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It is known that some roles played by Lie algebras attached to algebraic
groups over a field of characteristic zero are played instead by Hopf algebras
attached to them in the case of positive characteristic. This is essentially due to
the fact that the enveloping algebra of the Lie algebra attached to an algebraic
group over a field of positive characteristic is a proper subalgebra of the Hopf
algebra attached to it in contrast to the case of characteristic zero, where the
Hopf algebra attached to an algebraic group coincides with the enveloping algebra
of the Lie algebra attached to it. Hence there arises a motivation to study Hopf
algebras attached to group schemes over a field of arbitrary characteristic. In
other words if we want to develop an infinitesimal theory of group schemes over a
field of arbitrary characteristic, it would be natural to treat rather Hopf algebras
than Lie algebras.

The purpose of this paper is to give a theory of Hopf algebras attached to
group schemes over an algebraically closed field of arbitrary characteristic, which
corresponds to the theory of Lie algebras attached to algebraic groups over a
field of characteristic zero developed by C. Chevalley and A. Borel in their books
[2] and [1] respectively. In particular we shall show some interesting results on
algebraic Hopf subalgebras in connection with adjoint representations of group
schemes. Although there are some results on this subject obtained already by
J. Dieudonne and M. Takeuchi in their papers [3] and [11] respectively, it seems
to the author that their results do not cover the whole which would correspond
to the results on Lie algebras in characteristic zero case. For example there is
no result on joins of connected group subschemes which are not necessarily

reduced.
In § 1 we recall the definition and some properties of group schemes, and then

we define Hopf algebras attached to group schemes and other notions necessary
in the later sections. The notion and basic properties of /i-inverses of Hopf
subalgebras by a Hopf algebra homomorphism will be given in § 2. We shall
show some basic results on algebraic Hopf subalgebras in § 3. In particular we

define the algebraic hull of a Hopf subalgebra of the Hopf algebra attached to

1) This work was completed during the period when the author stayed at Geneva by a

financial support of Consiglίo Nazionale delle Ricerche in Italy.
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a group scheme corresponding to the algebraic hull of a Lie subalgebra in the case

of characteristic zero. In § 4 we show the existence of the join and the intersec-
tion of connected group subschemes, and we show that the join and the intersec-
tion of algebraic Hopf subalgebras are also algebraic. A theory of rational

representations of group schemes in a vector space is developed in terms of Hopf

algebras in § 5. Next we shall show a useful result on adjoint representations of

group schemes in § 6 which plays very important roles in the following sections.

§ 7 is concerned in normalizers of Hopf subalgebras, formal subgroups and group
subschemes. In particular we shall show that the normalizer of any Hopf sub-

algebra of the Hopf algebra attached to a group scheme is algebraic. Similarly

we shall show results on centralizers of them in § 8. We study commutators of
Hopf subalgebras, formal subgroups and group subschemes in § 9. Furthermore

the existence of commutators of connected but not necessarily reduced group
subschemes is shown. In the last section we shall show how to get most results

on algebraic Lie subalgebras of Lie algebras attached to algebraic groups over a
field of characteristic zero from the results on algebraic Hopf subalgebras given
in the preceding sections, and some new results on algebraic Lie subalgebras will
be shown.

Mostly we follow the terminology and the notations from [5] and [7] on

scheme theory, from [6] on commutative algebras and from [10] on Hopf algebras.

§1. Preliminaries

Let k be an algebraically closed field of an arbitrary characteristic. In the
following we assume that an algebraic scheme X over k means always a scheme

of finite type over /c, and we denote by πx the structure rnorphism of X to Spec(/c).
Moreover morphisms and fiber products of algebraic schemes over k are always
assumed to be /c-morphisms and products over k respectively, and we denote
by \x the identity morphism of X. An algebraic scheme G over k is called a

group scheme over k if the following conditions are satisfied: (i) There exists

a morphism μ of G x G to G such that μ(lGxμ) = μ(μx 1G). (ii) There exist a
morphism y of G to itself and a morphism ε of Spec(/c) to G such that the com-

positions μ(!G

χy)^G and μ(γxlG)AG are equal to επG, where ΔG is the diagonal
morphism of G. (ii) Identifying Spec(fe) x G and G x Spec(/c) with G canonically,
the compositions μ(εxlG) and μ(lGxε) are both equal to 1G. The morphisms

μ, ε and y are called the multiplication, the identity morphism and the inverse
morphism of G respectively, and the image e of ε in G is called the neutral point
ofG.

If X and Y are algebraic schemes over /c, we denote by Mor (X, 7) the set of
morphisms of X to 7. Then if (G, μ, ε, y) is a group scheme over fe, it can be seen

easily that Moτ(X, G) is a group under the composition /*#=μ(/x0)4Λ: for/
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and g in Mor (X, G). In particular if we identify the set G(k) of the closed points

of G with Mor (Spec (/c), G), G(/c) has a group structure such that the neutral

element of G(/c) is e and that μ(x, y) = χ*y for x and y in G(/c). Let (G, μ, ε, 7)

and (G', μ', ε', y') be group schemes over k and let / be a morphism of G to G'.

If/satisfies/μ = μ'(/x/), we say that/is α homomorphism of G to G'. Then

/ satisfies necessarily fy = y'f and /ε = ε' as seen easily. If x is a closed point of

a group scheme (G, μ, ε, y) over /c, we denote by Lx the morphism (xπG)*lG

= μ(xπGx 1G)^G

 and call it the left translation of G by x. Similarly we define
the right translation Rx by !G*(xπG) = μ(lGxxπG)JG.

We say that a closed subscheme H of a group scheme (G, μ, ε, 7) over k is

a group subscheme of G if μ\H>ίH and γ\H decompose through H. It is easy to see

that the neutral point e of G is contained in H and (H, μ\HχH9 ε, y\H) is a group

scheme over k. Moreover the canonical injection iH of H into G is a homomor-

phism. Now denoting by p t the projections of G x G to its ί-th factor for / = 1, 2,

let S be the morphism of G x G to G x G such that Pι$=p2 and p2S=Pι We
say simply S is /Λe exchange of the factors ofGxG. We put

φG = μ(μ x 1G)(1G x 1G x y)(lG x S)(AG x 1G)

and a group subscheme H of G is called normal in G if φG\G x H decomposes through

H. Then we have the following

PROPOSITION 1. Let H be a closed subscheme of a group scheme (G, μ,

ε, γ) over k. Then H is a group (resp. a normal group) subscheme ofG if and only

ifMor(X, H) is a subgroup (resp. a normal subgroup) 0/Mor(X, G) for any

algebraic scheme X over k.

This is well known and hence we omit the proof. If (e, k) is the closed

subscheme of G with the base space e isomorphic to Spec (fe), (e, k) is a normal

group subscheme of G which we call the neutral group subscheme of G. It is

also known that any connected component of a group scheme G over k is irreduci-

ble. In particular the connected component G0 of G containing e is a normal

group subscheme of G.
Let (G, μ, ε, y) be a group scheme over /c, and let 0 and Θ' be the stalks of

G and G x G at e and e x e respectively. Then μ and y give naturally local homo-

morphisms μ* and y* of Θ to 0' and Θ respectively. Then the next theorem

plays an essential role in the following sections.

THEOREM 1. Let (G, μ, ε, y), 0, 0', μ* and y* fee as above. Then there is a

one to one correspondence between the set of connected group subschemes H of

G and that of ideals a of Θ satisfying μ*(a)c(a®0 + 0®a)0' and y*(a) = a. //

H corresponds to a in this way, the stalk of H at e is 0/a.
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This is Lemma 2 in [15]. We call the ideal α corresponding to H the de-

fining ideal of H in Θ. Now let m be the maximal ideal of 0, and let φ and Θ' be

the m-adic and (0®m + m(χ)0)0'-adic completions of Θ and Θ' respectively. If λ

and σ are the natural continuous extensions of μ* and y* from φ to Θ' and Φ

respectively, (0, A, ̂ , σ) is a formal group over k in the sense of §5 in [13],

where η is the canonical homomorphism of Φ to 0/m = fc. We call this formal

group theformalization of the group scheme G. Then the set §(G) of continuous

/c-linear maps of Θ with the m-adic topology to k with the discrete topology may

be identified with the set §(0) of continuous /c-linear maps of Φ with the mφ-

adic topology to k with the discrete topology. As seen in § 5 in [13] §(G) = §(0)

has a structure of a Hopf algebra over k whose algebra structure (§(G), m, ϊ)

comes from the homomorphisms λ and η. The coalgebra structure (§(G), J, ε)

is the dual of the algebra structure of Φ and the antipode c of §(G) is the dual

of σ. If H is a connected group subscheme of G with the defining ideal α in Φ,

the Hopf algebra ξ>(H) attached to H may be identified with the Hopf subalgebra

of §(G) consisting of the elements x in §(G) such that x annihilates α. Then we

see easily in a similar argument to the proof of Prop. 4 in [13] that the set of

connected group subschemes of G corresponds injectively to a subset of Hopf
subalgebras of §(G). We understand by an algebraic Hopf subalgebra of

§(G) a Hopf subalgebra corresponding to a connected group subscheme of G
in this way.2)

Let (A, m) be a noetherian local ring containing the residue field k = A/m,

and let (A'9 m') be the quotient ring of A®kA with respect to the maximal ideal

m®A + A®\n. We denote by a A and A! the m-adic and m'-adic completions of

A and A' respectively, and we assume that there are a local homomorphism λ

of A to A' and an automorphism σ of A such that (A, I, ή, σ) is a formal group

over fc, where I, σ and ή are the continuous extensions of λ, σ and the canonical

map η: A-+k = Ajm to the completions. Then we say that A has a quasi-bigebra

structure (λ, η, σ) over k. In particular if the image λ(A) of λ is contained in
A' ciy4', we say that A has Λ strict quasi-bigebra structure (λ, η, σ) over k.

§2. h-ίnverses by Hopf algebra homomoprhisms

In the following we understand by a Hopf algebra (£, m, i, J, ε, c) a Hopf

algebra 5 over k with an antipode c whose algebra and coalgebra structures are
given by (B, m, f) and (J5, Λ, ε) respectively. A Hopf algebra (£, m, ί, Λ, ε, c)
is called colocal3) if (£, J, ε) is cocommutative and has only one minimal sub-

2) In [14] and [15] we called such a Hopf subalgebra algebraic in wider sense.

3) In [10] a colocal coalgebra is called irreducible.
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coalgebra. Then the unique minimal subcoalgebra of B is i(k) and /(I) is the

unique grouplike element of B which we denote by 1. A colocal Hopf algebra
B is called of finite type if the space £(£) of primitive elements in B is finite di-
mensional. It is well known that the dual space B* of a colocal Hopf algebra B
of finite type over k is a formal group over k whose Hopf algebra §>(B*) is canoni-
cally isomorphic to B as Hopf algebras. Conversely if A is a formal group over
k9 the Hopf algebra ξ>(A) attached to A is a colocal Hopf algebra of finite type over
k and the dual space ξ>(A)* of ξ>(A) is isomorphic to A as formal groups over k.
Thus there is a one to one correspondence between the set of isomorphism classes
of colocal Hopf algebras of finite type over k and that of formal groups over k.

Let (B9 m, i, A, ε, c) be a colocal Hopf algebra of finite type over /c, and let
(A, λ, η9 σ) be its dual formal group over k. Then B has an A-module structure

as follows: if a and x are in A and B respectively such that A(x) = Σ *(i)®*(2)>
(x)

we put α x= Σ <x<2)» a>x(l}9 where we denote by <x9 a> the image of x
(*)

in fe by the linear map a. It is easy to see that this composition gives an A-
module structure of B and that a subspace C ofB is a subcoalgebra ofB if and only

if C is an A-submodule of B. (cf. C.3 in [12], pp. 177-178).

Now we want to give the definition of Λ-inverses by Hopf algebra homomor-
phisms which are generalizations of h-kernels. For this purpose we need the fol-

lowing

PROPOSITION 2. Let (B9 m, ί, A, ε, c) and (B'9 m', Γ, A', ε'9 c') be colocal
Hopf algebras over k. Let f be a Hopf algebra homomorphism of B to B' and
D' a Hopfsubalgebra ofB'. Then there exists a Hopfsubalgebra D ofB satisfy-
ing the following conditions:
(f) /(D) is contained in D'.
(iί) //D! is a subcoalgebra ofB such that f(Dί)c:Dt

9 then Dl is contained in
D.

PROOF. Put D = {xεB\(lB®f)A(x)-x®\ eB®kD'°}9 where D'° is the ker-

nel of the linear map &'\D.. Since/and A are fc-algebra homomorphisms, it is easy
to see that D is a subalgebra of B. To see that D is a subcoalgebra of B9 it is

sufficient to show that D is an A-submodule of B9 where A — B* is the dual algebra

of the coalgebra B. If A' is the dual algebra B'* of B'9 B®kB' is an A®kA'-
module defined by (a®a') (x®x') = a'X®a' x' for a in A9 a' in A'9 x in B and
x' in B'. Since ε' is the unit of the algebra A'9 we see

(a ® ε') (1B ® f)A(x) = (a ® ε') ( Σ xw ® M2)))
(x)

(x)

= (\B®f)Δ(a x)
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for a in A and x in B by the cocommutativity of B and the equality Δ(a-x) =

Σ *(i)®(« *(2)) (cf P. 177 in [12]), where Δ(x)= Σ *(n®*<2) Therefore if
(x) (χ)

x is in D, we have

(lB®/)J(α x) - α x ® 1 = (a®ε') {(lB®f)A(x) - x® 1}

e (α ® ε') (B ® k D'°) c £ ® k D'°.

This means that a - x is contained in D if x is in D, and hence D is a subcoalgebra

of B. Moreover we see

(*) (IB ®/)Λφc) = (IB ®/)(c ® c)J(x) = (c ® c')(lB ®f)A(x)

for any x in £. Since we have c'(D'°)c/)/0, we see c(D)cD by (*) and c(l) = l.
Therefore D is a Hopf subalgebra of B. Now let x be an element in D. Then we
see, by the definition of D, (f®f)A(x)-f(x)®l eB'®D'°, and hence, using the

equality ( f ® f ) A = Δ'f, Λ'(/(x))-/(x)®l eB' xD'°. Then we have l®/(x)
-ε'(/(x))®le/c®D/0. This means that /(x) is contained in D', and therefore

we see /(D)cZ)'. Finally let Dl be a subcoalgebra of B such that /(DJcD':,
and let x be an element of D°l9 where D\ is the intersection 5° n D^. Then we see
Λ(x)-x®l-l®xe£>ϊ®Dί (cf. p. 181-182 in [12]) and hence (
-x®lεDl®D'°c:B®D'0, because we have /(x)e/(D;)cD'° from

Therefore we have DJ cD by the definition of D and also Dl=^k@D\^D identify-

ing i(k) with fc. q.e.d.

Let B, B', D' and / be as above. Then the Hopf subalgebra D obtained in

Prop. 2 is called the h-inverse of D' by f and is denoted by h-f~1(Df). In par-

ticular if D' is the smallest coalgebra Γ(fe) = 5Ό which is also a Hopf subalgebra of
B', h-f~l(BΌ) is called the h-kernel of f ana is denoted by /ι-ker/.

Let (Al9 λί9 ηl9 σj and (A2, λ2, η2, σ2) be formal groups over k with the
maximal ideals n^ and m2 respectively. Then a local homomorphism φ of Al

to >42 is called a formal group homomorphism if the diagram

(**)

is commutative, where ^J is the (m^^ + ̂ ^m^-adic completion of

and φ®φ is the continuous extension of φ®φ: Aί®A1->A2®A2.

LEMMA!. Let (Aίy A l 5 . ηί9 σj and (A2» ^2* ^2» ^2) ^ ΛS above, and let
(BJ9 mj9 ij9 AJ9 εj9 Cj) be the Hopf algebra ξ>(Aj) for ; = 1, 2. Lei 0 be a /oca/
homomorphism ofAl to A2 and φ* the transpose ofφ. Then we have the follow-
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ings :
(0 φ is a formal group homomorphism if and only if <?* = φ*|β2 is a bigebra
homomorphism of B2 to B^.
(ii) If φ is a formal group homomorphism, we have η\—ιl2φ

 and φσ\=σ2φ.

PROOF. Since Ά'j is the dual algebra of the coalgebra BjφBj for 7=1, 2,

we see easily that $*®$* is the restriction of the transpose of φ®φ to B2®B2.
Therefore if φ is a formal group homomorphism, we have mx(^*®^*)= $*w2

from (**) and nij = λJ\Bj(^Bj for 7=1,2. On the other hand since we see η^=η2φ
by the definitions of ηί and η2, we have i1 — φ*i2. This means that φ* is an
algebra homomorphism of B2 to B^. Similarly we see that <?* is a coalgebra
homomorphism, because φ is a local homomorphism of Λί to Λ2. A similar argu-
ment shows the converse. Now assume that φ is a formal group homomorphism.
Then since $* is a bigebra homomorphism as seen in the above, we have $*σf
= σf φ* as seen easily. This means σ2φ = φσί. q.e.d.

PROPOSITION 3. Let A^ and A2 be formal groups over /c, and let φ be a
formal group homomorphism of Al to A2. Let Al/aί and A2/a2 be formal sub-
groups of Aί and A2 respectively. Then we have the following s:
(/) Aί/φ~l(a2) is a formal subgroup of Aλ. If D2 is the Hopf subalgebra of
ξ>(A2) corresponding to A2/a2, A1/φ~l(a2) corresponds to the Hopf subalgebra

(ii) A2/φ(aί)A2 is a formal subgroup of A2. If Dί is the Hopf subalgebra of
corresponding to Al/aί, A2/φ(al)A2 corresponds to the h-inverse h-

PROOF, (i) If a is any element in Al9 we have the following: " aeφ~l(a2)
oφ(a)ea2o<x9 φ(a)> = 0 for any x in D2o<φ*(x), a> = 0 for any x in

D2oa e (0*(/)2))
1» where Vλ means the null space in A l of Fin §04 j) with respect

to the inner product < , > ofξ>(Aι) and AΛ. This means that φ""1(α2) is the null
space (φ*(D2))λ of φ*(D2) in A^ Then φ*(D2) is a Hopf subalgebra of f^Q
and Ai/φ~1(a2) is the formal subgroup of Ά± corresponding to φ*(D2).
(ii) From the commutative diagram (**) we see easily that λ2(φ(a1)A2) is con-
tained in (φ(al)A2®A2 + A2®φ(aί)A2)Ά'2. Moreover since φσί = σ2φ by

Lemma 1, (ii), we see σ2(φ(cι1)A2) = φ(σί(aί))A2c:φ(a1)A2t Therefore we see
easily from the definition that A2/φ(al)A2 is a formal subgroup of A2. Denote
by D' the Hopf subalgebra of ξ>(A2) corresponding to the formal subgroup A2/
φ(aί)A2. If x is any element of £)', we see <φ*(x), α t > = <x, φ(al)> c <χ9

φ(a1)A2 > = {0}. This means φ*(D')cD1. Moreover let D" be any subcoalgebra
of §G42) such that φ^D'^cD^ Let x be any element of D" and put A2(x) =

Σ χ(i)®x(2)> where A2 is the comultiplication of §C42), and x(1) and x(2) are in
(x)
D". Let aΐ and a2 be any elements of A1 and A2 respectively. Then we see
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<x, φ(al)a2> = <Δ2(x\ φ(al) ®a2>= Σ <x (i), Φ
(x)

=0,

because φ*(D") is contained in Dλ. This means D"c:D/ = (φ(al)A2)
±. Therefore

D' is the ft-inverse of Dl by $* from Prop. 2. q.e.d.

COROLLARY. Let Aί9 A29 φ and φ* be as in Prop. 3. Then the image
φ*(ξ>(A2)) in S)(A^) corresponds to the formal subgroup A1/φ~l(0) of A1 and the

h-kernel of $* corresponds to the formal subgroup A2/φ(mί)A2 of A29 where mi

is the maximal ideal of A±.

Let Aί9 A29 o l 5 α2 and φ be as in Prop. 3. Then the formal subgroup
Aίlφ~l(a2) of Aί is called the image of the formal subgroup A2/a2 of A2 by φ,
and the formal subgroup A2/φ(a1)A2 ofA2 is called the inverse imageof the formal
subgroup Aί/aί of Aί by φ. In particular Aί/φ~1(G) and A2/φ(mί)A2 are called

the image and the kernel of the formal group homomorphism φ respectively,
where rrij is the maximal ideal of AΛ.

§3. Algebraic Hopf subalgebras

First we need the following elementary lemma.

LEMMA 2. Let Vbe a vector space over fe, and let U, W and T be subspaces
of V such that W^T. Then we have

(w® κ+ 7® Γ) n (u ® [/) = (I/ n w) ® u + u ® (u n T).

PROOF. Let {x^σeS^ be a basis for T n U over k, and let {xτ |τeS2}

and {xλ\λεS3} be subsets of T and W n £/ such that {xσ} U {xτ} and {xσ} ϋ {XA}
are bases for Γand W (]U over /c respectively. Then {xσ} U {xj U {xλ} is a linearly
independent subset of MKover fc and hence there is a subset {xv|v e 54} of W^ such

that {xσ} U {xτ} U {xλ} U {xv} is a basis for FFover fc. Similarly there exists a sub-
set {xμ\μ E S5} of U such that {xσ} U {xλ} U {xμ} is a basis for U over fc. Then we
see as above that {xσ} u {xλ} U {xμ} U {xτ} U {xv} is a linearly independent subset
of V over k and hence there exists a subset {xπ|πeS6} of Fsuch that {xσ} U {xλ}
U {xμ} U {xj U {xv} U {xπ} is a basis for V over k. If y is an element of W® V
4- K® T, we can express y uniquely as follows:

y = Σ' *ςnXξ®yη> α^e/c and aξη = 0 for almost all (ξ, η),
(ί*1/)

where Σ' runs over all (ξ, η) which are contained in S fxSy for 1<Γ<4 and
1 < j < 6 or for 1 < i < 6 and 1 < j < 2. Similarly if y is in U® U, we can express


