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1. Introduction

Throughout this paper, let X be a locally compact Hausdorff space and &
be a positive (Radon) measure on X. We denote by L?2=L2(X; &) the Hilbert
space of all real-valued square £-integrable functions on X with the inner product
(u, v)=\ u.vdé and the norm [u|= VW. For measurable functions u
and v on X we define uVv=max{u, v}, u Av=min {u, v}, u*=uV0 and u~=
—(u A0) and simply write “u<v” for “u<v £-a.e. on X”.

Let ¢ be a lower semicontinuous convex function on L2 with values in (— oo,
+o0] and proper on L2, i.e., ¢# + 00 on L2. Then the subdifferential d¢p of
¢ is the (multivalued) operator in L2 defined by the following: d¢(u) =@ if u ¢ D(¢)
and

dp(u) = {weL?; (w, v—u) < p()—p(u)  forall vel?)
if u € D(¢), where D(¢)={ve L?; p(v)<oo}. We put
D(0¢) = {ueL?; dp(u) # O}
and
G(0¢) = {[u, v]e L* x L?; u € D(0¢), ve dp(u)},

which are called the domain and the graph of d¢, respectively.

In the Dirichlet space theory, contractions on the real line play an important
role in connection with potential theoretic properties. Among them the follow-
ing are the most fundamental:

(a) T*t= max{t, 0} (positive contraction)
(b) Tit=min{T*t, 1}  (unit contraction).

In case ¢ is Gateaux-differentiable on a certain functional space, Kenmochi-
Mizuta [6, 7] discussed relations between the above contractions and potential
theoretic properties, €. g., the maximum principle, the principle of lower envelope,
the complete maximum principle and the strong principle of lower envelope.
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These potential theoretic properties in nonlinear case were introduced by Calvert
[3] for a class of monotone operators in Sobolev spaces. We also refer to Calvert

[4].

For a non-negative measurable function g on X, we consider the operator
T}:L2—L? defined by Tju=u*Ag for ueL2. Especially T& (=T} with
g = o) is the positive contraction and T'{ (=T} with g=1) is the unit contraction.
Our aim in this paper is to investigate relations between the following properties:

(1) T} operates on L? with respect to ¢, i.e.,
Pu+Ti(v—u))+(v—Ty(v—u)) = p(u)+ ¢(v)

for any u and ve L2.
(2) The strong principle of lower envelope with respect to ¢ and g holds,
i.e., if [u, u,], [v, v,] € G(0¢), then u A (v+g) € D(¢) and

Pu A (v+g)+w)—d(u A (v+9)) 2 (u; A vy, W)

for any non-negative function w e L2.
(3) The complete maximum principle with respect to ¢ and g holds,
i.e., if [u, u,], [v, v,] € G(0¢) and if there is a measurable function f on X such

that u, Av, 2f and S (wu,—fH(u—v—g)*dé=0, then u<v+g.
X
(4) For any A>0and u, ve L2 withugv+g,

Ju=sJw+g,

where J,=(I+1-0¢)~! is defined everywhere on L? and single-valued (see Brézis
[1; Chap. II]).

2. Main theorem

In what follows, let ¢ be a proper lower semicontinuous convex function on
L? with values in (— o0, +00] and g be a non-negative measurable function on
X.

We say that the positive contraction operates on L2 with respect to ¢ if the
following is satisfied:

(Co) duVv)+d(uAv) < ¢p(u)+ ¢(v) forany u and vel?2.

Further we shall need the contraction T,: L?—L? defined by Tu=uAg for
uel?
We now state our main theorem.

THEOREM. Assume that ¢ is strictly convex on D(¢) and the positive con-
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traction operates on L? with respect to ¢. Then the following statements are
equivalent to each other:

(1) The contraction T} operates on L2 with respect to ¢.

(1) The contraction T, operates on L? with respect to ¢, i.e.,

(C)  duA@+g)+¢@V (u—9) = W) +¢(v)  forany u,vel?

(2) The strong principle of lower envelope with respect to ¢ and g holds.
(3) The complete maximum principle with respect to ¢ and g holds.
@4 JusJ+g for any A>0 and u, ve L2 with uZv+g.

ReEMARK 1. The property (C,) was originally introduced and studied by
Brézis [2], in which he investigated the maximum principle and the comparison
theorem for the unilateral problems.

REMARK 2. Our theorem is a generalization of a result of Kenmochi-
Mizuta [7].

REMARK 3. Itis known in [8] that the assertions (1), (1)’ and (4) are equiva-
lent to each other if the positive contraction operates on L? with respect to ¢.

3. Proof of the theorem

We shall prove the theorem through several propositions.

PROPOSITION 1. Assume that the positive contraction operates on L2
with respect to ¢. If the contraction T, operates on L? with respect to ¢, then
the strong principle of lower envelope with respect to ¢ and g holds.

Proor. Let [u, u,], [v, v,]€ G(0¢). Given £>0, define the function L,
on L2 by

L.(x) = &||x|2/2—=((u; +eu) A (v;+ev), x), xel?,
and consider the closed convex set
K={xeL*;x2uA@+g9)} (#9).

Since ¢ is lower semicontinuous and convex, there are constants C, and C, such
that ¢(x)=C,||x|| +C, for any x e L2. Consequently,

{¢(x)+L)}/Ix| —> 0 if [Ix]| — co.

Furthermore, ¢+ L, is proper, lower semicontinuous and convex on K. There-
fore
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inf{¢(x)+ L,(x); xe K}

can be attained at x,€ K (cf. [S; Proposition 1.2]). Noting that tx+(1—1t)xg €
K whenever 0<t<1 and x € K, we have

(tx+(1=0x0) = P(xo) 2 —{L(tx+(1—1)x0)— L(x0)}.
By convexity of ¢,
(3.1)  d(x)—Pp(xg) = (—exg+ (i, +eu) A(v, +ev), x—x,) forany xeK.

If we show that x,=u A (v+g), then we have the proposition by letting ¢ | 0 in
(3.1) with x=x,+w, where w e L? is non-negative.
We first show that x,<v+g. From (C,) and (3.1) it follows that

vy, Xo A (V+9)—xp) = (v, V=0 V (Xo—9))

Z P)— ¢ V (xo—9)) Z d(xo A (v+9))—d(xo)

Z (—exo+(uy+eu) A (v, +8v), Xo A (v+9)—Xo),
which gives
3.2 (exo+vy—(uy+eu) A (vi+ev), xo A (V+g)—x0) = 0.
Adding (3.2) and the following inequality

((u,+eu) A (v, +ev)—v,—ev, xg A (V+9g)—x0) 20,
we obtain
&(xo—, Xo A(v+9)—Xo) 2 0,

which implies that x,<v+g. In the same manner we see from (3.1) and (C,)
that x,<u. Consequently, xo=u A (v+g). q.e.d.

PROPOSITION 2. Assume that ¢ is strictly convex on D(¢). Then the strong
principle of lower envelope with respect to ¢ and g implies the complete maximum
principle with respect to ¢ and g.

Proof. Let [u, u,], [v, v,]€ G(é¢) and f be a measurable function on X
such that u, Av;=f and S w,—fHu—v—g)tdé=0. Since 0=Zu,—u, Av, <
X
u—f,
(u,—u, Avy, (u—v—g)") =0.

From this equality and our assumption, it follows that
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(g, u—v—9g)*) = (U, A vy, (u—v—9g)*")
S du A (v+g)+U—v—9))—du A (v+9))
= du)—u A (v+9)).

Noting that u and u A (v+g) € D(¢p), we have u=u A (v+g) by the strict convexity
of ¢ on D(¢). In fact, if u#u A (v+g), then

W A ) —w) = 2(uy, LALFDTE )

< 2{p(LALEDF) g} < g A (v+9) - (W),

and a contradiction follows. q.e.d.

ProposiTION 3. If the complete maximum principle with respect to ¢
and g holds, then J,u<J,v+g for any 2>0 and u, ve L?> with uZv+g.

Proor. Given A1>0 and u, ve L? such that u<v+g, we put x=J,u and
y=J,v. Then there are x; € d¢p(x) and y, €d¢p(y) such that u=x+4ix,; and
v=y+Ay,. We see that

XyAyr 2 — ]
and that
S (xl _u\c(_y+g_)>(x_y_g)+d5 = 0.
x A
Hence we obtain by our assumption that x<y+g, i.e., J,usJ,v+g. q.e.d.

Proor oF THE THEOREM: (1)’ implies (2) by Proposition 1.

(2) implies (3) by Proposition 2.

(3) implies (4) by Proposition 3.
From Remark 3, the assertions (1), (1)’ and (4) are equivalent to each other.
Therefore our theorem is completely proved.
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