an exact sequence 0->LV(M)-»M
P-^M\ © (linj Hom(α, M(n))) such that, if M is injective, then ρ(M) is surjective.

oeZ αel
Therefore p(M) is a weak ^-envelope of M, since θ (lioi Hom(α, *(n))) is left

neZ αel
exact.
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