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1. Introduction

Throughout this paper let l<p<oo, l/p+ 1/^ = 1 and m be a positive inte-

ger. For an open set G in the n-dimensional Euclidean space Rn, we denote by

BLm(Lq(G)) the space of all distributions on G whose distributional derivatives

of order m are all in L«(G), that is, a distribution T on G belongs to BLm(Lq(G))

if and only if

|TL.β = |TLfβiG = ( Σ
|α|=m

where α is an n-tuple (αl5α2,. ••,<*„) of non-negative integers with length |α| =
α2 + + αM, D* = dW/dx"sBx*2*-~dx"n» and || ||MG) denotes the L«-norm on G.

We write simply || \\q for || ||L«(Rn). We denote by Am the Laplace operator

iterated m times and write simply A for Δl. The value of a distribution T on G

at φ e C J(G) is denoted by <T,φ>.

Let £ be a compact set in ft". L. I. Hedberg proved the following result

([5; Theorem 1]): Let # be the space C$(Rn\E) or the space of all functions

φeC$(Rn) such that |gradφ|=0 on a neighborhood of £. Then # is dense

in C$(Rn) with respect to the norm | |1>p if and only if any TeBL^(Rn)) such

that <Γ, Δφ> =0 for any φetf is harmonic on £π. We generalize this result

as follows :

THEOREM 1. Let & and &' be subspaces of C$(Rn) such that

Then Ή is dense in ^ with respect to the norm \ |W j p if and only if any Te

BLm(L«(RnJ) such that <T, Amφ> =Q for any φetf satisfies <T9A
m\l/>=Q

for any ψetf'.

As an application of this theorem, we shall give a condition, in terms of

capacity, for a compact set in Rn to be removable for a class of polyharmonic

distributions.

2. Proof of Theorem 1

We first suppose that # is dense in #' with respect to | |m>p. We write
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Λm=Σ|α|=mCα£ 2 α with constants CΛ. Let T be a distribution in BLm(L«(R"))

such that < T, Amφ > =0 for any φ e tf. Let ψ e V. Then there is a sequence

{q>j}c:<g such that |<p/ — ψ|m,p-»0 as j->oo. Hence we have

|α |=m

= lim(- I)"1 Σ cΛ<D«T, D*φj> = lim <Γ, ̂ m^ > = 0.
J->oo |α|=m y->oo

Next we show the converse assertion. Suppose ^ is not dense in <g' with

respect to | \mtp. Then there is a function u0 e &' such that M = inf {|MO~ φ\m,P>

Set

Then there is a sequence {wy } c ̂  such that M = lim7 _00Φ(wy — w0). Since {Φ(w7 )}

is bounded, we may assume that

D^UJ -> w ( α ) weakly in Lp(Rn) as 7 -> oo

for each α with |α| = m. Hence there is a sequence {0i,fc}ϊ=ι,.. .,;,«;&= 1,2,... of non-
negative numbers such that

strongly in Lp(Rn) as /c->oo for any α with |α| = m. Consequently

M g lim Φ(Σ aijkuk - ιι0) = Σ ll" ( α ) ~ ̂ α"oll?
f c - » o o ΐ = l |α |=m

^ lim Φ(M — MO) = M,
J-,00

so that M=Σ|α|=ml |w ( α ) -β α Woll? and \\DΛ

Uj-DΛuQ\\p^\\u^-DΛuQ\\p as j->oo

for any α with |α| = m. It follows that DαWj->w ( α ) strongly in Lp(Rn) as j-+oo.

It is easy to check that for any ̂  e ̂

(1) Σ (|w(α) - D*u0\
p-2(u^ - D*u0)D*(pdx = 0.

|α |=mJ

We set

j = (- l)m Σ D*h(f\ Uj = K*Tp
|α|=m
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where K is the following fundamental solution of Am, i.e.,

c|x|2m~π, in case n — 2m > 0 or

K(x) = n is odd and n — 2m < 0;

c|x|2m~Mog |x|, in case n is even and n — 2m ^ 0

with some constant c. Since D^UJ-^U^ strongly in Lp(Rn) as j->oo, we can show
that /ι< α)->/^α) weakly in Lq(Rn) asj->oo. Furthermore,

lim ||Λj«% = lim \\D*Uj - D*uQ\\p

p'
q

- -

From these facts it follows that /ιjα)-»/ϊ<α) strongly in Lq(Rn) as j->oo for each α
with |α| = m. Note that

= Σ (D K(X - y)hj«\y)dy.
|α|=mJ

On account of [6; Lemmas 3.3 and 4.3], {(/,} is a Cauchy sequence in
BLm(L«(Rn)), and hence, by [4; Theoreme 2.1 in Chap. Ill] there is l/0e
BLm(Lq(Rn)) such that \Uj—U0\mtq-*Q as j-κx). For any φ G CJCR71), we have

Σ cJ\D*U0(x)D"<p(x)dx
Λ\=m J|α|

Σ ^αl™ \D*U i(x)D«φ(x)dx = lim <ΔmUh φ>
\Λ\=m j-*aoJ j-»oo

= lim <T. , φ> = lim Σ (h^(x)D*φ(x)dx
J-» oo j->oo |α |=mJ

= Σ {h^(x}D*φ(x)dx.
|α |=mj

Hence,

M = Σ l|w ( α ) - £>αw 0ll? = Σ
|α |=m |α|=m

Hm(hW(x){D*Uj(x)-D*u0(x)}dx
|α|=m j^ooj J

= lim < 170, Jm(M/ - MO)> .

By (1), < l/o, Λmφ> =0 for all φ e V, while < l/0, J
W(MJ-MO)> ^0 for large .

This proves the converse part and thus our theorem is established.



830 Yoshihiro MIZUTA

COROLLARY. Let & be a subspace of C$(Rn). Then & is dense in C$(Rn)

with respect to \ |m>p if and only if any TeBLm(Lq(RnJ) such that <T9 Δmφ> = 0

for any φetf satisfies AmT=Q on R" (in the distributional sense).

3. Removable singularities

For a compact set EcRn, we define the capacity

= mf{\\φ\\p

m,p ,φεC$(R») and φ(x) ^ 1 for all xeE},

where \\φ\\m,p=(Σ\*\ϊm\\D«φ\\ξ)Vp. Using [1; Theorem A] and [6; Theorem

2.4], we have

LEMMA 1. Let E be a compact set in Rn. Then Γm>p(E)=0 if and only if

C$(Rn\E) is dense in C$(Rn) with respect to \\ ||MtJ>.

By using Poincare's inequality (cf. [4; p. 318]), we obtain

LEMMA 2. Let E be a compact set in Rn. If C$(Rn\E) is dense in C$(Rn)

with respect to \\ - ||m>p, then C$(G\E) is dense in Cg>(G) with respect to \ - \mtpfor

any open set G^>E. Conversely, if C$(G\E) is dense in C$(G) with respect to

\ \m,pfor some bounded open set G=>£, then C$(R"\E) is dense in CJCR") with

respect to \\ - ||m>p.

We shall show

THEOREM 2. Let E be a compact set in R". If Γm>p(£) = 0, then for any

open set G=>£, any distribution TeBLm(Lq(G)) such that AmT=Q on G\E satisfies

AmT=Q on G. Conversely, if for some bounded open set G=>£, any

TeBLm(Lq(GJ) such that AmT=Q on G\E satisfies AmT=Q on G, then Γm>p(E) = 0.

PROOF. We first suppose Γm>p(E)=0. Let G be an open set in Rn which

contains E. By Lemma 1, C$(Rn\E) is dense in CJ(Λ") with respect to || ||m>p.

Hence Lemma 2 implies that CQ(G\E) is dense in Q^G) with respect to | |m>p.

Since AmT=Q on G\E (G resp.) if and only if < T, Amφ> =0 for any φ e Q(G\£)

(CQ(G) resp.), the first assertion in our theorem follows from Theorem 1. The

second assertion follows also from Lemmas 1, 2 and Theorem 1.

A function /on an open set GaRn is said to be (m, #)-quasi continuous if

given ε>0, there is an open set ω such that Γmtq(ω)<ε and/ is continuous as a

function on G\ω. If TeBLm(Lq(G))9 then there is an (m, g)-quasi continuous

function / in Lfoc(G) such that <T, φ > = f f(x)φ(x)dx for any φeCJ(G) (cf.

[6; Lemma 2.3]). We shall say that a function/ on G is ACL (absolutely con-

tinuous on lines) when / is absolutely continuous on each component of the part
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in G of almost every line parallel to each coordinate axis.

LEMMA 3. Let k be a positive integer and G be an open set in Rn. If f
is a (k, q)-quasi continuous function in BLk(Lq(G)\ then f is ACL on G.

PROOF. Take φeCJ(G) and set u = φ f. Then u e BLk(L«(Rn)) and is

(fc, #)-quasi continuous on Rn. It suffices to show that u is ACL on Rn. By

[6; Theorem 3.1], there is a set E<=R" with ΓM(E) = 0 such that if xεRn\E, then

\\x - y\k'n( Σ \D*u(y)\)dy < oo
|α |=fc

and

where αα are constants. With the aid of [3; Lemma at p. 297] and [6; Theorem
2.4], u is seen to be ACL on Rn from the proof of [2; Theorem 1 in § 7] with GΛg

replaced by the right-hand side of (2).

By Lemma 3 and [6; Theorem 3.3], we have

COROLLARY. Let G be an open set in Rn and let f be an (m, q)-quasi con-
tinuous function in BLm(Lq(G)). Then /, together with its derivatives of order

less than m, is ACL on G.

LEMMA 4. // E is a compact set in Rn with Γmtp(E)=Q and if
TeBLm(L«(Rn\EJ), then T can be extended to an element in BLm(L«(JRn)).

PROOF. Let / be an (m, g)-quasi continuous function in BLm(Lq(Rn\E))

such that /= T in the distributional sense. Consider the function

for xεR"\E

for x e E.

Then/and its derivatives of order less than m are ACL on Rn in view of Corollary
to Lemma 3. It is easy to see that/eBLm(L%Rw)). Thus / gives an extension

of Tto the whole space.

LEMMAS. If any TeBLm(L«(Rn\E)) such that AmT=0 on Rn\E can be

extended to a distribution TeBLm(Lq(Rn)) such that Δmf=0 on Rn, then the

n-dimensional (Lebesgue) measure of E is zero.

PPOOF. Suppose the n-dimensional measure of E is positive. We consider

the function U(x)=K*χE(x) = ( K(x-y)dy. Then D*UeBLm(L«(RnJ) for
JE
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|α| = wι according to [6; Lemmas 3.3 and 4.3]. Furthermore

Am(D*U) = D*χE = 0 on R"\E.

By the assumption, D*U can be extended to a distribution TaeBLm(Lq(RnJ) such

that AmTΛ = 0 on Rn, where |α| = m. In view of [6; Lemma 4.1], Tα is a poly-
nomial. Hence U is equal to a polynomial outside £, which is a contradiction.

We now show

THEOREM 3. Let E be a compact set in Rn. If Γmjp(£) = 0, then for any
open set G^E, any Te £Lm(L«(G\E)) such that AmT=Q on G\E can be extended
to a distribution TeBLm(Lq(G)) such that AmT=0 on G. Conversely, if for some
bounded open set G=>E, any TeBLm(L«(G\E)) such that AmT=Q on G\E can be
extended to a distribution Tsuch that AmT=Q on G, then Γm>p(£) = 0.

PROOF. The first assertion follows from Theorem 2 and Lemma 4. To

prove the converse part, suppose that any TeBLm(Lq(G\E)) such that JmT=0
on G\£ can be extended to T such that AmT= 0 on G. Take any T* ε BLm(Lq(GJ)
satisfying AmT* = Q on G\£. Let T** be the restriction of T* to G\E, and T**
be an extension of T** such that AmT** = 0 on G. Since E is of measure zero by
Lemma 5, AWT* = AmT** on G. Thus AmT* = 0 on G. This implies that Γm>p(E)
= 0 by Theorem 2.

REMARK. In case m = l, Theorem 3 is a consequence of [5; Theorem 1].
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