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Let n be an integer, n>2, let q be a continuous function from [0, oo) to
(0, oo), and let G be the set to which g belongs if and only if g is a nondecreasing
unbounded continuous function from [0, oo) to [0, oo) such that g(t) < t whenever
ί>0. Let G° be that subset of G to which g belongs if and only if g is in G and
g(f)<t whenever ί>0. We propose to study the differential equation

(1) M(l l)(0 + (-l)"+1β(0«fe(0) = 0,

for g in G. A function u from [0, oo) to (—00, oo) is called a solution of (1)
if and only if there is fc>0 such that u(n^ exists on (fe, oo) and (1) is true when-
ever t>b. A solution u of (1) is called oscillatory if and only if the set {t: ί>0
and w(0 = 0} is unbounded. Otherwise, u is called nonoscillatory. Although
the analogue of (1) without delay is known to have a positive bounded solution,
several authors have shown that if the delay is large enough, i.e., g is small enough,
then every bounded solution of (1) is oscillatory. In particular, if g is in G, if

(2) -^COdf =00,
Jo

and if

(3) limsupΓ (g(t)-g(sy)"-1q(s)ds>(n-l)l9ί->oo J g ( t )

then G. Ladas, V. Lakshmikantham, and J. S. Papadakis [3] have shown that
every bounded solution of (1) is oscillatory. M. Naito [7] has shown that if
g is in G and

(4) limsupΓ (s-g(t))n"1q(s)ds > (n-1)!,
r->oo J g ( t )

then every bounded solution of (1) is oscillatory. Note that although each of
(3) and (4) implies (2), (3) and (4) are independent. Since the results of [3]
and [7] are of the nature "if g is small enough then every bounded solution of
(1) is oscillatory", the question arises: If g is large enough can we conclude

the existence of a positive bounded solution? We shall give a result which answers
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this question affirmatively, and we shall also give a comparison result. R. Driver
[ί], [2] has given results, independent of the present study, which are related
in the sense that they ensure that, in some circumstances, delay differential equa-
tions with small delays have behaviors similar to the corresponding ordinary dif-
ferential equations without delay.

THEOREM 1 : Suppose that g is in G° and that

(5) f><">(0+(-i)"+1«(fMO = (-i)"(f-0(0te(0

has a positive bounded solution. Then (1) has a positive bounded solution.

THEOREM 2: Suppose (g,h) is in G°xG° and g(t)<h(t) whenever ί>0.
Suppose also that there is a positive bounded solution of (1). Then there is a
bounded positive solution of

(6) w<»)(0 + (-l)"+1«(ίMΛ(0) = 0.

Before proving Theorem 1, we need the following lemma.

LEMMA: Suppose c>0 and each of φ and ψ is a positive continuous
function on [c, oo). Suppose also that ψ(t)<φ(t) whenever t>c, and that there
is a positive bounded solution u of

(7) u^(t) + (-\Y

on [c, oo). Then there is a positive bounded solution v of

(8) !><">(i)+(-i)"+l*(fMO = (-1WO

on [c, oo) such that v(t)<u(f) whenever t>c.

PROOF: Since w>0 on [c, oo), (7) says that u(n) is eventually one-signed.
Since M ( Π ) is eventually one-signed, u(n~^ is eventually one-signed. Con-
tinuing this, we see that there is d>c such that none of M, w',..., u(n~l) has a zero
on [d, oo). With arguments similar to those of [4, Theorem 2], we see that

M(*)w(*+υ<0 on [ί/, oo) if /c = 0,..., n-1. Thus w<*>>0 on [J, oo) if k is

even and w ( f c )<0 on [d, oo) if k is odd. Since we now have (— l)fcw(fc)(d)>0
for /c = 0,..., n — 1, arguments similar to those of [5, Lemma] show that
(-l) f ew<*>(0>0if c<t<d, /c = 0,..., n-l. Thus, w<*>>0on [c, oo) if k is even
and w ( f c )<0 on [c, oo) if k is odd. Arguments similar to those of [6, Lemma

2] now give

(9> -W'O = (jp^J/J-O"-2^^^

and
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(10) u(t) > ^jjfo-/)"-1^)^

if t > c. From (9) and (10) it follows that

(11) -u(t) > (/|_?2)

and

(12) u(t) > (n^ιγ^(s-y^q(s)u(s)ds+(n^l}^

if t> c. Now one can define a sequence {zk}]JLι, each value of which is a positive
continuous function on [c, oo), according to zi=u,

^

if fc>l and ί>c. A straightforward induction argument shows that if k is a
positive integer then zk+1<zk<u on [c, oo). This and (11) say that {zfc}£Lι
is equicontinuous. Thus a subsequence converges locally uniformly, and, by
monoticity of the sequence, {zk}f=1 converges locally uniformly. Call the
limit v. Clearly v(t)<u(ί) whenever t>c, and the Dominated Convergence
Theorem says

if t>c. Differentiating (13) yields (8) on [c, oo), and the proof is complete.

Note that (9), (10), and (13), and the facts that v<u and φ<φ on [c, oo),
ensure that t/<0 on [c, oo), and — v'< — u' on [c, oo). This will be used in the
proof of Theorem 1.

PROOF OF THEOREM 1 : Let H^ be a bounded positive solution of (5).
Since w t>0, w\ <0, w'J >0, we know that w1(oo) = limw1(0and w/

1(oo) = limw'1(0
ί-»oo ί-*oo

both exist. Also, Wι(oo) = 0, for otherwise vv^oo) and w^oo) cannot both exist.
Find c > 0 such that | w\(s)\ < 1 if s > g(c). Let b> c, and let λ and μ be continuous

nonnegative functions on [c, oo) such that A(ί) + μ(0— 1 if t^c, such that λ(t) = i
and μ(0 = 0 if t>b, and such that μ(ί)>0 if c<t<b. If t>c then

Iwitoίίβ-w^OI <t-g(t)

since jw^s)!^! whenever 5>^f(c). Thus the lemma says there is a bounded
positive solution w2 on [c, oo) of
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with w 2<w 1 on [c, oo), and — w'2< — wΊ on [c, oo). Extend vv>2 to [#(c), oo)
by requiring w2(ί) = w2(c) if g(c) <t<c. Now our lemma says there is a bounded
positive solution w3 on [c, oo) of

with w 3<w 2 and — w'3< — w2 on [c, oo). Extend w3 to [#(c), oo) by requiring
w3(0 = w3(c) if #(c)<f <c. Continuing, we see that there is a sequence {wfc}J°=1

of positive nonincreasing functions such that

(14) w f c + 1 < wfc < w t

on [c, oo) if /c>l,

(15) -wU^-H U-wΊ

on [c, oo) if /c>l, wΛ(ί) = wfc(c) if #(c)<ί<c and /c>l, and

(16) wi

on [c, oo) if fc>l. By (14), {w^}^ converges pointwise, and (15) says the
sequence is equicontinuous, so {wk}^=1 has a locally uniform limit. Call this

limit u. Now (16) says {w (

k

n)}ΐ=ι converges locally uniformly, so M ( Π ) exists
on (c, oo), w£π)-»w(w) locally uniformly, and

(17) u

if t>c. From the hypotheses on λ and μ, (17) gives (1) on [fc, oo), so u is a
solution of (1), and clearly u is bounded, so it remains to show u is positive.

Clearly u is nonnegative and nondecreasing, so if d>c and u(d) = Q then

M(f) = 0 whenever f>d. Suppose c<d<b and w(d) = 0. Now w = 0 on [d, oo),
so w(π>(d) = 0, and (17) is violated since μ(d)(d-g(d))q(d)>0. Suppose w>0
on [c, b), u has a zero, and d is the first such zero, i.e., d>b, w>0 on [c, d), and

M(d) = 0. Noww(π)(dΓ) = 0 and, since g(d)<d, q(d)u(g(d)>§\ contradicting (1).
Thus w>0 on [c, oo), and the proof is complete.
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Note that, in the Proof of Theorem 1, the introduction of λ and μ, and
the requirement that g be in the subset G° of G, ensured that u "starts off" positive,
and the assumption that g is in G° ensured that, after (17) reduces to (1), u cannot
have a zero.

PROOF OF THEOREM 2: Let u be a bounded positive solution of (1).
Find c>0 such that w ( n ) exists on (c, oo), such that w>0 on \_g(c\ oo), and
such that (-l)*w(k>>0 on [c, oo) for fc=l,..., w — 1. Let b>c be such that
g(b)>c. Let ύ be given by ύ(t) = u(b) if t<b and u(t) = u(f) if f> fc . Let v
= u — u. Now ι;>0 on \_g(b), b), and v = 0 on [b, oo). Also,

. Thus

(18)

if ί>fc. Since ύ is nonincreasing, M(gf(ί)) > u(h(t)) whenever t>b. Thus (18)
yields

(19) δ(/) >

if ί>fc. Iteration as before yields a bounded nonnegative solution w of

(20)

on [fe, oo). The positivity of v on [#(b), &), and the fact that h is in G°, ensures
as before that w has no zeros. If d> b and g(d)>b, then (20) yields (6) whenever
t> d, so the proof is complete.
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