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§ 1. Introduction

Let J(X) be the J-group of a CW-complex X of finite dimension. Then
by J. F. Adams [2] and D. Quillen [9], it is shown that

(1.1) J(X) = KO(X)/KerJ, KerJ = ^k(Γ\ek
e(Ψk-l)KO(X)),

where KO(X) is the XO-group of real vector bundles over X9 J: KO(X)-*J(X)
is the natural epimorphism and Ψk is the Adams operation.

In this note, we consider the standard lens space

L»(m) = S2»+ι/Zm, Zm = {exp(2πΠ/m): 0 ̂  / < m},

which has the C^-decomposition Ln(m) = \jj^lej and its 2n-skeleton

Lg(m) = {[z0,..., zj 6 L«(m): zn is real ^ 0} .

Let η be the canonical complex line bundle over LΠ(m) or Lg(m). Then
(1.2) (N. Mahammed [7]) the K-rings of complex vector bundles over these

spaces are given by

K(L»(m)) = X(LS(m)) = Z[ιy]/ < ιT-1, (^1)M+1 > ,

and the reduced group K(Ln(m))==K(L%(rri)) is of order m",
where Z[/f] is the integral polynomial ring with one variable η and the denomi-
nator is the ideal generated by ηm— 1 and (η — l)n+ί.

Now, we consider the case m = pr, where p is an odd prime and r ̂  1. Then

by (1.2) and (1.1), we have the following

( J(Lg(pr)) θ Z2 if n Ξ 0 mod 4,
PROPOSITION 1.3. (i) J(L"(pr)) =

[ J(LS(pr)) otherwise.

(ii) Jr: X(Lg(pO) ̂ -» KO(L8(pO) -̂  J(Lj>df))

(r is the real restriction) is epimorphic, and Ker Jr is the subgroup of K(Ln

Q(pr))
of (12) for m = pr generated additively by the elements
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(l+σ)σdσ(s\ 0 ̂  s < r, 0 ̂  d < ps(p- 1)- 1 ,

"where σ and σ(s) are the elements given by

(1.4) σ = i f - l

The purpose of this note is to give some generators of the abelian group
fL(Ln(pr)) more explicitly, and to study the J-group J(Ln(pr)) by the above
proposition.

Consider the following integers and elements of K(Ln(pr)) — K(L^(pr)) for
0<;s<r, Q<^d<ps(p-l) and

n-p' + l = asp
s(p-l) + bs, 0 ̂  bs < ps(p-l),

(1.5) f as+l if d< bS9~

a, if d^bs;

(1.6) if bs ^ d < bs + ps—\ or d < bs — ps(p — 2) — 1,

σdσ(s) otherwise.

THEOREM 1.7 (cf. [8, Th. 3]). Let p be an odd prime. Then the reduced
K-groups of the lens space Ln(pr) and its subspace L^(pr) are given by

£(L»(pO) = X(Lg(pO) = Σf-i Zί(o (direct sum\ N = min {n, ̂ - 1} ,

where the summand Zί(ί) is the cyclic subgroup of order t(i) of (1.5) generated
by the element σ(s9 d), i = d + ps, of (1.6).

Consider the following elements of the reduced J-group J(Ln

Q(pr)):

(1.8) αs = Jr(σ(s)) = Jr(ηPs)-2, 0 ̂  s < r .

Then we have the following theorem, where a cyclic group Z, of order t is denoted

by Z(ί).

THEOREM 1.9. Lei p be an odd prime, and assume that the integers as

in (1.5) satisfy the condition

(1.10) α s ^ 0 m o d p for 0 <Ξ s < R(n) = min{r-l, r(n)},

where p r (w)^n + l<i?r(ll)+1. TΛen ί/ie reduced J -group of Lg(pr) is the direct
sum
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where the s-th cyclic subgroup Z(p°s) of order pas is generated by the elements
αs 0/(1.8), and αs = 0 if s^r(n).

As a corollary, we have the following result for the case r = 1 :

COROLLARY 1.11 ([4, Prop. 1]). J(Ln

Q(p)) = Z(pa°) and it is generated by
α0, where aQ = [nl(p-\}].

We notice that (1.10) is equivalent to the following condition (cf. Lemma
5.10):

(1.12) 0^ bs^ps(p-2) for 0<s

For the case that the assumption (1.10) or (1.12) does not hold, we take the
integer ρ9 Q<p^R(n), such that

(1.13) bs^p*(p-2) for p < s g R(n)9 bp> p?(p-2),

and consider the integers n and as given as follows :

(1.14) ί as if p<s^R(n),
«s =

I appP-s + (pp-*+ι - 1)/0>- 1) if 0 g s ^ p.

PROPOSITION 1.15. Under the above situations, J(Ln

Q(pr)) is the abelian
group of order pv, v=Σj~J[n/ Jp

s(p— 1)], generated by the elements αs, Q^
<;#(n), o/(1.8), with the relations

p«sαs = 0 for Q^s<>
(1.16)

By this proposition, we obtain the results for the special case that r = 2, 3
or 4 in Proposition 6.13, 7.5 or 7.7.

§ 2. Proof of Proposition 1.3

LEMMA 2.1. Let m be an odd integer. Then
(i) J(Ln(m)) = J(Lg(m))0Z2 if n = 0mod4, = J(Lg(m)) otherwise.
(ii) The real restriction r: K(L%(m))->KO(L$(m)) is epimorphic, and

Kerr is generated additively by the elements ηJ — ηm~J\ 0< j<m.

PROOF, (i) From the exact sequence of (Ln(m), Lg(m)), we have the split

exact sequence
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0 - > KO(S2n+ί) - > KO(L"(m)) - > XO(Lδ(m)) - > 0 ,

where JK0(S2"+1) = Z2 if n = 0mod4, =0 otherwise, and the reduced group

jKO(LjJ(m)) is of order nf n'2\ (cf. [5, Lemmas 2.4, 2.3]). Hence the operator
Ψk — 1 splits by the naturality, and we have the desired result by (1.1) and the fact

that J(S2n+l) = KO(S2n+l) [2, II, (3.5)].
(ii) The first half is proved in the proof of [5, Prop. 2.11]. Let t: K-+K

be the conjugation. Then t(ηj) = η~j = ηm~j by (1.2), and so r(ηj — ηm~J) = r(ηj

— t(ηj)) = Q since rt = r. Conversely, assume xeKerr . Then xeK(Lg(m)),
which is of odd order by (1.2), and hence y = x/2 exists and ry = 0. Thus we have
y + ty = cry = Q, where c: KO-*K is the complexification. Therefore χ = y + y
= y — ty and is a linear combination of ηj — ηm~J since y is a linear combination of
ηJ by (1.2). q.e.d.

PROOF OF PROPOSITION 1.3. By the above lemma for m = pr, it is suffi-
cient to determine Ker Jr. Since r is epimorphic and rΨ

k = Ψkr [3, Lemma A2],
(1.1) shows that

KerJr = Kerr+ΣA, Kk = Γ\ek
e(Ψk-\)K(Ln

0(m)).

Since ψkηJ = ηkJ by [1, Th. 5.1], (1.2) shows that Kfc = 0 if fc = 0modp and Kk

is generated by {ηkj — ηj} otherwise. By these facts, (ii) of the above lemma and
the relation ηpr = 1 of (1.2), we see that Ker Jr is generated by the elements

(*) α(s, k) = ηkPs-ηP\ 0 ̂  s < r, 1 ̂  k < pr~s, (/c, p) = 1.

Since α(ί, 1) = 0 and α(ί, /c + ps-0-α(ί, k) = ηkPtσ(s) for O^ίgs, the elements

), 0 ̂  s < r, 1 ̂  7 < ps(p- 1) ,

are linear combinations of the elements of (*) and the converse is also true. Fur-
ther it is easy to see that the elements of (ii) of the proposition are linear com-
binations of these elements and the converse is true. q. e. d.

§3. Proof of Theorem 1.7

We prove Theorem 1.7 quite arithmetically by starting (1.2).
Let p be a prime, and consider the integer

(3.1) Λ(α; s) =

Then, we have the following relations in

PROPOSITION 3.2, For any given sequence (/c0,..., /c^J, Ofgs<r, we set
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where σ(t) e K(Ln(pr)) is the element of (I A).

(i) If Ks is a non-negative integer with n ̂  d -f ksp
s < n -f- ps, then

pr-s-laσ(s)**+l = 0 /or 0 < ί ̂  r-s.

(ii) jr- +*α<j(s)* = 0, A = A(d+ V; s), if fc> 0.

PROOF. The relation σn + 1=0 of (1.2) implies (i) for s = 0. By assuming
inductively (i) for s(g O), we prove (ii) for s and (i) for 5+1.

(i) implies (ii). We denote simply by ft(fc) = ft(d + kjp*; s) for /c>0. Then
we see easily by (3.1) that

(*) A(fc) = A if and only if Eβ-(/>-l)(A + l) < fc g Es-(p--l)A.

This shows that k>Ks and h(k)^Jcs-k if A(fc)<0. Hence (i) implies (ii) for /c
such that A(k)<0.

Now, assume inductively (ii) for fc such that h(k)<h (AΞ^O), and let A(fc) = A.

By the relation (1 + σ)*Γ- 1 =0 of (1 .2) and (1.4), we see that (1 +σ(s)y~s- 1 =0.
Multiplying this relation by pΛασ(s)fc~1, we have

(**) ΣfΓ; (^Γ^^ασίs)^- λ = 0.

If i=jpv^i .and (p, j)=l, then we see easily that i>v(p— 1) and so h(k+ί—l)
^h — v by (*). This fact and the inductive assumption show that the i-th term
of (**) is 0 if h(k + i— !)</?. Therefore, by (**) and (*), we have (ii) for k~k'

( = Ks — (p— l)ft),..., fc' — p-f2, successively, i.e., for k such that h(k) = h. These
show (ii) by the induction on h.

(iϊ)for s implies (i) for s f 1. By (1.4), we have

(3.3)

For any sequence (fc0,,.., ks, /c), this implies

If £s+1 is a non-negative integer with n^d + ksp
s + ks+lp

s+i —d', and /c = l

4- /, / > 0, then we see easily that

by (3. 1 ), and hence each term of the above summation is 0 as desired by (ii). q. e. d.
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LEMMA 3.4. Under the notations of the above lemma, we have

if /c~/(p-l)>0, where h' = h(d + kps; s-hl) and A(s) is the element in (3.3).

PROOF. It is sufficient to show that

forOg/ '</ . The left hand side is equal to p'-*-l+h'+l'<ur(s)k-l'tP-1>-Pa(s+i)
by (3.3), and this is 0 as desired by (ii) of the above proposition, since h(d + kps

-ϊps(p-\)\ s + l)£Λ' + Γ by (3.1). q.e.d.

LEMMA 3.5. // n^d + kps<n + ps, />0 and m = fc-/(p-l)>0, then

PROOF. Since h(d + kpsι s + l) = 0 by the assumption, the left hand side is
equal to (—l)lpr~s~1+lσdA(s)lσ(s)m by the above lemma for α = σd. Further
this is equal to the right hand side by Proposition 3.2 (ii), since A(s) is a poly-
nomial in σ(s) with the constant term 1. q.e.d.

LEMMA 3.6. Assume that p is odd. Then under the assumption of the
above lemma, we have the following relation for

PROOF. Set u = s — t. By (3.3), the left hand side is equal to

If i =jp» ;> 1 and (p, j) = 1, then we see easily that p(i — v) > 1 + i by the assumption

p ̂  3, and hence that

by the assumption n^d + kps and (3.1). Since the coefficient of the i-th term in
(*) is a multiple of pt-ι-v+r-s-ι+i^pr-u-2+i-v^ t^s inequality and Lemma 3.4

show that (*) is equal to

^

By setting ^(w) = 1 4- J3(w)σ(w), this is equal to
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If i=jpv^l and (p, /)=!, then we see easily that i>v(p— 1) and so lpt — υ>h(d
+ (mpt + ϊ)pu; u). Therefore the ί-th term in the last summation is 0 for ί^l
by Proposition 3.2 (ii), and the lemma is obtained. q. e. d.

PROPOSITION 3.7. Assume that p is odd, and n<d + kps<n + ps, />0
and w = /c-/(j?-l)>0. Then

PROOF. By the above two lemmas, the left hand side is equal to
(-l)y-'-iσd+kPm

9 which is 0 by σ"+ 1=0 of (1.2). q.e.d.

Now, we are ready to prove Theorem 1.7.

LEMMA 3.8. Assume p is odd. Then

t(d + p*)σ(s, d) = 0 for Q ^ d < min {ps(p - 1), n - ps + 1} ,

where t(ί) is the integer of (1.5) and σ(s, d) is the element of (1.6).

PROOF. By (1.5), we have

(3.9) ά s >0 for d<n-ps + l.

If bs^d<bs + ps-l or d<bs~ps(p-2)-l, then we see easily that

n

by definition, and so the desired relation for d by (3.9) and the above proposition.
Otherwise, the desired relation ί(d + ps)σdσ(s) = 0 follows from Proposition 3.2
(ii), since h(d + p*\ s) = αs+[(ί>s + ps-2-d)/Jp

s(Jp-l)]. q.e.d.

PROOF OF THEOREM 1.7. (1.2) shows that K(Ln(prJ) is generated (additive-
ly) by {σ*: l^z^N} and its order is prn. Hence it is also generated by {σ(s, d):

0<id<ps(p-l)9 l^d + ps<N}, since σ(s, d) = Zy=i^^ ί = d + ps, and xt =
1 mod p by the definition (1.6) and (3.9). Also, we see easily that Πf=ιί(0==JPri1

by (1.5). Therefore we have the theorem by the above lemma. q. e. d.

§4. Some preliminary lemmas for binomial coefficients

In the rest of this note, we assume that p is an odd prime. To study the J-
group J(Lg(pr))» we prepare some lemmas for the integers

(4.1) Θ(a, b; u, v) = Σf-o(-l)'ΣS=o(//,β.ίίc;,,,)(J),



394 Note on /-groups of Lens Spaces

(4.2) 0(α; ») = θ(a, 0; u, ι>) = Σf=o( -!)'(£.),

where α, ft, M, ι> are non-negative integers.

LEMMA 4.3. (i) Σ5-ι(-l) J^"θ(β+J, & ; « , » ) = -0(β, 6 + 1; ιι, »).

00 ΣΓ=V(-i

PROOF. We notice that ((x + 1)- \)k(x + \)° = xk(x + \)a shows the equality

(i) By (4.1) and (*), the left hand side is equal to

ipv-cptt\\c

and the last is equal to the right hand side, since ( ) + ( _ ι ) =\c/ \c i/ (\ c

(ii) The result follows from (i) for b = 0 and (ii) of the following lemma.
q.e.d.

LEMMA 4.4. (i) θ(a, /?; M, ι?) is ί/ie constant term q0 of the right hand side

of

(ii) θ(a,b',u9v) = Q if 6^1, u ^ υ.
(iii) 0(α, 6 u, v) = 1 if a + bpu < pv.

PROOF, (i) follows immediately from the definition (4.1). (ii) and (iii)
are seen easily by (i). q. e. d.

LEMMA 4.5. Assume that Q^u^v^s. Then

(i) 0(α, ps~ul u, υ+l) = pkθ' for some integer θ' = θ'(a', u, v, s), where

k = k(a; v, s) = [α/^(p-l)] + (p -"-l)/(p-l).
(ii) If a = lpv(p - 1) + w and pv(p - 2) g m < pv(p - 1), then

θ'(a; u, v, 5) = (-l)fc(fl;ι;'s) mod p.

PROOF. Let Q and Q' be the polynomials in y such that

(4.6) (i+jo* = ί+yp+p(ί+y)Q(y)9 Q(y) =
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Then we see easily that

(4.7) (l+j)*(p-υ+ι =pk(l + y)Q(y)k modl+y'.

(i) Set α = lpv(p - 1) + ra, 0 g ra < pv(p - 1). Then

(y = xpv)

Ci(x)} (/c = /c(α;ι;, s))

x)m{pk(l+y)Q(y)k + pkD(x)} mod 1 + )* (by (4.7)),

where B, #', Q and D are some polynomials in x. Therefore we see (i) by (i) of
the above lemma.

(ii) Set m' = m-pv(p~2). Then θ£Ξm'<p y by the assumption. In the
same way as the above proof, we see that

(by (4.7), (4.6))

= (-i)kpk(l+χ)™'(i+y)p-ί+pk+iD2(x) modi +3;* (by (4.7)),

where C\ and Dt are some polynomials in x. Hence we have (ii) by (i) of the above
lemma, since m' + pυ(p— i)<pv+ί. q.e.d.

LEMMA 4.8. (i) 0(α; 0) = 0 ί/α>0; θ(α; ι;) = l ifa<pv.
(ii) Let a = lpv(p-\) + pv + m, /^O and Og

θ(α; t?+l) = Θ(a-pv, pv\ 0, i +l) = plθ'(a'9 v)

for some integer 0'(α; t;) = θ'(a — pv 0, ί;, ϋ), αnrf

θ'(α; ϋ)Ξ(-iy modp if m^pv(p-2).

PROOF, (i) is clear by the definition (4.2). We see the first equality in (ii)
by Lemma 4.4 (i), and so (ii) by the above lemma. q. e. d.

§ 5. Proof of Theorem 1.9 for n ;> pr - 1

Now, we study the reduced J-group J(Lg(pr))
We have immediately the following lemma from Proposition 1.3 and (1.2).
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LEMMA 5.1. (i) Jr: K(Ln

0(pr)) ( = K(Ln(pr)))->J(L"0(pr)) is epimorphic.
(ii) The abelian group J(Lg(pr)) *5 generated by the elements

αs = Jr(σ(s)) = Jr«) - 2, 0 ̂  s < r ,

0/(1.8), and has the relations

(5.2) Jr(σάσ(s)) = (- l)dαs for 0 ̂  5 < r, 0 ̂  d < ps(p- 1),

ί'n addition to the Jr-images of the relations in K(Lj(pr))

We notice that (5.2) holds also for s^r, since
by (1.2) and so αs = Jr(σ(s)) =

LEMMA 5.3. The following relations hold in

(5.4) Jr(σaσ(u)b)

for 0^w<r, a + bpu>09 where αr = 0 and the coeffiient of otv+l— ocv is the

integer θ(a, b'9u,Ό+ϊ) of (4.1).

PROOF. The case b = Q. It is sufficient to show that

(5.5) Jr(σfl) = (-l)«+1αs + (-l)flΣs,Ξi%; u+lXα^i-α,)

for 0 < a < ps+ί,

by Lemma 4.8 (i) and the above notice, where 0(α; v+ 1) is the integer of (4.2).
We prove (5.5) by the induction on a. If a<p, then (5.5) is (5.2) for s = 0.

Assume ps^a<ps+1 and set d = a — ps. By applying Jr to σa — σdσ(s)= — σd((l
+ σ)ps — 1 — σps), (5.2) and the inductive assumption show that

Clearly the first summation is 0. Hence we have (5.5) by Lemma 4.3 (ii).
The case b>0. We can prove (5.4) by the induction on b, using the equality

σaσ(u)b = σa((i + σ)Pu - i)σ(u)b~ 1 and Lemma 4.3 (i). q. e. d.

Now, for a given integer n, we consider the integers as and bs of (1.5), and the

following assumption :

(5.6) n^p'-i, 0^bs^ps(p-2) for 0 ̂  s < r,
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where the condition b0^p — 2 holds always by (1.5).

LEMMA 5.7. Under the assumption (5.6), the following hold in J(Lg(pr)):

(i) pr~s~l+asoίs = 0 for O g s < r .

k' = k'(d ι>, s) = [d/p"(p -1)] - lbjp (p -1)],

for 0^s<r and bs^d<bs + ps— 1, w/iere σ(s, d) e K(Lg(pr)) ίs ίn^ element of
(1.6) and θ' = θ'(d; v, v, s) is the integer of Lemma 4.5 (i).

PROOF, (i) By (1.5), (1.6) and the assumption (5.6), we see easily that

σ(s, d0) = <τ«°σ(s), ί(d0 + ps) = p'-*- * +" for d0 = ps(p - 1) - 1 .

Hence we have (i) by Theorem 1.7 and (5.2).
(ii) By (1.6) and (5.4), the left hand side is equal to

(-l^iΣ^o^ '-^^ΣUίβίd, p'; s-f, i +^ία.+ i-α.).

In the summation Σϊ=.o> we see tnat Σ5^1 =0 by Lemma 4.4 (ii) and Σΐ^l —
— αs by Lemma 4.4 (iii), and so p»-*- !+«*/>* Σ^i — 0 by (i). Hence, by Lemma
4.5 (i), the above one is equal to

We notice the following equalities, which are seen easily by the definition (1.5):

au = fl,p
(5.8) for O ^ w ^ s .

By the first equality of (5.8) and the definition of fc(d; v, s) in Lemma 4.5 (i), we
see that

αsjp' + fc(d; ϋ, s) = av + k'(d; v, s) + as(pt-ps~v)9

which is larger than ay + s — vif t>s — v. In the same way, we see αsp
f + k(d t;, s)

^βϋ+1+s — υ— 1. Therefore (*) is equal to the right hand side of the desired
relation by (i). q. e. d.

LEMMA 5.9. Let t<r. Then, under the assumption (5.6), the relations

t(d + ps)Jrσ(s,d) = Q for 0 ̂  s ̂  ί, 0 ̂  d < ̂ (p-l),

w/iicn are f/ιe Jr-images of the relations in Theorem 1.7, are reduced to the
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relations

^r-ί-i+^^o jor o ^ s ^ ί .

PROOF. If ί = 0, then the lemma is clear by (5.2) and Lemma 5.7 (i) for
s = 0.

We prove the lemma by the induction on t. By (1.5), (1.6), (5.2) and the
above lemma, it is sufficient to show the last relations of the lemma from the
relations

(*) pr-t+a*as = Q for 0 ̂  s < t, pf't'l+a*Λt = 0,

(**) ΣίU/^~'~1+β|'+*'(lf!l' 0 θ'(d; v, υ, *)«„ = 0 for bt^d< &, + /?<-1.

Assume that the relations pr~ί~1+βsαs = 0 for u<s^t are obtained from
(*) and (**), where u<t. Then ^v>u — 0 in (**). We consider the integer

d0 = (/+ l)p«(p-1)-1, / = Ό>tlPu(P~ 1)] -

Since bt = lpu(p-l) + bu by (5.8), we see easily that bt^d0<bt + pt-l and
k'(dQ; u, 0 = 0. Also k'(d0; v, t)^l if v<u, since bu^pu(p-2) by (5.6). Fur-
ther, since Θ'(d0', u, w, f) = ±lmodp by Lemma 4.5 (ii), we see that the relation
for d = d0 in (**) and the relations (*) imply pΓ~r~1+α"αM = 0. Thus we have the
desired result by the induction on u. q.e.d.

LEMMA 5.10. (i) Ifbs^ps(p-2)ands>Q9 thenas.lφQ mod p.
(ii) bs^ps(p-2)for 0<s^ί if and only if asφQ moάpfor 0^s<ί.
(iii) The conditions (1.10) and (1.12) are equivalent.

PROOF, (i) is shown by the equality as-l=asp+l + lbjps~1(p—iy] in
(5.8).

The necessity of (ii) follows from (i), and (iii) follows from (ii).
The sufficiency of (ii) is proved by the induction on ί>0 as follows? Assume

that bs^ps(p — 2) for 0<s<ί and ^.^Omodp. Then we see that [btl
pt~1(p—iy]^p — 2 by the above equality, and hence bt^(p — Ί)pt~l(p— !) + &,_!
^pf(p —2) by the second equality in (5.8). q.e.d.

By Lemmas 5.1 and 5.9 for t = r— 1, we have immediately the following lem-
ma, which is Theorem 1.9 for n^.pr— 1 by (iii) of the above lemma.

LEMMA 5.11. //(5.6) holds, i.e., if r(n)^r and (1.10) holds, then

J(Lδ(pO) = Σr

s=έ Z(pa*) (direct sum),

where the cyclic subgroup Z(pas) is generated by αs.



Teiichi KOBAYASHI, Shin-ichi MURAKAMI and Masahiro SUGAWARA 399

§6. Proofs of Theorem 1.9 and Proposition 1.15

To study the case that (5.6) does not hold, we study the relation between

By the definition of the lens space Ln(pr) and its subspace Lg(pr)» it is easy

to see that we have the cofibering

(6.1) LΓK/f) -̂  £8G?r) -̂  L*0(pr)ILrl(pr) = ^2"~1 lV*2 w.

LEMMA 6.2. The J -group of the mapping cone X = S2n~l \jpre
2n, of the

map S2n~l-+S2n~l of degree pr, is given by

i f n = aps(p-1), (α, p) = 1, s ^ 0,

0 otherwise.

PROOF. Since the sequence KO(S2n) -̂ » KO(S2n)-*KO(X)-^Q is exact, we

have the exact sequence

J(S2») Ji^ J(S2M) > J(X) » 0

by [2, II, (3.12)] and [9]. Also, by [2, II, (3.5), (3.7)], J(S2n) is a finite cyclic

group, and the exponent to which the odd prime p occurs in the decomposition of

its order into prime powers is equal to 1-1-s if n = aps(p— 1) and (α, p)=l, or

0 otherwise. Hence we have the lemma by the above exact sequence. q. e. d.

PROPOSITION 6.3. (i) The cofibering (6.1) induces the exact sequence

(ii) IfnφO modp— 1, then i* is isomorphic.

(iii) // n = aps(p— 1) and (α, p)=l, ί/ien Ker/* is the cyclic subgroup of
J(Ln

Q(pr)) of order pminίr^+π generated by the element Jr(σn).

(iv) The order of J(L"0(pr)) is equal to p\ v= Σϊ=o[«Mp- !)]•

PROOF. Consider the commutative diagram

0 - > K(^r) J% K(LSG/)) -ί% K(LS-

I- i I

I- I' I'
J(X) _-% J(LS(y)) _!% Jag'1 (/>')) - - 0,
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where X = S2n~l \Jpf e2". The upper two sequences are exact and so is the lowest
one by [2, II, (3.12)] and [9]. Since Jr is epimorphic and π*(K(X)) is generated
by σ", by the proof of [5, Prop. 2.6], we see that Ker i* is generated by Jr(σn)
in (iii).

Also, the lowest exact sequence and the above lemma show (ii) and that
(iii)' the order of. Ker ί* is a divisor of pm'm{rts+i} jn (jji)

By considering the epimorphism i*: J(L%(pr))-+J(L$(pr)) = Q induced by the

inclusion i: * = L8(pr)c=t**c=^o~1(Pl')c:^o(Pr)» and by using (ii) and (iii)' iter-
atedly, we see that

(iv)' the order of J(Lg(pr)) *s a divisor of pv in (iv).
On the other hand, (iv) holds for n = apr-1(p-l) + pr-ί -1, α^l, by (5.8) and
Lemma 5.11. Therefore, we see that the order of Ker i* is equal to p«nin{r f s+i>
in (iii)', and so (iii), (i) and (iv). q. e. d.

PROOF OF THEOREM 1.9. For the case that n^p r-l, i.e., r(n)^r, the theo-
rem is proved in Lemma 5.11.

Assume that r(n)<r. Consider the natural projection φ: (LΛ(pr(π)),
Lo(pr(n)))-+(Ln(pr), Lg(pr))> and the induced homomorphism

Since φ*η = η in K( ) by definition, we see that φ*αs = αs (Ogs<r) and ψ* is
epimorphic by Lemma 5.1 (ii). Also, since n<pr(n\p— 1) by the assumption
br(n)^pr(n\p — 2), we see that the orders of these groups coincide by (iv) of the
above proposition. Therefore φ* is isomorphic, and we see the theorem by Lem-
ma 5.11 for L8G>Γ(W)) q.e.d.

For the case that the assumption (1.10) or (1.12) does not hold, we take the
integer p, 0<p^#(n), of (1.13) satisfying

(6.4) bp>pP(p-2\ bs^p*(p-2) if p<s

and consider the integer n of (1.14) and the integers as and Bs of (1.5) for n:

0 ̂  bs < ps(p-\).

LEMMA 6.6. (i) n = pp+ί-l if p = #(n)<r-l, and R(n) = R(n) otherwise.
(ii) J/O^s^p, then £s=0 and

as = (ap + l)pp- + (pp- - l)l(p - 1) = as + pP~* - \bjp(p - 1)] ,

and hence as—as^j if and only if aQ — a0<:jps.
(iii) αs = as, Bs = bs+n-n < ps(p-2\ if p < s ̂  R(n).
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(iv) Ifn<m^n and w = 0modp — 1, then there is an integer i such that

PROOF, (i) and (ii) are shown easily by (6.5), (6.4), (1.5), (1.10) and (5.8).
(iii) Assume that ρ<s^R(n). Then the two equalities

bs = xp"(p-l) + fep (x =

2) (y = (p-

and (6.4) show that x<y and hence bs<ps(p-2)-pp(p-2)<^ps(p-2)-pf>
<ps(p — 2) — (n — n\ and we see (iii).

(iv) The last inequality follows from the assumption bp>pp(p — 2) in (6.4).
q.e. d.

Now, we see Proposition 1.15 by Proposition 6.3 (iv) and the following

PROPOSITION 6.7. Under the situations of (6.4) and (6.5), J(LS(pr)) is the
abelian group generated by αs, O^s^Λ(n), with the relations

(6.8.1) P5*αs = 0, for O g s g

(6.8.2) Σ?-ό0ί*ι; 5+!K = 0, for nt = n-i(p-l), 0 ̂  i < α0-α0.

Here 0(nf; s+1) is the integer of (4.2) and satisfies

(6.9) 0(11,; s + 1) = p -^'-fl'fa; s) i/ i = isp
s+js, 0 g j, < p*,

w/iβre ^(n^ s) is f/ίe integer in Lemma 4.8 (ii).

PROOF. By (i)-(iii) of the above lemma, we see that (1.12) holds for n, and
hence that J(Lg(pr)) is the direct sum of the cyclic subgroups Z(p5s) generated by
αs, O^s^Λ(n), by Theorem 1.9. Also, if i = isp

s+js, 0^js<ps, then

(6.10) Λ| = /t-i(p-l) = (αs-l-is)^(p-l) + ps + (ps-Λ)(p-l)-ί

by (6.5), and (6.9) is seen by Lemma 4.8 (ii). Therefore, by Proposition 6.3 and
(iv) of the above lemma, it is sufficient to show the equality

Jr(σn*) = - Σί=oPa-'"1"< θ'(w,; s)αs, for n<n^ ή.

Assume that n<nt^n. Then by (5.5) and (6.9), we have

-Mσ»«) = ΣSSV -1-1- ,̂; s)(αs+1-αs).

In this equality, we see that αs- 1 - is^as by (6.10) and (1.5) since nt> n. Also

as = as if s >p; as ^ as+1 = as+ί if s ̂  p,
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as^appP-s + (pP-s^l)/(p-\)2:as+l if p > s ^ 0,

by (iii) and (ii) of the above lemma and (5.8). Hence we see the desired equality
by (6.8.1). q.e.d.

LEMMA 6.11. In (6.9),

fl'Oi,; s) EE (-I)'--'-'- modp, if js ί (p -l)/Q,-l).

PROOF. We have the lemma by the latter half of Lemma 4.8 (ii) and (6.10).
q.e.d.

LEMMA 6.12. Assume p = l in (6.4). Then aί = aί + l, d0 = a0 + l9 and
the relations (6.8.1-2) are reduced to the relations

pSsus = 0 (0 ̂  5 ̂  R(n)), paίoc1-paooc0 = 0.

PROOF. The first two equalities are seen by Lemma 6.6 (ii) and (iv). Hence
(6.8.2) contains only one relation for i = 0, which is reduced t o . p a t a i — pαoα0 = 0
under (6.8.1) by the above lemma. q. e. d.

The following is the result for the case r = 2.

PROPOSITION 6.13 (cf. [6, Th. 6.9]*). Let a0, a1 be the integers in (1.5),
and consider aί=Q if 00 = 0. Then

\ Z(p«°)0Z(pβ') if a0φQmodp or a0 = 0,
J(LS(p2)) =

I Z(p °+1)ΘZ(p«') if α0 = (fl1 + l)p,

and the first summand is generated by α0 and the second one by oίl — pβ°~αια0,
which can be replaced by oci for the upper case.

PROOF. By Lemma 5.10(ii), the condition bl>p(p — 2) of (6.4) holds if
and only if α0=0modp and α0>0. Therefore, we have the result for the lower
case by Proposition 6.7 and the above lemma, and the one for the upper case by
Theorem 1.9. q.e.d.

§7. The case that r ̂ 3

For the case that r^3, we study the integer θ of (4.2) more precisely.

LEMMA 7.1. Assume that />0 is a multiple of pλ, λ^l. Then

(i)

* The proof of this result in [6] is not complete, since the last equality in [6, Lemma 6, 7]
is not valid.
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where y = xpv and C(x) is some polynomial in x.

(ii) // b = a — lpv(p — 1) ̂  0 in addition, then

PROOF, (i) is shown by the following calculations, where = means = mod
1 + yp and B, C and C" are some polynomials in x.

= Σ|<fό-1)(/(/71))/>'

1 +PI+AC'W (by (4.7) and the assumption

1+lβW (by (4.6))

(by (4.7) and (4.6))

"(x) (by (4.6) and pλ\l).

(ii) By Lemma 4.4 (i), it is easy to see that θ(b t;) is equal to the constant
term q'Q of the right hand side of

Ξ Σί^o1-1 ?;•*'' mod l+y*.

Therefore, (ii) is shown by Lemma 4.4 (i) and the equality of (i) multiplied by

LEMMA 7.2. Suppose pλ\as-is, λ^i and jsg(ps-i)/(p-l). Then in
(6.9),

PROOF. By (ii) of the above lemma, (6.10) and the assumption, we see that

s+l)~θ(5; s))

where b = ps— js(p— 1)— 1. This implies the desired equality by (6.9) and the
second equality of Lemma 4.8 (i), since b<ps. q. e. d.

LEMMA 7.3. Suppose that pλ\as—is— 1, A^ l . Then the following hold

in (6.9):
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(i) 0'(nf; s) = ( -I)*--'-- i(l -0(6;

(ii) //s = 0 in addition, then 0'(nf; 0) = (-1) βo-'-1 modpλ.

(iii) Suppose s^l in addition, and set js = ksp
s~l +Λ-ι»

Then θ(b\ s)/p in (i) satisfies the following properties:

0

(iv) I f k s = p-i in (iii),

= 0 i/ s = l, ΞOmodp2^2'^-1 if s^2.

PROOF, (i) By Lemma 7.1 (ii), (6.10) and the assumption, we see that

+ l)-θ(fe; s))

This shows (i) by (6.9) and the second equality in Lemma 4.8 (i), since b<ps+ί.

(ii) follows from (i) and the first equality in Lemma 4.8 (i).
(iii) is a consequence of Lemma 4.8 (ii), since b = (p — ks)p5~l(p—
s-1-Λ-ι)(/>-i)-ι.
(iv) By Lemma 7.1 (ii), (6.10) and the assumption, we see that

ι s)-0(ί>; s-1)

where Ip + 1 = α s_ λ — 1 — is_ t since ks = p — 1 and α s_ i = pds + 1 . Hence we have
(iv) by (6.9) and Lemma 4.8. q. e. d.

LEMMA 7.4. Assume p = 2 in (6.4). Then

(i) as = as if s > 2, α2 = 02 + l, α0-α0 <;/?+!,

άί=aί + l if α 0 -α 0 ^p, = α j + 2 if a0-a0 = p+l.

(ii) Under the relations (6.8.1), the relations in (6.8.2) for Q^i^q =
(Q<^q0<p) are reduced to the following relations:

^-ια2-p51-ιαι +/7a0-ιαo = 0, if q = Q9
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PROOF, (i) The results are seen easily by Lemma 6.6.
(ii) If g = 0, the relation is obtained by (6.9) and Lemma 6. 11. We can

prove the desired results successively for q^l, showing that the relation for i = q
in (6.8.2) is reduced to the following under the relations (6.8.1) and the desired

one for q — 1, by using (6.9), Lemmas 6.11, 7.2 and 7.3 (ii), (iii):

= 0, if q = 1,

)«pa°""β"1αo = 0> ίf I < q < p-l,

= 0, if q = p-1,

-pfio-p-1α0 = 0, if q = 0. q.e.d.

The following is the result for the case r = 3.

PROPOSITION 7.5. Let as be the integers in (1.5) and consider as = 0 if
s>r(ή) and αr(M) = 0. Then J(Lg(/?3)) is the direct sum

(1) Z(p*°) Θ Z(p") θ

// as φ Omod p for 0 ̂  s < min {2, r(n)}

(2)

(3)

(4)

(5) Z(p o+ 2)®Z(p OΘZ(p«0, tf

(6)

the first summand is generated by α0, ί/τe second one by o^ — pfl°-fl lα0, which
can be replaced by o^ /or (l)-(3), and ί/ie ί/ίί'rd one by α2 /or (1) αncί (6), α2 —
Pβl-α2α1+pfl°-α2α0 /or (2), α2-p f l l-α2α1 /or (3) and (4) or a2-pβl- f l2+1a1 /or

(5), respectively.

PROOF. The case (1) is Theorem 1.9. If p = 2 in (6.4), we obtain (2)-(5)
by Proposition 6.7 and the above lemma. If p = 1 in (6.4), we obtain (6) by Propo-
sition 6.7 and Lemma 6.12. q.e.d.

LEMMA 7.6. Assume ρ = 3 in (6.4). Then
(i) ds = as ί/5>3, α3 = α3 + l, ά0-a0 <. p 2+p+l, and

fis — a

s =J if and only if a0 — a0<^jps for s = 1, 2.

(ii) Under the relations (6.8.1), the relations (6.8.2) for Q<*i^q =
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= cLj<P) are reduced to the following relations, where α = jp
δ3~1α3

-1α1-pa»-1α0 = 0, if q = 0,

α + p*1'1^ =pa°-«-1α() = 0, if 0<q<p-l,

α + p31"1^ = p5l-«-1α1-p5°-«-1α0 = 0, if q = p-1 0r P>

α = pβi-βi-1^ = p*0"*"1^ = 0,

ίf 42 = 0, 0 < ^ f 1 < p - l , 0<q0<p,

α = pai"«ι-1α1-pa°"*"1α0 = p5°~«α0 = 0>

α = Jp
a2-«2-1α2- jp

5 l~ ί 2 p~ ί f l~1α1+p5 o~9~1α0 = ps°-^a0 = 0,

if <1 = (P-1)P or p2,

α = p52~«2-ια 2_p3ι-«2p-«ι-ια ι = pflo-9-ια Q = o,

(f (P-1)P< « <p2+p-2,

α = /7a2-2α 2_p5ι-p-lα ι = p51-(^-p2 + 2)α ι_pαo-β-lα o = paO-p^

= 0, i/ p2+p-2 ^ q <; p2+p.

PROOF, (i) is seen by Lemma 6.6. By (6.9), Lemmas 6.11, 7.2 and 7.3,

we can show that the relation for i = q in (6.8.2) is reduced to the following under

the relations (6.8.1) and the desired one for q — i (if g>0), and hence we see (ii)

by induction :

α + p5l"1α1-pa°~1α0 = 0, if <? = 0,

α + p^-Όq+p^l-pK = 0, if q = 1,

α + p5l-1α1-(-l)«pa°-«-1α0 = 0, if 1 < q <p-l,

α + 2pdl-1α1-p5°-*7α0 = 0, if g = p-l,

α-α-p^-^+p5'-*-1^ = 0, if 4 = p,

α-(l-p)p^-2α1-(l-p)p5o-P-2αo = 0, if 4 = ̂ +1,

-(-l)«pa°-«-1α0 = 0, if p+l<«.<(p-l)p, g0 ^ 0, 1,

(-rl)«1paι"β1~1α1-(-l)«pa° "β"1α0 = 0,
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-7)^-^2 4- p5l-pα1

if q = qιp+!9 I < ql < p-1,

o = 0, if 4 = (p-l)p,

o-«-1α0 = 0, if 4 = (p-l)p+l,

«-^1)"(-l)V°-<ϊ-1αo = 0,

if q = (p-l)p + q0, I<q0<p,

o = Q, if $ = p2,

(l-p)p5o~€~1α0 = 0, if ^ = p2

°"4"1αo = 0,

if q = p2 + q0, l<q0<p-2 (

-'αo = 0, if q = p2 + p-2

-'-^^p^-f-iαo) = 0,

if g = p2+p-l,

= 0, if g = p2 + p. q.e.d.

The following result for r = 4 is proved by Theorem 1.9, Proposition 6.7 and
Lemmas 7.6, 7.4 and 6.12.

PROPOSITION 7.7. Let as be the integers of (1.5) and consider αs = 0 i/
s>r(n) and αr(n) = 0. /4/so, consider the integer

o/(1.14) if there exists an integer p satisfying (1.13). Then

J(Lg(p4)) = z(p^+£o) ©

where

' 3 i/ α0-α0 =

2 if aQ-aQ = p+1,

s. 0 otherwise9



408 Note on /-groups of Lens Spaces

1 if 0< d0-a0 < p(pΞ>2), (p-l)p< ά0-a0 ^ p2,

0 otherwise,

[ 0 otherwise.

Also, the first summand is generated by α0; the second one by

αι~~Pα o~α ι~ l αo if flo~~ao = P2 +P"~1?

and a! otherwise; the third one by

l, or

if a0-a0 = p2+p+l, or a0-a0 =

or 1 < a0-0o ^ P (P = 2)>

a2 otherwise; and the fourth one by

~a3Zi-Pao~a3<Xo if

a3-pβ2~a3+1a2

for the case p = 3, and α3/or

i/ p + 2 ̂  a0-a0 ^ p2,

ί/ p2 < a0-a0 ^ p 2H-p+l,

p = 2, respectively.
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