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0. Introduction and summary

The theory of fractional factorial designs, first introduced by Finney [12],
has found increasing use in agricultural, biological, industrial, and other various

experimentations. One reason for the usefulness of fractional designs in prefer-
ence to complete factorials is that they involve a lesser number of assemblies or

treatment combinations, since higher order effects can be in general assumed negli-

gible. In the beginning, the theory was developed for orthogonal fractional
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designs in which the estimates of various effects of interest are all υncorrelated.
However, as is well known, they are available only for special values of N as-
semblies. Moreover they are in general uneconomic in that they require a large
value of N in comparison with the number of unknown effects. As generaliza-
tions of orthogonal fractional designs, Chakravarti [5] first introduced the concept
of balanced fractional designs. In these designs the covariance matrix of the
estimates of effects has desirable features second to orthogonal fractional designs,
although the estimates are not uncorrelated. Of course, balanced fractional
designs are flexible in the number of N assemblies with the fact that more experi-
mental situations can be handled. Such economic designs are very attractive
and often practical.

After important work of Bose and Srivastava [2, 3], Srivastava and/or
Chopra have developed balanced fractional 2m factorial (briefly, 2m-BFF) designs
of resolution V (cf. [7-10, 28, 34, 35, 37]). It is known from their results that
these designs have close relationships with balanced arrays (B-arrays) of strength
4, which make it possible to interpret the problems into those in combinatorial
fields. For some work in these fields, see Chakravarti [6], Srivastava [29],
Srivastava and Chopra [36], Rafter and Seiden [18]. The above investigations,
however, have been restricted to the effects up to two-factor interactions only.
Since three factor or higher order interactions can not always be neglected, it
is desirable to study fractional designs of higher resolution.

Recently, Yamamoto, Shirakura and Kuwada [41] have established a general
connection between a 2"'-BFF design of resolution 2 / 4 - 1 and a B-array of strength
21. In the above paper, the authors also have discussed some properties of a
triangular type multidimensional partially balanced (TMDPB) association
scheme, defined among the effects up to /-factor interactions, which are useful
for clarifying the algebraic structures of 2m-BFF designs of resolution 2/-f 1.
The concept of MDPB association schemes was first introduced by Bose and
Srivastava [3] in relation to the analysis of fractional designs. Using the decom-
position of the TMDPB association algebra 21 into its two-sided ideals, Yamamoto,
Shirakura and Kuwada [42] have obtained an explicit expression for the charac-
teristic polynomial of the information matrix Mτ of a 2m-BFF design Tof resolu-
tion 21+ 1. (This result includes that of a 2m-BFF design of resolution V (1 = 2)
given by Srivastava and Chopra [35].) It is used for comparing 2m-BFF designs
of higher odd resolution by popular criteria such as minimizing the trace, determi-
nant or largest root of Mf 1. Indeed, Shirakura [23] has presented optimal
2m-BFF designs of resolution VII (/ = 3) with respect to the trace criterion for each
6^m^8 and for the reasonable number of N assemblies. On the other hand,
the study of balanced designs of even resolution is much more rare. For work
on such designs, see Shirakura [24], Srivastava and Anderson [30, 33]. Particu-
larly, by use of the properties of the TMDPB association algebra 9ί, Shirakura
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[24] has obtained a general result that some B-arrays of strength 21 yield 2'"-BFF
designs of resolution 21.

This paper will make further deep investigations on 2m-BFF designs of odd
or even resolution on the basis of the above mentioned results. 2W-BFF designs
derived from B-arrays of strength 21 will be characterized. This paper thus con-
sists of three parts. In Part T, the algebraic structures of 2m-BFF designs are dis-
cussed. In Section 1, fractional 2m factorial designs of resolution 21 or 2/+1 are
treated. In Section 2, 2m-BFF designs of resolution 21 or 2/+1 are defined. A
relation between a 2W-BFF design of resolution 2/+ 1 and a B-array of strength 2/,
m constraints and index set {μ0, μ,,..., μ2J is also given. Section 3 gives defini-
tions of an / + ! sets TMDPB association scheme and its relationship algebra
9T. Furthermore it is observed that S2ί called the /+ 1 sets TMDPB association
algebra is decomposed into the direct sum of / + ! two-sided ideals 91 ̂  08 = 0, 1,
..., /). Section 4 presents the irreducible representation Kβ of the information
matrix Mτ for a B-array T of strength 21 with respect to each ideal %lβ. For
later use, explicit expressions for Kβ are given for each case 1 = 2 and 3. As wil l
be seen, many of the results in this part have been already established by the
authors [41, 42]. For clarification of this paper, however, we shall recall them.

In Part II, optimal 29-BFF designs of resolution VII with respect to the trace
and determinant criteria are presented for any given N assemblies with 130^N
^150. For this purpose, Section 5 gives explicit expressions for the trace and
determinant of M~Γ

{ for a 2m-BFF design T of resolution 2 / + 1 . These can be
obtained from the characteristic polynomial of MΊ , due to [42]. As a by-product,
the existence conditions for 2"'-BFF designs of resolution 2/4-1 or B-arrays of
strength 21 are also given in terms of the m and μ, (/ = 0, 1, . . . ,2/) . Sections
6 and 7 deal with constructions of B-arrays of strength t. Simple arrays in
Section 7 have been introduced by Shirakura [22], as special cases of B-arrays.
In Section 8, the required designs are given with the covariance matrices of the
estimates and other useful informations.

In Part III, 2W-BFF designs of even resolution derived from various B-arrays
of strength 21 are investigated. Section 9 deals with 2m-BFF designs of resolution
21 obtained from B-arrays of strength 21 with index μf = 0, which are called St

type 2W-BFF designs. For the case / = 3, Section 10 presents optimal 53 type
2m-BFF designs with respect to the generalized trace (GT) criterion, due to [24],
for m = 6, 7, and for every value of N within a certain practical range. Note that
the optimal S3 type 28-BFF designs have been already presented by [24]. As in
Section 8, the covariance matrices of the estimates and other useful informations
are also given for such designs. In Section 11, alias structures of /-factor inter-
actions in Sj type 2"'-BFF designs and their estimability derived from these struc-
tures are discussed. Section 12 shows that there exists a 2W-BFF design of
resolution IV with the minimum number of assemblies N = 2m. It can be obtained
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from a B-array of strength 4 with μ2 = 0. Section 13 shows that some 2m-BFF
designs of resolution 21 can be also obtained from B-arrays of strength 21 with

κι-β,ι-β — §^ where κl

β~
β>l~β (β = 0, 1,...,/) are the last diagonal elements of

Kβ. Such designs are called S£βl9 j92,.. , ft.) tyPe 2m-BFF designs if ic^ '"^1

= κiβ-β2,ι-β2 = ... = κiβ-βr,ι-βr = Q ̂  Ki-*,i~* ^Q for α^ft. For given N as-

semblies, there are a large number of possible S£βί9...9 βr) type 2m-BFF designs.
A criterion for comparing these designs is also given which is called the partial
generalized trace (PGT) criterion. In Section 14, for the case / = 3, optimal
S3(β!,..., βr) type 2m-BFF designs with respect to the PGT criterion are presented
for m = 6, 7, 8, and for desirable values of N.

Part I. 2m-BFF designs and their algebraic structures

1. Fractional 2m factorial designs

Consider a factorial experiment with m factors /ι,/2,. »/m» eacrι at two

levels (i. e., a 2m factorial design). An assembly (or treatment combination) will

be represented by OΊ,./2,. ,./m) where jt9 the level of the factor ft, equals 0 or 1.
There are 2m assemblies in all. Consider the observations y(jί9 j2>-">Jm) cor"

responding to assemblies ( j ί 9 72,...,7m) anci tlιeir expectations η(Jι,J29 ' >Jm)
= Exp[Xι/1,y2,...,7m)]. It is well known (cf. [41]) that the various factorial
effects can be expressed as linear combinations of all expectations η ( j ί 9 72,. - > jm)>
i.e.,

(1.1) θ(βl, ε2,..., em) = -L- . .Σ . dίlιl*;:χk η(ji9 y 2 f . . . , ym)
Jl,J2, ,Jm

for εr = 0, 1; r = 1, 2,..., m,

where

Here d0(0) = (ί1(0) = ί/1(l) = l and ί/0(l)=— 1. In particular the general mean
is represented by 0(0, 0,..., 0) and the main effect of the factor ftί is represented by
Θ(εi9 ε2,...,βm), where είt = l and εr = 0 for rΦt^ The two-factor interaction of
the factors ftl and ft2 is represented by Θ(εl9 ε2,..., εm), where είl = εf2 = l and
εr = 0 for r^tί9 t2. In general the fc-factor interaction of the factors /fl,/ί2,...,/ffc

is represented by Θ(ε1? ε2,..., εw), where είl=εί2 = = είk = l and the remaining εr

are all zero.
Let



Balanced Fractional 2"> Factorial Designs 221

r =
y(0,...,0, 1)

Lκ(i,..., i, DJ

and θ =

0(0,...,0,0)
0(0,. ..,0, 1)

.0(1,...,!, 1)

be respectively the 2m x 1 vectors of all observations and effects in the binary
order. From (1.1), θ can be expressed in the following form:

(1.2)

where

Here

D(m) = D <g> D i

D =

D (m times Kronecker products of D).

Γ</0(0) </ι(0)Ί

«/ι(0 J

Note that D(m) is an Hadamard matrix of order 2m. Thus D(m)D'(m) = 2W 72m, where
Ip denotes usually the identity matrix of order p. From (1.2), we thus have

(1.3)

or

(1.4) Σ
ε1,ε2,...,ε

For simplicity we shall write θψ = 0(0, 0,..., 0) and Θtίt2...tk — θ(εί9 ε2,..., εm) if
e f j —Bt2 = " =εtk

= 1 anc^ εr = 0 for r^ ί l 9 ί2» » ^ Then (1.4) reduces to the follow-
ing:

(1.5) η(jί9J2,...JJ = Σ djtί. djtkθt,.,k

where mk denotes the class of all subsets of {1, 2,..., m} with cardinality fe and
dj = 1 or — 1 according as 7 = 1 or 0.

The formula (1.3), (1.4) or (1.5) is used as a statistical linear model in a 2m

factorial design. For any fixed integer / (l^/gm/2), we shall assume a general
situation where (/ + l)-factor and higher order interactions are negligible (i.e.,
0ίlί2...fk = 0 for /c^/ + l). (Throughout this paper, note that we are considering
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such a situation.) The number of unknown effects, therefore, is v / = l + ί T

+ ( ™ )"*" '" +( 7 ) and the vector of these effects is written as

(1.6) θ' = (0Φ; Θ19 02,..., Om; 012, 0 I 3,..., 0,,,-,,,,; ; 012...,,..., 0M-l+ι...J

= (^;{β ί,};{θrIι2}; ; W 1 r r . r,})
For later use, we shall provide the following vectors :

*Ό = ({0,,}; {<W; ; {0,,,,.,,-J), (ixO^-i)),

(1.7) *', =(0,:0{>), (Ixv,-!),

i.e., #' = (#1 : 02)
 = (0</»: Θ'Q: θ'2\ From (1.5), we can obtain the following model

for the expectation of the observation corresponding to an assembly OΊ,72, ,

7m):

0.8) lUlJ2,..;Jj

Let T be a suitable set of N assemblies (called a fraction) in which any given
assembly may not occur or occur once or more times. Then Tcan be considered

as a (0, 1) matrix of size mxN whose α-th column (/ια\/2α)> >./ίiια))' denotes
the α-th assembly for α = 1 , 2, . . . , N. Let yτ be the N x 1 observation vector whose

α-th element is y(/ια), /2α)> »7'ίnα)) and further consider the N observations
in yτ as independent random variables with common variance σ2 (>0). From

(1.8) yτ can be expressed as

Exp [ jr] = ET0,
(1.9)

where Eτ is the N x vf design matrix of T whose elements of the first column cor-
responding to the general mean θφ are all 1 , and whose elements of α-th rows

corresponding to an effects 0,,,,...,,, are d^d .>{*)••• d ,-<*).
l 2 k J t i J t 2 *k

The concept of estimable functions of θ will be stated in the following defini-
tions :

DEFINITION 1.1. A pxl vector ψ is called a parametric function of θ

if each element ofψ is a linear function of unknown effects 0ίlίr..fk (k^l) with
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known constant coefficients, in other words, ifψ is such that

(1.10) ψ = C0,

where C is a p x v, matrix with known constant elements.

DEFINITION 1.2. A parametric function ψ of 0 is called an estimable func-

tion (or, simply, estimable) if each element of ψ has an unbiased linear esti-
mate under the model (1.9), in other words, if there exists a px N matrix A of

constant elements such that

Exp [Ayτ~\ = ψ,

identically in Θ. Also Ayτ is called an unbiased estimate ofψ.

DEFINITION 1.3. For any given fraction T and estimable function ψ,
Λ

its unbiased estimate ψ is called the best linear unbiased estimate (BLUE)

°fψ tf the U'th element of ψ has a minimum variance in the class of all unbiased
linear estimates of the u-th element of ψ for each α = l , 2,..., p.

For the observation vector yτ and design matrix Eτ, consider the following

equations for a v, x 1 vector 0*:

(1.11) MT0* = E'TyT,

where MT = E'TET called the information matrix. These are so called the normal

equations.

THEOREM 1.1 (Gauss-Markov Theorem). For any estimable function ψ
Λ

= C0, its BLUE ψ is unique and given by

ψ = CO*,

where θ* is a solution of the normal equations (1.11).

Of course, the BLUE ψ depends on a fraction T. By matrix theory, there

exists always a solution 0* of the normal equations (1.11) and it is in general not
unique for a given T. However Theorem 1.1 shows that for any two solutions

θ\ and θ\ of the normal equations (1.11), ψ = C0^ = C0% holds.
As a means of classifying fractions, Box and Hunter [4] introduced the

term "resolution." First we shall define a fractional 2m factorial (briefly,
2m-FF) design of odd resolution.

DEFINITION 1.4. A fraction T is called a 2m-FF design of resolution 2/+1
if θ itself is estimable, i.e., if ψ = CΘ, where C = / v /, is an estimable function of

θ.



224 Teruhiro SHIRAKURA

From the model (1.9) and Definition 1.2, it is easy to see that Tis a 2m-FF
design of resolution 2/+1 if and only if its information matrix is nonsingular.
From Theorem 1.1, furthermore, it follows that for a 2"I-FF design T of resolution

2/+ 1, the BLUE θ of θ is given by

(1.12) θ= VτE'τyτ,

^where Vτ = Mγl. Note that θ is a unique solution of (1.11). In addition it can be
^

easily shown that its covariance matrix Var [0] is given by

(1.13) Var[0] = Vτσ
2.

From the nonsingularity of Mτ and the model (1.9), we can easily prove the
following

THEOREM 1.2. Let The a 2m-FF design of resolution 21+1. Then the num-
ber of distinct assemblies in Tmust be at least v/.

Next we shall define a 2m-FF design of even resolution.

DEFINITION 1.5. A fraction T is called a 2m-FF design of resolution 21
if 6Q given in (1.7) is estimable.

In a 2m-FF design of resolution 2/, in general, the general mean θφ and
/-factor interactions themselves are not estimable, but some linear functions
of these effects are estimable. These functions determine alias structures of
θφ and Θtίt2...tl. In 2m-FF designs of even resolution, it is very important to
investigate such alias structures (see Sections 11-13). It is well known (see, e.g.,
Scheίfe [21]) that Γis a 2m-FF design of resolution 21 if and only if there exists
a matrix X of size pxN such that X£τ = [0pxl, /p, Opxq]9 where p = v / _ 1 — 1

and q = ( *? j. The symbol Op*q denotes the p x q matrix whose elements are all

0. In this case, by considering C — XET in Theorem 1.1, we obtain the BLUE
A

ΘQ Of 00,

00 = XETΘ*.

For general fractional experiments (i.e., fractional sm or sί x s 2 x ••• xsm

factorial designs), the concept of the term "resolution 21 or 2/ +1" can be similarly
defined but we shall not consider it here. As compared with designs of odd resolu-
tion, in general, it is very difficult to obtain those of even resolution. For earlier
work on designs of resolution IV, see, e.g., Anderson and Srivastava [1], Margolin
[16, 17], Shirakura [24], Srivastava and Anderson [30, 33], Webb [39].
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2. 2m-BFF designs and B-arrays of strength 21

First consider a 2m-FF design T of resolution 21 + 1 and the co variance matrix

Var [0] for the design T.

DEFINITION 2.1. T is called a balanced fractional 2m factorial (2m-BFF)
>s

design of resolution 21+ 1 if the covariance matrix Var [0] is invariant under any

permutation of m factors.

REMARK. It has been observed in [41] that Definition 2.1 is equivalent to
one of the following three statements : (i) For a design T(P) obtained from T by

letting Γ(P) = PT, where P is any permutation matrix of order ra, Mγ1=
-A. -A. ^

holds, (ii) for any two estimates 0fl...fM and β^...^ in the BLUE 0,

Cov[0fl...,M, 0,,..̂ ] = Cov[3τ(ίl...fu), δτ(fV.rv)],

where τ is any element of the permutation group |τ; τ = ( ,~^ τ(2) ' *τT ))( '

and (iii) Cov [0ίr..ίu, 0fl...f J is a function of 11,1; -and K^,,.., Uθ{f.Ί, * f'*}.l

(or \ { t l 9 . . . 9 t u } ( ] { t ' l 9 . . . 9 f ϋ } \ ) 9 and Var [0fl...ίu] is only of M, where the symbols

|S| and S1QS2 denote respectively the cardinality of the set S and the symmetric
difference of the sets Sί and S2, i.e., 51©52 = S1 U S2-S1 n S2.

Now we define a balanced array ("partially balanced" array, in the termi-

nology of Chakravarti [5]) of strength t (with 2 symbols), which has a close rela-
tionship with a balanced design considered in this paper.

DEFINITION 2.2. A (0, 1) matrix T of size m x N is called a balanced array

(B-array) of strength ί, size N, m constraints and index set {μ0, μl9...,μt} (or

indices μi (i = 0, 1,..., ί)) tffor every t-rowed submatrix T* of Γ, every vector with
weight (or number of nonzero elements) j occurs exactly μj times (y = 0, 1,..., t)

as a column of T*.

For the B-array defined above, it is easily shown that N= Σy=o( )/f/ Thus

the term "size" will be omitted if not necessary.

Let ε(ίi •••*„; *i •••*'„) be the element of an information matrix MT = ETE'T
in the cell corresponding to (ίr ίM; t\~ t'v) for θtί...tu and θt>...t>v in θ. Then the

following two theorems have been established by Yamamoto, Shirakura and
Kuwada[41]:

THEOREM 2.1. Let The a 2m-FF design of resolution 21 + 1. Then a neces-
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sary and sufficient condition for Tto be balanced is that the information matrix
Mτ has at most 2/+1 distinct elements y t (/ = 0, 1,..., 21) such that

7i ^(ίi f,,; >'rO '/ l { f ι , »> OΘOΊ,..., f i l l = '•

THEOREM 2.2. A necessary and sufficient condition for Mτ to be expressible
by such elements γt is that T is a B-array of strength 2/, m constraints and index
set {μ0, μ1,...,μ2J. A connection between the elements γt of Mr and the indices
μj of a B-array T is given by

(2 2) ^
for all ϊ = 0, 1,..., 21.

Throughout this paper we assume ( ? ) = 0 if and only if b>a^Q or fc<0.

Next we shall make the definition of a 2m-BFF design of even resolution.

DEFINITION 2.3. A 2m-FF design T of resolution 21 is said to be balanced
Λ*

if the covariance matrix Var[00]/0r Tis invariant under any permutation of m
factors.

In Part III, a 2m-BFF design of even resolution will be discussed in detail.
A 2m-FF design of resolution 2/4-1 (or 21) is said to be orthogonal if the

covariance matrix Var [θ~\ (or Var [00]) is diagonal in this design. A B-array of
strength f, size N9 m constraints and index set {μ0, μ1?..., μj reduces to an or-
thogonal array with parameters (N, m, 2, t) of index μ when μ0 = μ1 = =μf

( = μ, say) (see Raghavarao [19]). It is well known (see, e.g., [41]) that an or-
thogonal array with parameters (AT, m, 2, 21) (or parameters (N, m, 2, 21 — 1))
of index μ is equivalent to an orthogonal fractional 2m factorial design of resolu-
tion 2/+1 (or 21). However orthogonal arrays with parameters (JV, m, 2, t)
of index μ are available only for the special numbers N = 2rμ and the possibility
of the existence of such arrays is in general very small. In such a sense, the class
of balanced designs arises naturally as the next wide class to be looked into.

3. TMDPB association schemes and TMDPB association algebras

As a generalization of partially balanced association schemes, multidimen-
sional partially balanced association schemes have been first introduced by Bose
and Srivastava [3]. Subsequently the theory has been developed in Srivastava
and Anderson [31, 32], Yamamoto, Shirakura and Kuwada [41], Yamamoto


