On Infinite-dimensional Algebras Satisfying the Maximal Condition for Subalgebras

Fujio Киво

(Received September 20, 1976)

1.

It has been an open question whether there exists an infinite-dimensional Lie algebra satisfying the maximal condition for subalgebras. Recently in the paper [3], we have given an affirmative answer to this question by showing that the Lie algebra W introduced in [1, p. 177] is such a Lie algebra.

On the other hand, in the paper [2] R. K. Amayo has constructed a countable infinity of pair-wise non-isomorphic Lie algebras satisfying the maximal condition for subalgebras. The reasoning is however much complicated.

Thus in this paper we shall present simple and brief proofs of the results in [2] by reasoning along the same lines as in [3].

The author wishes to express his thanks to Professor S. Tôgô for his suggestion of this problem.

2.

The fundamental tool which we employ is the lemma in [3]. We state it without proof in the following

LEMMA. Let S be a subset of N satisfying the condition: If $s, t \in S$ and $s \neq t, s+t \in S$. Then there exists a finite number of different elements $s_1, s_2,..., s_r$ of S such that

(i) s_1 is the smallest element of S,

(ii) $S = \{s_1\} \cup \{s_2 + ns_1 | n = 0, 1, 2, ...\} \cup \cdots \cup \{s_r + ns_1 | n = 0, 1, 2, ...\}.$

Let f be a field of characteristic 0. We let $\lambda: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}$ be a map such that

(*)
$$i \neq j \Rightarrow \lambda(i, j) \neq 0$$

and let $A(\lambda)$ be the infinite-dimensional (not necessarily associative) algebra over \mathfrak{t} with basis $\{w(i)|i \in \mathbb{Z}\}$ and bilinear product defined by

$$w(i) \circ w(j) = \lambda(i, j) w(i+j), \quad i, j \in \mathbb{Z}.$$

For any non-negative integer n, let $A(\lambda, n)$ be a subalgebra of $A(\lambda)$ generated by

 $\{w(i)|i \ge n\}$. For any element x of $A(\lambda)$, we denote by min(x) and max(x) respectively the integer k and m such that

$$x = \sum_{i=k}^{m} \alpha_i w(i), \qquad \alpha_k \alpha_m \neq 0.$$

THEOREM 1. $A(\lambda, 1)$ satisfies the maximal condition for subalgebras.

PROOF. Let H be any subalgebra of $A(\lambda, 1)$ and S the set of all max(x) for $x \in H$. If $s, t \in S$ and $s \neq t$, then $s = \max(x)$ and $t = \max(y)$ for $x, y \in H$ and therefore by $(*) s + t = \max(x \circ y) \in S$. Hence by Lemma there exists a finite number of different elements $s_1, s_2, ..., s_r$ of S satisfying the conditions (i), (ii) in its statement. For i=1, 2, ..., r, take an element z_i of H such that $\max(z_i) = s_i$. We then assert that $H = \langle z_1, ..., z_r \rangle$.

Suppose on the contrary that $H \neq \langle z_1, ..., z_r \rangle$. Take an x in $H \setminus \langle z_1, ..., z_r \rangle$. We shall find elements x_i in $H \setminus \langle z_1, ..., z_r \rangle$ for $i \ge 0$ as follows. Put $x_0 = x$. Assume that x_i is already found in $H \setminus \langle z_1, ..., z_r \rangle$. If $\max(x_i) = s_1$, then there exists a $\beta \in f$ such that $\max(x_i - \beta z_1) \langle s_1$. Since $x_i - \beta z_1 \in H$, by the minimality of s_1 we have $x_i - \beta z_1 = 0$, which is a contradiction. Therefore we have $\max(x_i) \neq s_1$ and

$$\max(x_i) = s_{\mu(i)} + n_i s_1, \qquad \mu(i) \neq 1.$$

By (*) there exists a $\gamma_i \in \mathfrak{k}$ such that

$$\max\left(x_{i}-\gamma_{i}(z_{u(i)}\circ_{n_{i}}(z_{1}))<\max\left(x_{i}\right)\right).$$

Now we put $x_{i+1} = x_i - \gamma_i(z_{\mu(i)} \circ_{n_i} z_1)$. Then x_{i+1} is in $H \setminus \langle z_1, \dots, z_r \rangle$. Thus we have found a sequence of different elements x_i of $H \setminus \langle z_1, \dots, z_r \rangle$ such that

$$\max(x_0) > \max(x_1) > \max(x_2) > \cdots$$
.

This is a contradiction.

Therefore we have $H = \langle z_1, ..., z_r \rangle$ as asserted. Every subalgebra of $A(\lambda, 1)$ is thus finitely generated. Hence $A(\lambda, 1)$ satisfies the maximal condition for subalgebras.

3.

As a consequence of Theorem 1 we have the following theorem which is Theorem B in [2].

THEOREM 2. $A(\lambda, n)$ satisfies the maximal condition for subalgebras.

PROOF. If n=0, then every subalgebra H of $A(\lambda, 0)$ is either $H \cap A(\lambda, 1)$ or $H \cap A(\lambda, 1) + tx$ for some $x \in H$. By Theorem 1 H is therefore finitely gener-

On Infinite-dimensional Algebras Satisfying the Maximal Condition for Subalgebras 289

ated. If $n \ge 1$, then $A(\lambda, n)$ is a subalgebra of $A(\lambda, 1)$. Hence all $A(\lambda, n)$ satisfy the maximal condition for subalgebras.

Theorem C in [2] is a part of the following

COROLLARY. Over any field of characteristic 0 there exists a countable infinity of pair-wise non-isomorphic infinite-dimensional algebras, Lie algebras, Jordan algebras, associative algebras satisfying the maximal condition for subalgebras.

PROOF. If $\lambda(i, j) = i - j$, $A(\lambda, n)$ is a Lie algebra. Since the dimension of $A(\lambda, n)/(A(\lambda, n) \circ A(\lambda, n))$ is precisely n+1, $A(\lambda, n) \cong A(\lambda, m)$ for $n \equiv m$. Hence the assertion holds for algebras and Lie algebras. By putting $\lambda(i, j) = (i-j)^2$ and $\lambda(i, j) = 1$, we have the statement for Jordan and associative algebras respectively.

Finally we show the following theorem which is Theorem A in [2].

THEOREM 3. $A(\lambda)$ satisfies the maximal condition for subalgebras.

PROOF. Let H be any subalgebra of $A(\lambda)$ and let $M = H \cap A(\lambda, 0)$. By Theorem 2 M is finitely generated. Put $S = \{-\min(x) | \min(x) < 0, x \in H\}$. If $s, t \in S$ and $s \neq t$, then $s = -\min(x)$ and $t = -\min(y)$ for $x, y \in H$ and therefore by $(*) s + t = -\min(x \circ y) \in S$. Hence there exists a finite number of different elements $s_1, s_2, ..., s_r$ of S satisfying the condition (i), (ii) in Lemma. For i = 1, 2, ..., r, we take an element z_i of H such that $-\min(z_i) = s_i$. We then have $H = \langle z_1, ..., z_r, M \rangle$. This can be proved in the same way as in Theorem 1. So its proof will be omitted. Thus we can conclude that $A(\lambda)$ satisfies the maximal condition for subalgebras.

References

- [1] R. K. Amayo and I. Stewart, Infinite-dimensional Lie algebras, Noordhoff, Leyden, 1974.
- [2] R. K. Amayo, A construction for algebras satisfying the maximal condition for subalgebras, Compositio Math., 31 (1975), 31-46.
- [3] F. Kubo, On an infinite-dimensional Lie algebra satisfying the maximal condition for subalgebras, Hiroshima Math. J., 6 (1976), 485-487.

Department of Mathematics, Faculty of Science, Hiroshima University