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§ 1. Introduction

As is well known, actual solutions of linear ordinary differential equations

in a neighborhood of an irregular singular point are characterized and asymptoti-

cally represented by formal power series solutions which are in general divergent.

It may be more desirable to obtain the convergent representation of solutions

in a neighborhood of an irregular singular point in computing the exact value

of a solution. For this objective, J. Horn [1, 2], W. J. Trjitzinsky [12] and

H. L. Turrittin [14] attempted to sum formal power series solutions by means

of the so-called Borel exponential summation and obtained convergent generalized

factorial series expansions of actual solutions near an irregular singular point in

some cases. In particular, H. L. Turrittin attacked this problem of summation

for systems of linear differential equations believing that all formal power series

solutions could be summed in every case. Although a considerable progress was

made, he did not succeed in summing formal power series solutions in all cases

in his paper [14]. See also [15].
The method of obtaining convergent generalized factorial series expansions

of actual solutions near an irregular singular point is due to the decomposition

of an original system of linear differential equations into a sum of a certain number

of nonhomogeneous systems of linear differential equations whose solutions are

expressed in terms of Laplace integrals.

We here consider a system of linear differential equations of the form

(1.1)

where the matrix A(τ) is holomorphic at τ = oo, i.e., it permits a convergent power

series expansion

(1.2) A(τ) = Σ Amτ-»
m-O

for sufficiently large values of τ.

If we then put

(1.3) X(τ) = Σ1 {Ctτ-> + T-'Z^K* (ξ = τ*)
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for a certain number ft and an appropriately chosen number q, the functions
Zι(ξ)(l = 0, 1,..., q — 1) satisfy nonhomogeneous systems of linear differential
equations arid are expressed in "term's of Laplace integrals. Thereupon we apply
the following N. E. Nόrlund theorem [9] to those Laplace integrals. See W.
Wasow [16; Chapter 11].

THEOREM (N. E. Nδrlund). Let Z(ξ) be a function of the form

(1.4) Z«) = -̂ s-

where λ(ξ) is holomorphic and bounded in a right half-plane Reξ^κ>0, and
be expressed in terms of the Laplace integral

(1.5)

where 2£(s) is holomorphic in a half-infinite parallel strip containing the non-
negative real s-axis and has the property

(1.6) .."bme-«'&(s) = 0

in that strip.
Then there exists a constant ω0^l such that for ω>ώ0 the function Z(ξ)

can be represented by an absolutely and uniformly convergent factorial series

(1.7) Z(f) = Σ . , * Z.r , *—-^ (Re ξ>κ).
-o JL(JL + iV/jL + Λ

ω \ ω / \ ω /

For our purpose, we may only determine the number of decomposition q
appropriately and investigate whether or not the functions Zt(ξ)(l = 0, 1,..., q — 1)
have the properties stated in the above theorem. H. L. Turrittin, following
W. J. Trjitzinsky's work [12], determined the number q in each considered prob-
lem corresponding to the rank g and then analyzed the functions Zt(ξ). But
the validity of the determination of the number q seems not to be clear. There-
fore in this note we shall show that the number q is determined by the growth of
coefficients of formal power series solutions as an inevitable consequence and ob-
tain a small extension of H. L. Turrittin's results.

In the system of linear differential equations (1.1), the integer g is called Poin-
care's rank of the singular point at τ = oo. Since it is easily verified that when
g ̂ 0, i.e., τ = oo is a regular or a regular singular point, there exists a fundamental
set of convergent power series solutions in the neighborhood of τ =00, we assume
that g > 0. It should however be noticed that even if g > 0, τ = oo is not necessarily
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an irregular singular point. See [7, 8]. We may therefore assume that the
system of linear differential equations (1.1) has τ = oo as an irregular singular point.

We can always seek independent formal power series solutions of linear differential

equations near an irregular singular point. The precise form of such formal
power series solutions of the system of linear differential equations (1.1) was
ingeneously given by M. Hukuhara [3,4] and independently by H. L. Turrittin
[13]. As the starting point of our study, we here quote H. L. Turrittin-M.
Hukuhara's results from the paper [14] and write them in the following

THEOREM (H. L. Turrittin-M. Hukuhara). An appropriate nonsingular
transformation

(1.8) (Σ
k=0

where N and p are suitably chosen positive integers and the change of variables
t — τ ι / p reduce the system of linear differential equations (1.1) to the canonical

form

(1.9) dY
dt

where δij is the Kronecker delta, l\ (/= 1, 2,:..., μ) are nt by HI identity matrices,
J t ( ί = l9 2v..,μ) are nt by n{ matrices of the form

( 0

•I"'"-, 0
(1.10) Λ =

0 ε(Πί-ι) o

and the infinite series of n( by ns matrices

(l.Π) Σ Bij(m)Γm (i,7 = l,2,...,/ι)

1 (k= 1,2,...,^- 1)

are convergent for sufficiently larg'e\t\,say\t\>iQ>Q.' Moreover, ρi(t)(i = i, 2,...,

μ) are polynomials of the form

(1.12) ••+ α?,

h being a positive integer, and no two of the polynomials (1.12) are identical,
i.e., if ί=£j(i,j=l,2,...,μ),for some
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(1.13) α f ^ α j

holds. In particular, if

αf = α) ' ( l £ f c £ f c )

for iVj, ihen the difference α? — α^ is noί 0n/y noί zero, but it also is not an
integer.

We here remark that in (1.12) h cannot be zero from the assumption that
the system of linear differential equations (1.1) has not a regular singularity at
τ=oo.

We can then find independent formal power series solutions of the canonical
system of linear differential equations (1.9) of the form

(1.14) 7(0 = (l/,χθ)(«Vexp(Λ(0/ι + J,logO) (U = 1, 2,..., μ),

where

and the matrices of formal power series E/j/0(W = 1, 2,...,μ) are of the form

(1.16) UjΊ(t)= Σ Uj{m)Γ*9
m=0

(1.17) t/,/0 = r»u-ι f; U(/m)Γ" (1^7; /,; = 1, 2,..., μ).
m=0

In the above expression the nonnegative integers /lyOV./; ί, j=Ί, 2,..., μ) are
determined as the largest integers such that

(1.18)

where ΓtJ(h{j)^0. In particular, if Λy=0, Γ0 (0) is not an integer. Evidently,
the relations

(1.19)
Γy(Λy) = -Γ,,(ayί) (ί * j; i, j = 1, 2,..., μ)

hold.
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§ 2. Estimates of coefficients of formal power series solutions

In this section we shall analyze the growth order of coefficients t/i/m) of
formal power series solutions for sufficiently large values of m. To this end, we
first seek recurrence formulas satisfied by the coefficients i/f/m), substituting
the formal power series (1.16) and (1.17) into the following systems of linear diff-
ferential equations respectively:

(2.1) tU'jj = UjjJj - J j U j j + ( Σ Bjj(m)r»)Ujj + Σ (Σ BJk(m)r")Ukj9
m— 1 k— 1 m— 1

(2.2)

+ ( Σ Btj(m)r»)Ujj + Σ (Σ Blk(m)r»)Uu

We then obtain

(2.3) Ujj(m)( - m - /,) + JjUjj(m) = f Bjj(s)Ujj(m - s)
5— 1

+ Σ ""*f "'^WC^Xiii - AM - 1 - 5)

putting Ujj(m) = 0 for m<0. We may therefore put

(2.4) t/,./0) = /, (/=l,2,...,μ).

If i^j and htj^Q, we have, considering (1.19),

Λy) = - *ϊ ' ΓtfK)Vtfm + fc)

Λy + 1 - Γ,χθ) + J,) - J,l/y(m)
(2.5)

+ Σ BasWijm. - s) + "" Σ By(s)t/yχm + Λy + 1 - s)
s=l s=l

M m+hij—hkj

+ Σ Σ ^ttίsMyί"! + *«y - *w - s). (m^O),
k = l s=l

fc ^i.J

putting Utj(m) = 0 for m<0 and hence from (2.4)

-
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In particular, if i&j and /ιίy = 0, we have

(2.7) l/,χm)(- m - 1+ Γ,χθ) - /,) + ̂ ^(m) = B'^U^m - s)

+ 1 - 5) + Σ mΣk/Bίfc(s)t/fe/m ~ Λky - s)

putting Uij(m) = 0 for m<0 again and hence

(2.8) U,XO)(- 1 4- Γy(0) - Jj) +'

From the above recurrence formulas the coefficients U^m) can be uniquely
determined in succession.

Now in order to proceed to estimating the coefficient matrices, we rewrite
ΠiXtij elements in the coefficient matrices U^mjfaj^l, 2,..., μ) in the form
of nt x rt -dimensional column vectors <ary(m)(ί, 7 = !, 2,..., μ). Then the re-
currence formulas (2.3), (2.5) and (2.7), the second subscript j being fixed and
hereafter dropped from Γip htj and the vectors ^ίy(m), can be rewritten in the
form

(2.9) ( - m - Λjj(0))ifj(m) = Σ

Σ m~Σ~l

(2.10) ΓάhdVάm + *,)=- Σ ΓiίA:)^^ + jfe)
fc=l

+ (w + Aυ -f 1 - Ft(0) + Λ,χθ))Φf(iff)

m m + Λ j + 1

+ Σ ^iiOy)#ί(w - J ) + Σ &ij(s)<%j(m -f Λ f + 1 - s)
s= 1 s= 1

+ Σ '"+Σ~'"ί Λtt(5)*»(Λ + .4, - A - *) (

(2.11) ( - m - 1 + ΓfίO) - JΊXO))*,^) = Σ Λii(s)*ι(m - s)
5=1

- k

+ Σ atJ(s)Vj(m + 1 - J) + Σ Σ &ιk(s)Wk(m - hk - s)
1=1 " s=1

(/if = 0) ,
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where #it/(s)(i, j=l, 2,..., μ) are (n?) by ( tyxfy) matrices corresponding to the

matrices B0 (s) and ^/O) (/,./ = 1, 2,..., μ) are (πt x/ι/) by (nf x n,-) matrices
constructed from the formulas

Since the infinite series (1.11) are convergent for | f |>ί 0> the absolute values
of all the elements in the coefficient matrices l^/m) are not larger than a certain
constant times η to the power m for sufficiently large η>t0. Defining the norm
of a matrix A = (aίj\ i,j = l, 2,..., n) and a vector X^=(xt: / = !, 2,..., n) by

=max(f

X| = max (|xf|)

respectively, we have

(2.12) ll^/s)!! gMi j (i,7 = l,2,...,μ)

for a sufficiently large positive constant M.

We can now obtain a system of linear difference equations whose solutions

dominate the norms of C7ί(m)(i = l, 2,..., μ). Considering, for instance, the
inequality derived from (2.9)

(2.13) (m -

Σ
fc= 1

and using the estimates (2.12) and the relations

(2.14) 11*1/0)11=2 (U = l,2,...,μ),

we obtain a scalar recurrence formula of the form

(2.15) (m - .2)K/m) = M(f i'K/m - s)
s=l

M m-/»k-l
+ Σ Σ nsvk(m-hk-ι-s)).

ί j s=1

Likewise, from (2.10), (2.11) and (2.12) we obtain scalar recurrence formulas

of the same type as stated above. The system of recurrence formulas derived

in this manner may be called a majorant system of recurrence formulas cor-
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responding to (2.9), (2.10) and (2.11) in the sense that giving appropriately initial

values, the solutions of this system dominate the norms of ^f(m) (ι = l, 2,..., μ),

i.e.,

(2.16) 11*̂ )11 ^ Kf(m) (ί = 1, 2,..., μ)

hold for all values of m.

Moreover, replacing m by w -1 in (2.15) and substracting η times the formula

derived just now from (2.15), we have the required linear difference equation

(2.17) VΛm) = (m ~ 3 "t M\Vj(m - 1) +( Mη^ } Σ Vk(m - hk - 2).v ' J \ m — 2 / ' J \ m — 2 / t= ι

By exactly the same procedure, we have

(2.18) K,(m) = e,r,(« - 1) +

fc=2

,(0)i/ _ m + 2+ |Γ,(
vc ifjίA,)!

Vk(m - hk - 2)
— 2

for /z^O and
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for Λj=0. In the expression (2.18) we put for brevity

(22m <• - \Γt(ht-l)\ + η\Γl(hi)\
( ] l ί/OTl '

(2.21) rf.W |Γ' f fc-

(2.22) a = |Γ^}[

We have thus obtained a majorant system of linear difference equations. In order
to estimate the growth of the coefficients ^/7 (m)(i=l, 2,...,μ) for a fixed j as
w->oo, we may investigate the behaviours of solutions of this system of linear
difference equations as m->oo. To this end, the very important theorem by
O. Perron [10, 11] is effectively applicable.

THEOREM (O. Perron). Consider a single n-th order linear difference equa-

tion

(2.23) g(s + n) + a^(s)g(s + n - 1) + - + an(s)g(s) = 0,

the coefficients ai (s) have the properties

(2.24) lim -̂ ί = a constant (i = 1 , 2, . . . , n) .
$-»αo S l

We here construct an upward convex Newton-Puiseux polygon in the usual
orthogonal coordinate system such that the points with the coordinates

(2.25) (0,0),(1, /cO,(2,fc2),...,(n, fcj

either lie upon the polygon or below it. Assume that the polygon consists of

σ sides Sk(k=l, 2,..., σ) with the directional coefficients rk respectively and the

difference of abscissas of two end points of Sk is equal to nk, i.e.,

(2.26) H! + n2 H ----- h nσ = n .

Then there exists a fundamental set of solutions of the linear difference equation

(2. 23) which is split into σ classes of solutions in such a way that every solution

or every linear combination of solutions belonging to the k-th class has the
growth property

(2.27) lim
5-* 00
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Ck being a suitable positive constant. And that, the number of solutions included

in the k-th class is nk.

We shall now apply O. Perron's theorem to a system of linear difference

equations (2. 17)-(2. 19). First, consider a special case when all hj = h (ι' = l, 2,..., μ).

If we put

(2.28) G(m) = I V2(m)

\Vμ(m)

the column vector G(m) satisfies an (h 4-2)-th order linear system of difference equa-
tions

(2.29) G(m) = *ίι(m)G(m - 1) + j*2(m)G(m - 2) + •••

+ j/Λ+2(m)G(m - h - 2),

where the μ by μ coefficient matrices j*fc(w)(fc = l, 2,..., /z + 2) are easily obtained
from (2.17) and (2.18) although we do not here write their explicit forms. For
the purpose of applying O. Perron's theorem, we again construct a majorant

linear difference equation corresponding to (2.29)

(2.30) g(m) = al(m)g(m - 1) + a2(m)g(m - 2) + •••

+ ah+2(m)g(m - h - 2),

where we set

(2.31) ak(m) = ||j/k(m)|| (fc.= 1, 2,..,, A + 2).

Then the just needed information is to know the growth properties of the coeffi-
cients αfc(m)(fc = l, 2,..., h + 2) as w-> oo. It is easy to see from (2.17) and (2.18)
that

(2.32) limα fc(m) = a constant (1 ^ /c g /z — 1),
w-*oo

l imm αΛ+2(
m) == fl constant

m ^oo

and

(2.33) lim ί̂7^ = a positive constant (k = h, h+ 1) .
m->cx) m

Hence the coordinates of the points corresponding to (2.25) are
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(0, 0), (1, 0),..., (Λ - 1, 0), (/ι, 1), (h + 1, l),.(fc + 2, - 1).

Since the Newton-Puiseux polygon then consists of three sides with the direc-

tional coefficients -=-, 0 and — 2 respectively, ever
n

ference equation (2.30) at all events has the growth

tional coefficients -=-, 0 and —2 respectively, every solution of the linear dif-
n

1

(2.34) lim < C
Γ(w +

for some constant C. We therefore obtain

(2.35) Πr

for a fixed j. This result is the same one as derived by H. L. Turrittin in the paper
[14].

Next we consider the behaviour of C(m) for sufficiently large values of m
in general case. In this case an important role will be played by an integer

(2.36) q - min{hr.96 0}.

All the coefficients in the linear difference equations (2.17) and (2.19) tend to
finite values as w-»oo. On the other hand, the coefficients in the right hand side
of the difference equation (2.18) except for the /7rth and (hi + l)-ih coefficients
are constants or tend to finite values as m->oo and the /ιrth and (/if+l)-th coef-
ficients have the behaviour mO(l) as m->oo. Therefore the system of linear
difference equations (2.29) satisfied by G(m), which is of at most (/z-f 2)-th order,
but exactly h (= max{/ί/τ

ιί:0}-h2)-th order, has the first (q — 1) coefficient

matrices s4k(m)(k — 1, 2,...,q — 1) and the last coefficient s/ffjn) which tend to
finite values as w->oo. Moreover, we easily have

(2.37)

(2.38) ja^(m) = mθ(l) (q + 1 ̂  k ̂  fi - 1) .

The corresponding majorant linear difference equation in the form (2.30) has

the same properties as the system (2.29) has, i.e.,

(2.39) liniflfc(w) = a constant (1 ̂  k ^ q — 1), limmαΛ(m) = a constant,
m-*oo m->oo

(2.40) lim aq^ = a positive constant ,
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(2.41) lim -**£?! = a constant (q + 1 ̂  k ^ h - 2)
m-»oo W

and in particular

(2.42) lim ah~l^m^ = a positive constant.
m-*oo m "

The Newton-Puiseux polygon, constructed by the points

(2.43) (0, 0), (1, 0),..., (q - 1, 0), (q, 1),..., (fc, (5,),..., (fi - 1, 1), (ί, - 1),

where <5fc = 0 or 1, has three sides with the directional coefficients —, 0 and —2

respectively. Applying O. Perron's theorem to the majorant linear difference
equation (2.30), we have

i
(2.44) lim

m-»αo
< C

for a suitable constant C.
We have thus obtained an important result with regard to the growth of the

coefficients of the formal power series solutions (1.14) of the canonical system
of linear differential equations (1.9). We describe it in

THEOREM 1. For a fixed j, define a positive integer qj by

(2.45)

Then we have

(2-46) IS ""™ "ϊC (/ = 1, 2,..., μ)
Γ(m+ I)1'*'

for a suitable constant C.

§3. The decomposition of the original system of linear differential
equations

Theorem 1 in the last section not only gives the growth of the coefficients
of the formal power series solutions, but also seems to teach us the number of
decomposition q.

We should like to attempt to represent solutions of the system of linear
differential equations (2.1) and (2.2) by sums of Laplace integrals as follows:

(3.1) UjΊ(t) = f? {U
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(3.2) Uιj(t) = '-"

for each; (/ = !, 2,...,μ).
For that purpose, we put, the second subscript j being fixed and dropped from

Uίj(ί), Utj(l), y,/ί)» h,j and q} again,

(3.3) 17/0= £l/y(/)r' + Z/ί),

(3.4) [/,(*) = r* -> [ Σ1 l/, (/)r' + Zf(ί)]
/=0

(ϊ 7^7; * = 1, 2,...,μ),

where 7X0(1 = 1, 2,..., μ) are moreover expressed in terms of

(3.5) Z,<0 = Σ1 r'ZJ(f«) (i = 1, 2,..., μ).
/=o

If we first substitute the expressions (3.3) and (3.4) into the system of linear dif-
ferential equations (2.1) and (2.2), we have a nonhomogeneous system of linear
differential equations of the form

(3.6) tZ'j = ZjJj - JjZj + ( Σ Bjj(m)r*)Zj
m=l

+ Σ (Σ Bjk(m)rm)r>"'-ίzk+ Σ C/w)rm,
fc=l m=l J

 m=q

k*j

(3.7) r*'+1Z'f = - yt(t)r>'Zt + r' ίZiC/i + Λ, + l) - /,z,}

+ ( Σ 5jί(/«)r'»)r»'Zί + ( Σ B
m— 1 m= 1

+ Σ ( Σ Bik(m)r^r^zk + Σ
A"!J m=ι m=q

(i φj\ i = 1, 2,...,μ),

considering the formulas determining the first q coefficients [/,-(/) (/=0, 1,...,
q — 1). Next we substitute the expressions (3.5) into the above differential equa-
tions (3.6) and (3.7) in order to obtain a system of linear differential equations

satisfied by the functions Z{(f«)(i.= l, 2,..., μ; /=!, 2,..., g-1).
Here we consider the functions Z\(tq) as functions of a new variable s, defin-

ing s = tq.
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Putting

(3.8) Σ Bjj(m)Γ^ = €Σ '-'( Σ
m=l J = 0 m=0

π m Σ BjkWr*-'"'-* = ΣY'ί Σ
Λ ^ ^/ m=l ί=0 m=0

(v=0 )l,...

where

(3.10) BJX/) = 0 ( / g v ) ,

(3.11) £}*(/) = 0 (/^v + ftt),

we immediately obtain q systems of linear differential equations

(3.12) ί * - - - /zj = zμ; - / ZJ + Σ ( Σ ΛJ
Mi> v = 0 m=0

+ Σ1 Σ ( Σ B^k(mq + I - l)ί--)Zϊ
v=0*=l m=0

+ Σ Cj(mq + /)ί-m (/ = 0, 1,..., "q - 1)
m=l

from (3.6).

Consider now the case when /if>0. In this case we put

(3.13) hi = Piq + di9

where pt and d{ are nonnegative integers such that

(3.14) p f ^ l , O^dt^q-l.

From the definition (2.45) of the number q we have

for some i. We then moreover put

(3.i5) ?;(orΛί-v = ̂ i(fcί)rv + Σ1 *~I(PΣ n

(3.16) ( Σ Λυ(w)r»+1)r = Σ1 r'( Σ
m=l 1=0 m=0

(v-0,1 9-1),
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where

(3.17) ΓΓ(/) = 0 ( / £ v ) ,

(3.18) β?, (/) = 0 ( / g v - 1 )

and obtain q systems of linear differential equations

(3.19) s-»

= - r,(A,)Zi - '£ ("Σ Π(mq
v = 0 m=0

+ 9£ Σ ( Σ B}k(mq + l)s-m)Zl + JΓ
v = 0 fc=l m=0 m=l

( / = 0,1,..., «/,-!),

(3.20) s-

v=0 m=0

7. + A, + i) - J,zlr*')

"Σ Σ ( Σ -Svkv = 0 fe=l m=0

from (3.7).
In the remaining case when ht = Q we similarly obtain q systems of linear

differential equations by means of putting Λ . = £. = </, = () in (3.20) and omitting
the second formula in the right hand side of (3.20).

From the construction of the above decomposed system of linear differential
equations it is easily seen that the infinite series

(3.21) Zj(s)= Σ Ujmq + l)s~m (i = 1, 2,..., μ; / = 0, 1,..., q - 1)
m=l

are formal power series solutions.

We shall now turn to the representation of solutions of the decomposed

systems of linear differential equations by Laplace integrals. To this end, we put

(3.22) ZJ(s) =("e-*Wl(ξ)dζ (i = 1, 2, ..., μ; / = 0, 1,..., q - 1)
Jo
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and investigate the behaviours of the new functions W\(ξ)(i = l9 2,..., μ; 1 = 0,

l,...,g — 1). By a formal calculation we then obtain an associated system of

integral equations of Volterra's type for W\(ξ)(i = l, 2,..., μ;/=0, 1,..., <?-!).

Corresponding to (3.12), we have

(3.23) - = j VχθC/y + /) -

β-1 M / oo

Σ Σ ( Σ *jt(m? + / - i)v = o f c = ι \m=o
_ml

Corresponding to (3.19) and (3.20) for ht>Q9 we have

(3.24) ΓthύW\(ξ) = - Σ Π(l)Wl(ξ) + Σ Bϊj(l)W*j(ξ)
v=0 v=0 J

+ Σ

g-l Pί+1 f ξ ^ _ r^m-1

- Σ Σ Π(^ + /) L n» '̂v = 0 m=l Jo (W — i;!

β-l M ooβ-l M oo Γ^ / ε ___ r
+ Σ Σ Σ ^(iiijr + /) (5mv = 0 f c = l m = l J o ( I W — n,l j !

,
(m-l)l

(3.25) Γ/ΛOtΓKf) = - Σ Π(ξ)W](l) + Σ
v=0 v=0

Σ '"Σ"'v=o
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Γξ (V _. r\m-\
(

«- 1

Lastly, corresponding to (3.20) for h{=0, we have

(3.26) - qξW\(ξ) = W\(ζ)(Jj + / + 1

β-1 I* / oo

We here remark that (i) the third formulas in the right hand sides of (3.24)
and (3.25) have meaning only for hk = Q since if hk>0 i.e., hk^q, Bv

ik(l) = Q (0
^/ίgg-l) hold for any v(O^v^g-l) and (ii) the fifth formula in the right
hand side of (3.25) must be replaced by

(3.27) qξWl-d*(ζ)

forp t =l.
We have thus obtained the associated system of linear integral equations (3.23)
-(3.26) with entire functions as their coefficients. The problem to be solved is
to seek solutions of this system of integral equations with such properties as to
guarantee the well-definedness of the integrals (3.22) and the validity of formal
calculations done above.

We can immediately prove a local existence of solutions of the associated sys-
tem of linear integral equations in a neighborhood of the origin ξ=0. Let us
define series by

(3.28) = l

Considering a formal calculation leading to
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4£-ξm-l\dξ= Σ.Utmq + Ds-f V-« ( Σ
J O \ m = l m=l

and the derivation of the associated system of linear integral equations, it will be
clear that the series (3.28) are formal solutions of the system of integral equations.
However by means of Theorem 1 and the asymptotic behaviour of the gamma

function we can prove

lim Ut(mq < lim
Γ(m) - m->oo Γ(mq

<nq+l

x lim Γ(mq + 7 + IK
Γ(m)

^C*q

and therefore the series (3.28) actually converge for \ξ\<C~qq~l.

We state the above result in the following

THEOREM 2. The series defined in (3.28) are actual solutions of the as-
sociated system of linear integral equations (3.25)-(3.26) in the neighborhood
of the origin ξ = 0, i.e., \ξ\<C~qq~l.

Now, for our objective, it must moreover be shown that solutions of the
system of integral equations exist in the large and have at most the exponential
growth of ξ as ξ-+ao in order to guarantee the validity of Laplace transformations
(3.22) and apply N. E. Nδrlund's theorem. We can easily show the existence
of solutions in the large by the successive approximation method. Such direct
proof will be referred to J. Horn's papers and also W. Wasow [16]. But it seems
to be difficult to prove that the solutions have such properties as described in N. E.
Nόrlund's theorem. In the next section we shall study a special case in which
hi = q or /?. = 0(f = l, 2,..., μ) and make progress in H. L. Turrittin's work to a
small extent.

§4. Generalized factorial series expansions

We consider a case when ht = q or /ij = 0(ί = l, 2,...,μ) for a fixed j. Let
us denote ntxnj elements of the matrices W\(ξ)(i = l, 2,..., μ; 7=0, !,...,# — 1)
by nt x /iy-dimensional column vectors <*\(ξ) (i = l, 2,..., μ; 7=0, !,...,# — 1).
Then the integral equations (3.23) can be rewritten in the form

(4.1) - qξ 4

(7 = 0, l,...,g-
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where #lj (7=0, 1,..., q — 1) are n] by nj constant matrices relating to the for-

mulas Wlj(ξ)(Jj + l)-JjWlj(ξ), and the n] by nkxrij matrices
2,...,μ; /, v = 0, 1,..., # — 1) and the /tj-dimensional column vectors
1,..., g —1) consist of entire functions of ξ. We hereafter use the same notation

as above. It is easy to see that the integral equations (3.26) corresponding to

hι = Q can be rewritten in the form similar to (4.1).

From (3.25) and (3.27), the integral equations corresponding to hi — q (pt=l9

di = 0) can be rewritten in the form

v=o

/ μ i-hk-i

v = 0 l j J k= 1 v = 0
kφj

+ qΣ(ξ$
v = 0 Jo

9-1 n

+ Σ Σ ,
λo

where ^{j (/, v = 0, 1, . , q- 1) are n.-xn, by M f c x n 7 constant matrices and

(5[v(ς) (/, v = 0, 1, ..,q — 1) are / i f X W y . b y n^tij matrices consisting of poly-
nomials in ξ of degree at most 1. For our further analysis, in terms of successive

substitutions after multiplying both sides of (4.2) by ξ and then replacing the second

and the third formulas in the right hand side of (4.2) by the right members of (4.1)

and the like, we obtain the following more suitable expressions of the integral

equations :

(4.3) (Γt(hi) - ?ί)'+IW«) = fl«, ©?'« - 0,
Jo

+ "Σ Σ (ξQΐ(ξ, ®ΐv(ξ - 0, »ίί«
v = 0 fc=l Jo

+ Λ.i(ί, ίfέ(ί)) (/= 0,1, ...,?- 1),

where P{(ξ, /, ZΛ) and Λ{(ί, zλ) (7=0, 1,..., q-ί) are linear in yλ and zλ (λ = 0,

1, ..,/) with coefficients of polynomials in ξ of degree at most / and (/-hi)

respectively, and'β{v(ξ, yλ, zQ (fe = l, 2, .., μ; '/, v = 0, 1,,.., <?-!) are polynomials

in yλ and z£ (/ι = l, 2,..., μ; λ = 0, 1,..., /) of the first degree with coefficients of

polynomials in ξ of degree at most (/+!).

Let S be a closed domain in the complex ξ-plane which consists of a circular
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disk about the origin £ = 0 with the radius less than C~qq~* and sectors with vertex
at the origin and appropriate central angles so that S has a positive distance from
the points Γ^/q corresponding to h^q. It is easily verified from (2.12) that all
the entire functions »ίJ(ξ), V&ξ) (Λ, fc = l, 2,..., μ; A, v=0, 1,..., 4-l)have the
exponential growth as ξ->oo. We can choose positive numbers K and θ such

that

(4.5)

and

(4.6) = 1. 2,..., μ; A, v = 0, 1,..., q - 1)

hold. Moreover, taking, if necessary, a larger positive number K than that of
(4.5) and (4.6), we have for ξ in S

(4.7)

(4.8)

(4.9)

and

(4.10)

!!©?'« - Oil ̂

-0,

- 0, - 0)
Ίfrd - gξ)1

(l,λ,v = 0,l,...,q-

We here remark that since the entire functions Cj(ξ) and Cj(^) corresponding to
Λ f =0 have the factor ξ (see (3.23) and (3.26)), R{({, if £(£)) can be written as

(4.11)

where Rl(ξ, fλ) (/=0, 1,..., 4 —1) are linear in

of polynomials in ξ of degree at most / and
are entire functions, and

(4.12)

= 0, 1,..., /) with coefficients

(Λ = l, 2,..., μ; λ = 0, 1,..., /)

(/=0, 1,...,̂ ~

hold.
Under these preparations, we can apply the usual successive approximation

method in order to prove the existence of solutions of the associated system
of integral equations (3.23)-(3.26) and at the same time to estimate the growth order
of these solutions as £->oo. Since the proof of the existence is not difficult, we
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here follow the analysis used first by J. Horn and later by W. J, Trjitzinsky and
H. L. Turrittin (see Lemma 1 in [14]) to obtain the behaviours of the solutions

= l,2,. . .,μ;/=0, 1,..., 4-1).

THEOREM 3. The matrices W\(ξ) satisfying the associated system of inte-
gral equations (3.23)-(3.26) and defined in the neighborhood of the origin by the
series (3.28) can be analytically continued along every ray in S and satisfy the
inequalities

(4.13) || W\(ξ)\\ ^ M**KI (i = 1, 2,..., μ; I = 0, 1, .., <? - 1)

for sufficiently large positive numbers M and φ.

PROOF. We consider the integral equations (4.1) and the like correspond-
ing to Λ j = 0 and (4.3). From the definition of the solutions *>[(£) in the neighbor-

hood of the origin £ = 0, we can choose a constant M such that

(4.14) M(f) l l<M and |μ{(ξ)|| <

(i = 1, 2,. . . ,μ;/ = 0, 1,..., 4 - 1)

hold for all r^O and |ς| ̂ £0, ξ0 being a positive number less than C~qq~l. Sup-
pose that all *>[(ξ) (ί==l, 2,..., μ; /=0, 1,..., q — 1) do not satisfy the inequalities
similar to (4.13). Then, for some pair of i and /, say i = i' and /=/', we have

(4.15) lw:(ί')ll

for some point ξ' (\ξ'\>ξ0) in S, while

(4.16) jμ{(ί)|| <Me*W (i = 1, 2,..., μ; / = 0, 1, ..., q - 1)

for all [ξ|<|£'|, when we analytically continue ^J(ς) along the ray connecting the
origin with the point ξ'.

For instance, let ^(ζ) be represented by the integral equations (4.3). Then
from (4.8)-(4.10)

(4.17)

TIM
Jo

ξ'
Γt(ht) - qξ'

1-1 μ

+ Σ Σ ,
V = 0 k=l JO

<Mκ(lξ '
Jo
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where the path of integration is the ray connecting the origin with the point ξr

in S. If we take φ> θ and moreover choose φ sufficiently large from the outset,
the above inequality leads to

Ίrμ i

which is a contradiction since the right member will be less than 1 for a sufficiently
large value of φ. Analogously, if ^/'(ς) is represented by the integral equation
(4.1) and the like corresponding to /t f = 0, the inequality similar to (4.17) leads to a
contradiction from (4.5) and (4.6). Thus the proof is completed;

Now we shall return to the study of Laplace integrals

Zj(s) = e-*W[(ξ)dξ (i = 1, 2, . . . , μ; / = 0, 1,..., q - 1),
Jo

where the path of integration is some ray arg£= Ψ in S. From Theorem 3, it is
easily seen that the above Laplace integrals are absolutely convergent and hence
define analytic functions in the half-plane

(4.18) Re(seiψ)>Φ = φ +ε,

ε being an arbitrarily small positive number. Formal calculations done until
now are legitimate and, as a consequence of it, the analytic functions ZJ(s) are solu-
tions of the decomposed system of linear differential equations (3.12), (3.19) and
(3.20) in the half-plane (4.18). Moreover we can easily check the conditions in
N. E. Nόrlund's theorem to obtain the convergent factorial series expansions

(4.19)
ω / \ ω / \ ω /

(i = l ,2, . . . ,μ;/ = 0,l,, . . ,4-l)

in the half-plane (4.18), where the positive constant ω is sufficiently large and the
constant coefficient matrices Λ\(r) also depend on Ψ and ω.

We have thus obtained the following main theorem in this note.

THEOREM 4. If for some j (7 = 1, 2, .., μ), hij = qj or Ay = 0 (i = l, 2,..., μ),
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where h^ and gy are defined in (1.18) and (2.45) respectively, then there exists
an n by iij matrix of solutions of the canonical system of linear differential

equations (1.9)

(4.20) Yj(t) = \ U*!(t)

V*j®
N 1+ αjf + α° log tjlj + Jj log / j

where t/ /0 (ί = 1, 2,..., μ) can fee represented in terms of convergent generalized
factorial series as follows:

(4.21) £/;;« = Σ {Ujj(l)r'+Γ'Z'jΊ(t)},
1 = 0

(4.22) ί/,/0 = r*"-1 [V {I/,//)/-' + r'Zίy(/)}]

oo

(4.23) ZW =
ω / \ ω / \ ω

provided that

(i) y^argf^-^-) (iV 7 : i = l,2,..., μ),Γ£/^) bβm^f defined in
\ ^ / .

(1.18);
(ii) Re(βίΫίβO > Φ, Φ feemgr c/e/med in (4.18);
(iii) ί/ie positive constant ω is sufficiently large.

In particular, ifhu = q or /i^—O (/, 7 = 1, 2, ..., μ), ί/ierc a fundamental set of solu-

tions of the canonical system of linear differential equations (1.9) near an ir-
regular singular point can be represented in terms of convergent generalized
factorial series of the above form.

H. L. Turrittin [14] proved the convergent generalized factorial series ex-
pansions of solutions only when h = i or μ = 2 without restriction on the nature
of the characteristic constants, or when h > 1 and the characteristic constants
α? (ί= 1, 2, ..., μ) are mutually distinct. In these cases, however, /ιt y = /z or hij = 0

necessarily and hence his results are included in our main theorem.
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