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1. Introduction

Our purpose in this paper is to study the asymptotic nature of nonoscillatory
solutions of the equation

(1) WO*W + X0*'(0 + <KO*(0 + *(OΛ(*fo(0)) = /(O

under the assumptions :
( i ) r(ί), p(i) and g(i) are nonnegative, real valued and continuous on the

whole real line R

(ii) α(ί),/(0> 4(0: R^R and continuous;
(iii) r(ί), XO and g(i) are C'\_A, oo) for some >1>0;
(iv) r r(0 > 0, 0 < g '(t) < S for some S > 0, r(f ) > K > 0 and bounded

let Λ(f)= J'l/Φ)<fc;

(v) /i : R-+R, increasing, sign (ή(f)) = sign ί, Λ(-ί)=-Λ(0> and if ί-*0,
then ft(0~>0, /ι(ί)/ί is bounded

(vi) g(t)<t and g(t)^oo as ί-*oo.
A function y(t) e C[A, oo) is said to be nonoscillatory, if it eventually assumes

a constant sign for arbitrarily large values of ί; otherwise it is called oscillatory.
The existence of the continuously extendable solutions of equation (1)

will be taken for granted. From here on the term "solution" applies only to such
solutions on [A, oo).

Recently T. Kusano and H. Onose [4] studied the equation

(2) W0/(0)' + α(t)h(y(gm = f ( t )

under practically similar assumptions and showed that bounded nonoscillatory
solutions of (2) would approach to zero if

R(i)α~(t)dt < oo, (* R(t)α+(t)dt = oo

Γ°°and \ R(t)\f(i)\dt<oo. It will be shown in this manuscript that these conditions

are strong enough to cause all nonoscillatory solutions of (2) to approach zero.
In the process known results of Hammett [3], Grimmer [2], Londen [5], and
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this author and Dahiya [7] are generalized. It is interesting to note that
Hammett's study of the equation

(3) (KOyW + «(OW))=/(0

via a theorem of Bhatia [1] does not extend to equations of the type (2), let alone
equation (1), as was observed by Travis [11]. Also see this author [8].

Equations of type (1) are encountered in the study of perturbed combustion
inside a rocket engine. Norkin [6] gives the specific equation

(4) x"(i) + αx'(0 + βx(t) + δx(t - τ(0) = 7,

α>0, /J>0, <5>0. τ(ί)>0 indicates the delay in combustion in the chamber after
fuel injection. x(t) represents the perturbation of injection velocity.

2. Main results

Our first lemma puts a bound on the growth of nonoscillatory solutions of

(1).

LEMMA 1. Suppose

(5) <?(f)-p'(0>0, ί6[Λ, oo),

(6) 'l/Wlds < oo,

< oo.
Γ°°

(7) \ sa~(s)ds

Let x(t) be a nonoscillatory solution of equation (1), then |x(OI/* w bounded in
LA, oo).

PROOF. Without any loss of generality we can assume that A is large enough
so that for t>A, x(i) is of constant sign and for that matter we can assume that

*(0(0)>0 anc* x(ί)>0 for t>A. Let T>A\ integrating equation (1) between
T and t we have

(8) K0*'(0- K7>'(Γ) + (' P(s)*'(s)ds+ [ q(s)x(s)ds
JT JT

JT JT

which gives on further integration and rearrangement of terms

(9) K0*'« - KT)x'(Γ) + p(ί)x(0 - p(T)x(T) + (q(s) - p'(s))x(s)ds
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+ ('a(s)h(x(β(s)y)dsz('\f(s)\ds.
}τ )τ

Let α+(0 = max [a(t\ 0], <r(f) = max [-0(0, 0]. From (9) we have

(10) i OKW < K0 + a-(s)h(x(g(s)))ds + \f(s)\ds

since q(i)-p'(t)^Q, x(ί)>0 and we have set K0 = r(T)x'(T) + p(T)x(T). Divid-
ing (10) by r(f) and integrating between Tand g(f) we get

0(0 Γff( ί) Γ«
llr(S)ds+\ ϊ/r(s)\ a-(y)h(x(g(y)))dyds

T JT JT

+ \"('\lr(s)\S\f(y)\dyds
JT JT

< x(T) + K0\' l/r(s)rfs
JT

+

+ \ (|/(s)|(f-s))/r(s)Λ,
JT

Therefore

(11)

where

by condition (iv) of this lemma and h(t)/t<K3 as assumed earlier. From (11)
we obtain

which gives

where
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K4 > KJt + K2 + ̂ τ\f(s)\/r(s}ds, t > T.

Since r(i)>K, from (12) by GroanwalΓs inequality we obtain (in a manner of
Y. P. Singh [10]),

(13) x(g(t)\lt < K59

where K5>0 is some constant. The lemma is proved.

REMARK. It is interesting to note the control over the negative nature of
α(ί), controls the growth of the nonoscillatory trajectories of equation (1).

LEMMA 2. Suppose conditions (5)-(7) of Lemma 1 hold. Further suppose
that p(t) is bounded and

Γt+kβ
(14) there exists a constant K6 such that liminΠ a+(t)dt>E, where E>0

ί-»oo Jί
and K6>0.

Let x(i) be a nonoscillatory solution of equation (I). Suppose limx(ί)^0.

Then lim (r(0*'(0 + X0*(0) = 0.
ί-*oo

PROOF. Without any loss of generality, suppose x(t) is eventually positive.
Let T>A>0 be large enough so that for ί^T, x(ί)>0, x(g(t))>Q and (5) holds.
From (9) in the proof of Lemma 1, we have

K0*'(0 - r(T)x'(T) + p(t)x(t) - p(T)x(T) + fo(s) - p'(s))x(s)ds

This gives

(15) r(t)x'(t)-r(T)x'(T) + p(t)x(t)-p(T)x(T)+ Γ a+(s)h(x(g(s)))ds
JT

(x(g(s)))lsds.

Now h(t)/t is bounded and

\ (sa~(sy)ds < oo as ί-»oo.
Jr

Since the conclusion of Lemma 1 and conditions (5)-(7) make the right hand side
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of (15) bounded we must have

(16) J V(f)Λ(*(0(0))Λ < oo,

(17)

because if either of (16) and (17) is infinite then r(t)x'(i)^> — ao as f->oo. Since
r(ί) is bounded x'(t)^> — ao and x(ί)<0 eventually, a contradiction. Hence (16)
and (17) hold. Condition (14) implies

(18) (°V(OΛ=oo.
Jr

From (16) and (18) we have

(19) liminf jc(ί) = liminf x(0(ί)) = 0.
ί-κχ> f-KJO

Now x'(0 must be oscillatory. In fact if x'(t) is nonoscillatory then from (19)
we have limx(0 = 0, a contradiction since by hypothesis limx(i) does not approach

f-»00 ί->00

zero. Let

(20) lim sup x(t) = lim sup x(g(i)) > 2d > 0
ί-»oo ί-»c»

for some d>Q. Let 0<XO<^ Let e>0 be small enough so that e/M<d.
There exists large point T0 > T such that

(21) Γ fl-(s) sds < e/4L, h(t)/t < L,
Jr0

(22) ί°° a+(t)h(x(g(t)))dt < e/4,

(23)
To

(24) ί°° |/(ί)|Λ < β/4.
JΓ0

Due to (19) and (20) there exist points 7\ and Γ2, T2> Tt > T0 such that

(25) x(T,) > e/M9

(26) x(T2) < e/4M.

Let [5l5 S2] be the largest interval around T2 such that

(27) x(0«?/3M, te(Si9S2)9

and
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(28) x(SJ = x(S2) = e/3M.

Then

(29) S2 > St :> Γ, > Γ0.

Let

(30) x(S3) = minx(0, ίe[S,, S2], x'(S3)=0, S3 > Γ0.

Replacing Tby S3 in (15) we get

(31) |/ (ί

+ P(s3)x(s3)+Lκ

where

< L, and XMS^ < K5 by Lemma 1

From (31) using (21)-(24) we get

\r(f)x'(i) + p(i)x(t)\ <

=

Hence

and the proof is complete.

THEOREM 1. Suppose (5)-(7) of Lemma 1 and (14) of Lemma 2 hold.
Suppose p(t) is bounded. Then all nonoscillatory solutions of equation (1)
approach to zero asymptotically.

PROOF. Let x(t) be a nonoscillatory solution of equation (1). We proceed
as in the proof of Lemma 2 and arrive at conclusions (16), (17), (18), (19) and
(20) for t> T>A. We shall use the proof of theorem 1 of this author [8, p. 267]

with minor modifications. From (19) and (20) there exists a sequence {fπ}*=0

such that

(32) ίπ->oo as n->oo, tn > T for n > 0;

(33) x(g(tn))>2d9 n > l ;

(34) for each n > 1, there exists t'n such that tn.^<t'H< tn and x(g(t'n))< d/2.

Let [αrt, βn~] be the largest interval around tn such that for n > 1
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(35) x(9(*J) = x(9(βJ) = d, x(g(ί»>d, te(*n,βj.

Now in the interval [αn, ίj, there exists a number Sn such that

(36) x'(g(SJ)9'(SJ = [x(0(O) - x(g(*JΪ]l(tn ~ °0

Multiplying by r(Sn) and adding p(Sn)x(g(Sn))g'(Sn) on the left in (36) we have

(37) r(SJ

From (37) we have

(38) (r(Sn)x'(g(Sn)) + (p(SJx(g(SJj)g'(SJ > (2d - d)K/(βn - αj

since βn-xn>tn-an, x(g(tn))>2d9 x(g(anj) = d and r(t)>K. Since g'(SJ is
bounded and nonnegative and since the lefthand side of (38) tends to zero as f->oo,
we have from (38)

(39)
n-»oo

From (16) and the fact that h(t) is increasing we have

>

h(d)\ nα+
JΛn

as Π-+CQ

in view of condition (14) and conclusion (39). This contradiction proves the
theorem.

EXAMPLE 1. Consider the equation

where

sinI, nπ < t < (n+l)π,

exp ( — 0 sin ί, (n + l)π < t < (n + 2)π,

3 —6te~ί3, nπ < t < (n + l)τr,
/(O =

3, (n-f-l)π < t < (n + 2)π.
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Then

sin t, nπ < t < (n + l)π,
a+(t) = ,

0, elsewhere,

-exp(-0sinί,
a-(t) =

0, elsewhere,

All conditions of theorem 1 are satisfied. Hence all nonoscillatory solutions

of equation (40) approach zero as f->oo. In fact y(t) = e~*3 is one such solution

of (40).
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