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§1. Introduction

Let Ln(pr) = S2n+1/Zpr be the standard lens space mod pr, where p is a prime

and r is a positive integer. In the earlier paper [6] we have obtained some

necessary conditions that two stunted lens spaces are stably homotopy equivalent

(briefly: S-equivalent), and some sufficient conditions in case r = 2.

The main purpose of this paper is to improve the sufficient conditions using

the results on the structure of J(Ln(pr)) obtained in the previous note [7].

Using [2, Prop. (2.6) and Lemma (2.4)], [3, Th. 1], [4, Th. 1.1] and [8,

Th. 1.4], we prove

THEOREM 1. Let n, m and r be integers such that n>m>0 and pr>2.

Assume that t is a positive integer which is a multiple of

pr+n-m-2^ ^ p = 2 and n — m = 1 mod 2,

pr+n-m-i9 ^ p = 2 and n — m = 0 mod 2,

Then Ln(pr)ILm-\pr) is S-equivalent to Ln+t(pr)/Lm-i+t(pr). The same is true

for Ln(pr)IL$(pr\ L%(pr)ILm-\pr) and Lζ(pr)/L$(pr)9 where Lζ(pr) denotes

the 2n-skeleton of the natural CW-decomposition of Ln(pr).

For a prime p and integers n, m and r such that n > m >0 and r ̂  1, we define

the integers as and bs (Og s < r) by

n - m - / ? s + l = asp
s(p - 1) + bs9 0 ̂  bs < ps(p - 1).

In case p^3, and r = 3 or 4, define ε(r) as follows:

ε(3) = ( 1 if 00 = («2 + 1)P2 + A (^2 + 1)P2 + 1> OΓ

0 otherwise.



690 Teiichi KOBAYASHI and Masahiro SUGAWARA

ε(4) =

3 if α0 = (α3 +

2 if α0 = (α3 + 1, (α3

1 if α0 = (α3 + l)j>3 + 2, (α3 +

1, (α3

+ p2» 0*2 + i)p2,
+ qp (1 ̂  4 < p),

2 + p, (02 + ^P2 H(a3 + l)p3 + p

(a2 + I)/?2 + p, (a± + l)pf

0 otherwise.

Then we have the following results by using [7, Prop. 7.5, 7.7].

THEOREM 2. Let p be an odd prime and r=3 or 4. If t=Q mod pflo+«(' ) j

Ln(pr)ILm-\pr) is S-equivalent to Ln+t(pr)ILm-1+t(pr). The same is true

for L-CpO/IffCpO, I*(jf)ILm-l(jn ™d Lg(pO/^(Pr)

The results of Theorem 2 for small values of ε(r) (r=3, 4) are better than those

of Theorem 1, although Theorem 2 for large values of ε(r) gives the same results

as Theorem 1.

THEOREMS. Let p be an odd prime, and r=3 or 4. LIIG?r)/Lm~1(pr)

(resp. Lξ(pr)/Lm-1(prJ) is S-equivalent to Ln~m(pr)+ (resp. Lξ~m(pr)+) if and only
if w = 0 mod p«o+δ(r) Here X+ denotes the disjoint union of X and a point.

In case p=2 and r=3, we have

THEOREM 4. Assume that f =0 mod 2n~"m+ε, where

2 if n — m = 0 mod 4,

ε = 1 ι/ n — W Ξ l o r 2 mod 4, and n — m > 1,

,0 if n — m = 3 mod 4, or n — m == 1.

TΛen Ln(8)/Lw-1(8) is S-equivalent to Lπ+ί(8)/Lm"1+ί(8). TΛβ same is true for

L»(8)/LSf(8).

Assume that ί = 0 mod 2/l~m~l"ε',

77iέ?n

Lg(8)/LSf(8).

1 if n — m φ 3 mod 4, and n — m > 1,

0 i/ n — m = 3 mod 4, or n — m = 1.

is S-equivalent to Lg+i(8)/Lm~1+i(8). 77ιe same is true for

If n — m^O mod 4, Theorem 4 gives better results than Theorem 1.
Corresponding to Theorem 3, we obtain
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THEOREM 5. L"(8)/LW-1(8) is S-equivalent to Ln~m(8)+ if and only if m

= Omod2"-"I+ε. LgCS)/!/"-1^) is S-equiυalent to Lg~m(8)+ if and only if m

= 0 mod 2n~m+ε' . Here ε and ε' are defined in Theorem 4.

We prove Theorems 1-3 in § 2 evaluating the orders of the J-images of the

canonical bundles according to [4], [7] and [8]. In § 3 and § 4, we determine the

K- and KO-rmgs of Ln(8) and Lg(8) in the line of [5]. In § 5, we determine the

J-groups of Lw(8) and Lg(8) in the line of [6], and give proofs of Theorems 4 and

5. It is proved in [6] that the J-homomorphism KO(L"(4))-> J(L"(4)) is isomor-

phic, but, in this note, it will be shown that the J-homomorphism KO(L"(8))->

J(LΠ(8)) is not isomorphic for n> 1.

§ 2. Proofs of Theorems 1-3

First, we recall some notations. Let X be a finite CW-complex. Denote by

r : K(X) - » KO(X\ c : KO(X) - > K(X) and J : KO(X) - > J(X)

the real restriction, the complexification and the J-homomorphism, respectively.

Let G be a finite group and a be an element of G. Then, by $ G and # a we

mean the order of G and the order of a, respectively.

Let η be the canonical complex line bundle over the standard lens space

Ll(pr) = S2l+ί/Zpr, where p is a prime and r is a positive integer, and let σ — r\ — \

(eK(Ll(pr)J) be the stable class of η. Then the following is due to [4, Th. 1.1].

(2.1) %rσ = pr+w-2Wp-v\ for an odd prime p.

For p = 2 and r^2, we obtain in [8, Th. 1.4] the following result, by com-

pleting the partial result of M. Yasuo [10, Prop. (3.5)].

[2r+l~\ if / = Ξ θ m o d 2 ,
(2.2) ttrσ =

[ 2r+l~2, if / ΞΞ 1 mod 2.

PROOF OF THEOREM 1. Let σ = η— 1 be the stable class of the canonical com-

plex line bundle η over Ln~m(pr\ If t is an integer given in the theorem, it follows

from (2.1) and (2.2) that J(ίrσ) = 0 in J(Ln~m(pry). Therefore we have

J(mrη ® 2t) = J(mrή) + J(2t) + J(ίrσ) = J((m + t)rη) .

According to [2, Prop. (2.6)], this means that (Lll~m(pr))wrι/Θ2ί and
(Lw-mG?r))(m+ί)r>7 have the same 5-type. But by [2, Lemma (2.4)] and [3,

Th. 1] (or [9, Th. 2.1]), we have the following homeomorphisms.
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Thus we see that Ln(pr)/Lm-l(pr) and Ln+t(pr)/Lm~l+t(pr) are S-equivalent.
Other cases are proved similarly. q. e. d.

We determined # Jrσ for r = 2 in [6], and for r = 3 and 4 in [7], If we use

# Jrσ instead of # σ or It rσ, we may obtain sharper results than Theorem 1.

PROOF OF THEOREM 2. In [7, Prop. 7.5, 7.7], the group J(Lg(pr)) 0=3,
4) is determined and the order of Jrσ is given as follows: # Jrσ=pao+ε(r\

Then the proof is carried out in the same way as the above proof. q. e. d.

PROOF OF THEOREM 3. Since Ln(pr)/Lm~1(pr)^(Ln-m(pr))mrrι by [3, Th. 1]

(or [9, Th. 2.1]), and since Ln~m(pr)+ ( = (Ln~m(pr))°) is S-equivalent to
(L"-m(j?r))2m by [2, Lemma (2.4)], we see from [2, Prop. (2.9)] and [7, Prop. 7.5,
7.7] that Ln(pr)ILm~\pr) and Ln~m(prY have the same 5-type if and only if
m = 0 mod p°o+ε(r\ Another case is proved similarly. q. e. d.

REMARK. In Theorem 3, we have immediately the following result:

Ln(pr)/L%(pr) (resp. Lg(pr)/^o(Pr)) is S-equivalent to Ln~m(pr) (resp. L^~m(pr))
if m = 0modpαo+ε(r>. The similar result holds also for Theorem 5. But the

converses cannot be proved by the same way, and we should omit in [6, Th. 1.6]
the statements 'and only if for the spaces Ltt(p2)/L^(p2) and Lg(p2)/Lg (p2).

§3. The structure of £(L"(8))

Let η be the canonical complex line bundle over the lens space Lπ(8) = S2π+1/
Z8, and let σ = η — l ( e K(L"(8))) be the stable class of η. Then the relations

(3.1) (σ+l)8 = l, σw+1 = 0

hold, and the elements σ, σ2,...,σ7 generate K(L"(SJ) (cf. [5, Lemma 3.6]).
Furthermore, we have

(3.2) * K(L"(8)) = 8" = 23" (cf. [5, Lemma 3.8]) .

Let us define

(3.3) σ(l) = η2 - 1 = σ2 + 2σ, σ(2) = vf - 1 = σ(l)2 + 2σ(l) .

Then, from (3.1) and (3.3), we obtain

(3.4)
σ(2Y = (- ly-^-1^), for i ̂  1.
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By routine calculations using (3.1), we have

LEMMA (3.5). The following relations hold.

(3.5.1) 2ί+V-ί = 0 for 0 ̂  i ̂  n - 1, if n ̂  1.

(3.5.2) 2i+2σn-1 ± 2ί+3σ"-ί-1 = 0 for 0 ̂  i ̂  n - 2, if n^2.

(3.5.3) 22<7"-1-2V'-2 = 0 if n^3.

(3.5.4) 2ί+1σ«-<' + 2ί+V'-/-1 = 0 /or 2 ̂  i ̂  n - 2, i/ n ̂  4.

(3.5.5) 2σ» - 3 22σ"-2 - 2V-3 = 0 i/ n ̂  4.

(3.5.6) 2V-3 - 3 2V-4 = 0 ί/ n ̂  5.

(3.5.7) 2ίσ"-ί + 2ί+1σ"-ί-1 = 0 for 4^i^n-2, if n^6.

PROOF. Multiplying each side of the first equality (σ+l)8 = l in (3.1) by
σ71"1, and using the second equality σ"+1=0 in (3.1), we have 23σ" = 0. Assume
inductively 2 ί+2σπ~ ί+1=0 for any i with 0<i^n — l. Multiplying each side of
the first equality in (3.1) by 2ίσ""ί~1, and using the second equality in (3.1) and

the inductive assumption, we get 2ί+3σ/I~ί = 0. This completes the proof of

(3.5.1). The proofs of the other equalities are similar. (Cf. [5, Lemmas 4.1 and

4.3].) q.e.d.

By routine calculations using (3.1), (3.3) and (3.4), we obtain

LEMMA (3.6). Let m = [n/2]^0. Then the following relations hold.

(3.6.1) σ(l)w+2 = 0.

(3.6.2) <7(ΓΓ+1σ = 0 if n = 2m.

(3.6.3) 2i+2σ(l)m+1-i = 0 for 0 ̂  i ̂  m.

(3.6.4) 2ί+1σ(l)m+1-1 ± 2ί+2σ(l)w-1' = 0 for 0 ̂  i ̂  m - 1, if m ̂  1.

(3.6.5) 2σ(l)w - 22σ(l)m~1 =0 if m ̂  2.

(3.6.6) 2ίσ(l)w+1-ί + 2ί+1σ(l)m~ί = 0 for 2 ̂  i ̂  m - 1, if m ̂  3.

(3.6.7) σ(l)w+1 - 2σ(l)w-1 + 22σ(l)m~2 = 0 if m ̂  3.

(3.6.8) 22σ(l)w-2 - 3 - 23σ(l)m~3 = 0 if m ̂  4.

(3.6.9) 2ί-1σ(l)m+1~ί + 2 (̂1)̂  = 0 for 4 ̂  ί ̂  m - 1, if m ̂  5.

PROOF. Since σ(l) = σ2 +2σ by the first equality in (3.3), we have
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= ((72 + 2σ)m+2 = ^f+2

which, in turn, is equal to zero by (3.5.1) and the second equality in (3.1). Thus
we have completed the proof of (3.6.1). In the same way we obtain (3.6.2).

Multiplying each side of the first equality in (3.4) by σ(l)m and using (3.6.1),
we have 22σ(l)m+1 = 0. Assume inductively 2ί+1σ(l)m+2~ί = 0 for any i with 0<ΐ
gm. Multiplying each side of the first equality in (3.4) by 2ίσ(l)m~ί, and using
the inductive assumption, we have 2ί+2σ(l)m+1~ί = 0. This completes the proof
of (3.6.3). The others are proved similarly. (Cf. [5, Lemmas 4.1 and 4.3].)

q.e.d.

We determine the structure of K(L"(8)) using (3.1)-(3.6). The method of
the proof is quite similar to that of [5, Th. A].

PROPOSITION (3.7). // n ̂  3,

K(L"(8)) £ Z2n + 2 © Z2[n,2] + 1 Θ Z 2 t (n+l)/2] © Z2[Π,4]

© Z 2[(n-l)/4] © Z2[(n-2)/4] φ Z2[(n-3)/4] .

Each direct summand is generated by

σ, σ(l) ± 22ί+2σ, σ(l)σ, σ(2) ± (23ί+3σ + 2ί+1σ(l)), σ(2)σ ± 23ί+4σ

± 2ί+1σ(l)σ, σ(2)σ(l) ± 2ί+2σ(l), σ(2)σ(l)σ for n = 4t 4- 3;

σ, σ(l), σ(l)σ ± 22ί+2σ, σ(2) ± 23ί+3σ ± 2ί+1σ(l), σ(2)σ ± 23ί+3σ,

σ(2)σ(l), σ(2)σ(l)σ ± (23ί+3σ - 2ί+1σ(l)σ) ± 2ί+2σ(l)

for n = 4t + 2;

σ, σ(l) ± 22ί+1σ, σ(l)σ, σ(2) ± 2f+1σ(l), σ(2)σ, σ(2)σ(l) ± (23ί+2σ

- 2ί+1σ(l)) ± 2ί+1σ(l)σ, σ(2)σ(l)σ ± 23t+3σ ± 2ί+2σ(l) ± 2ί+1σ(l)σ

for n = 4t + 1

σ, σ(l), σ(l)σ ± 22ί+1σ, σ(2), σ(2)σ ± (23ί+1σ - 2 (̂1)̂ ),

σ(2)σ(l) + 2ί+1σ(l), σ(2)σ(l)σ ± 23ί+2σ for n = 4t.

If n = 2, X(L2(8))^Z24φZ22, where the first summand is generated by σ
and the second is generated by σ(l).

//n = l, K(Ll(S))^Z239 generated by σ.
The multiplicative structure is given by
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PROOF. Let n=4t. Since the elements σ, σ2,..., σ7 generate
the elements σ, σ(l) = σ2 + 2σ, σ(l)σ + 22'+1σ = σ3 + ••-, σ(2) = σ4+ ••-, σ(2)σ ±
(23t+1σ-2'σ(l)σ) = σ5 + , σ(2)σ(l)±2'+1σ(l) = σ6 + , σ(2)σ(l)σ+23ί+2σ = σ7

+ ••• generate K(L"(8)). In order to get the additive structure of K(L"(8)), it is

sufficient to prove the following equalities:

2»+2σ = 0, 22t+tσ(l) = 0, 22'(σ(l)σ ± 22ί+1σ) = 0,

2<σ(2) = 0, 2'-1(σ(2)σ + (23t+1σ - 2'σ(l)σ)) = 0,

= 0, 2'-1(σ(2)σ(l)σ ± 23t+2σ) = 0,

because 2»+2 22ί+1-22' 2' (2'-1)3 (= 23") is equal to the order of X(L"(8)) by
(3.2).

The first equality follows immediately from (3.5.1).
To prove the second and the third, put n=2m. Then we have

2" +1σ(l) = + 2σ(l)m '-1 by (3.6.4)

= ± 2(σ2 + 2σ)m+1 by (3.3)

= + Σ?=+o1(Wt1 )2ί+V+2-ί = 0 by (3.1) and (3.5.1),

2mσ(l)σ = (- \)m~222σ(\.)m-lσ for m ^ 2 by (3.6.6)

= (- I)m2σ(l)mσ by (3.6.5)

+lffB+1"i by (3 3)

+1<7 by ί3-1) and (3 5 2)
= (- l)m(2m - l)2"+1σ = ± 2"+1σ by (3.1) and (3.5.1),

and hence 2m(σ(l)σ+2m+1σ)=0. This holds also for m = 1 by (3.5.1) and (3.5.2).
The fourth equality is proved as follows :

2'σ(2) = (- l)'σ(2)'+1 = (- l)'(σ(l)2 + 2σ(l))'+1 by (3.4)
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by (3.6.4)

= (- l)'22ί+1σ(l) by (3.6.1)

= 0 by the second equality.

Before proving the fifth equality, we notice that the following relations hold

by Lemma (3.6).

(3.7.1) 2σ(l)"'-1σ - 22σ(l)m~2σ = 0 if n = 2m ̂  6.

(3.7.2) 22σ(l)m-2σ + 23σ(l)m~3σ = 0 if n = 2m ̂  8.

Now, we have, by (3.4) and (3.3),

2ί~1σ(2)σ = (- l)'-χ2)'σ = (- iγ~l(σ(ΐ)2 + 2σ(l))'σ

where n = 2m =4ί. On the other hand,

σ(l)mσ = (σ2 + 2σ)mσ by (3.3)

= ί.22

σ« + (^)22

σ»-1 + Σ?=3(7)2IV+1-ί by (3.1)

= ± t-2n+ίσ + (™)2V-2 + Σ?=3(7)(- l)""^^

by (3.5.2)-(3.5.4)

= ± t - 2n+1σ - 2nσ by (3.5.4) and (3.1) ,

t 2σ(\)m-iσ = ί 22σ(l)w-2σ for m ^ 3 by (3.7.1)

= -ί.2χi)M-3σ for m ^ 4 by (3.7.2)

= -t.2m-*σ(l)σ for m ^ 5 by (3.6.9),

2 W(l)m-2σ = - ( 2 )23σ(l)w-3σ for m ^ 4 by (3.7.2)

for m ^ 5 by (3.6.9),

for m ^ 5
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by (3.6.9).

Therefore, we obtain, by the third equality,

2ί'1σ(2)σ = ± (2»σ - 2»'-1σ(l)σ), for t > 2,

and so 2'-1(σ(2)σ±(23ί+1σ-2'σ(l)σ)) = 0. This holds also for ί = 2.

The remaining relations follow easily from the above relation.

The proofs in the other cases are similar, and hence we omit the details here.
The multiplicative structure is given by (3.1). q. e.d.

§4. The structure of KO(L"(8)) and KO(L%(8))

The following is obtained by considering the Atiyah-Hirzebruch spectral

sequence for KO(L"(8)).

LEMMA (4.1). KO(Ln($)) has only 2-component, and

28ί+1 for n = 4t,

28ί+2 for n = 4 f + l ,

28ί+5 for n = 4t + 29

28ί+5 for n = 4ί + 3.

Let p be the non-trivial real line bundle over L"(8), and let κ = p — l (e

KO(Ln(8))) be the stable class of p. Then we have

LEMMA (4.2). For the complexiftcation c and the real restriction r,

(4.2.1) cκ = σ(2),

(4.2.2) crσ = σ2/(σ + 1)

= 2σ + σ(l) + σ(l)cr + σ(2) + σ(2)σ + σ(2)cr(l) + σ(2)σ(l)σ,

(4.2.4) c(κ - rσ) = - 2σ(2) - σ(2)σ(l) - σ(2)σ(l)σ.

PROOF. According to [5, Prop. 3.3], cρ = η4. Therefore

CK = cp - 1 = η4 - 1 = σ(2),

by the second equality of (3.3). Thus we obtain (4.2.1).

To prove (4.2.2), let t be the conjugation. Then cr=l + f and tσ = t(η — 1)
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= ̂ -1-l = (σ+l)-1-l. Hence

crσ = (ΐ + t)σ = σ + (σ+l)-i-l ( = σ2/(σ + 1))

= σ + (σ + I)7 - 1 by the first equality of (3.1)

= σ + (σ + l)(σ(l) + l)(σ(2) + 1) - 1 by (3.3)

= 2σ + <τ(2)σ(l)σ + σ(l)σ + σ(2)σ + <τ(2)<r(l) + σ(2)

Thus we complete the proof of (4.2.2). Other equalities are obtained similarly.
q.e.d.

Using Proposition (3.7), Lemmas (4.1) and (4.2), we determine the structure

of KO(L"(S)) as follows. The method of the proof is similar to that of [5, Th. B].

PROPOSITION (4.3). In case n = 4t + 3 or 4t + 2 (t > 0),

Z24 t +4 0 Z22t+ι Θ Z2t Θ Z2t.

summand is generated by rσ, rσ(l) + 22ί+2rσ, κ+ 2r(rσ(l) +
22ί+2rσ), κ: rσ — 23ί+3rσ, respectively.

In case n = 4ί + ε, ε = 0 or 1 (ί>0),

£ Z24t + 2 Θ Z22t Θ Z2t Θ Z2t - 1 + e .

summand is generated by rσ, rσ(l) + 22ί+1rσ, κ: + 2trσ(l), κ rσ
4- 2f(rσ(l) + 22ί+1rσ), respectively, where the last generator may be replaced

by κ rσ if n—4t-\-l.

In case n = 3, 2 or 1,

XO(L3(8)) s £θ(L2(8)) s Z24 Θ Z2, KO(L\8)) * Z2 φ Z2,

where, in each group, the first summand is generated by rσ and the second is

generated by K.

PROOF. First we consider the case n = 4f + 3 (f>0). Put the generators of

as follows (cf. Prop. (3.7)):

σ = σ l f σ(l) + 22t+2σ = σ2, σ(l)σ = σ3, σ(2) + 23ί+3σ

σ(2)σ - 23ί+4σ - 2ί+1σ(l)σ = σ5, σ(2)σ(l) -2ί+2σ(l) = σ6,

= σ7.

Define ^ = rσ, β = rσ(l) + 22ί+2rσ, C = κ + 2ί(rσ(l) + 22ί+2r(τ), D = κ-rσ-23t+3rσ;
and A' = c4, B' = c5, C; = cC, D' = cD. Then
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A' = crσ = σΊ + σ6 + σ5 + σ4 + (1 + 2t+ί)σ3 + (1 + 2ί+1)σ2

+ 2(1 - 2*+1)*i,

Bf = c(rσ(l) + 22ί+2rσ) = σ6 + σ4 + 2(1 + 2<)σ2 + 23ί+4(2' - I)σl5

C' = c(κ + 2<(rσ(l) + 22ί+2rσ)) = σ4 + 22ί+1σ2 + 24t+*σl9

D' = c(ιc - rσ - 23ί+3rσ) = - σΊ - σ6 -2σ4.

It can be seen without difficulty that the elements A', B', C' and D' generate the
subgroup

Z24t+ 4 Θ Z22t+ι Θ Z2t Θ Z2t

of X(LW(8)). Since the order of this subgroup is 24ί+4.22ί+1 -(202 = 28ί+5,

the order of the subgroup (of JCO(L"(8))) generated by A, B, C and D is larger than

or equal to 28ί+5. On the other hand, ttXO(L4ί+3(8))^28ί+5 by Lemma (4.1).

It follows that A, B, C and D generate KO(L4ί+3(8)) and that »XO(L4ί+3(8))
= 28ί+5.

In case n = 4ί + 2 (f>0), the inclusion map j: Ln(/c)->LM+1(fc) induces the iso-

morphism jl: KO(Ln+ί(k))-*KO(Ln(k)) for any integer fc>l. Therefore we
obtain the result for the case n = 4ί + 2 from the result for the case n = 4t+3. It

follows that jfCO(L"(8)) is additively generated by rσ, rσ(l), K and K; rσ for the
cases «=4ί f 3 and n = 4t+2.

As in the proofs of Lemmas 5.9-5.12 in [5], we see that the inclusion map

L4ί+1(8)-»L4ί+2(8) induces the epimorphism 2θ(L4ί+2(8))-^KO(L4ί+1(8)) and

that * £θ(L4ί+1(8))=28ί+2. Thus the result for the case n = 4t +1 (t> 0) follows

from the relations:

24<+2rσ = 0, 22ί(rσ(l) + 22ί+1rσ) = 0,

2\κ + 2frσ(l)) = 0, 2*κ - rσ = 0,

which are proved as follows. In XO(L4f+2(8)), we have

24ί+4rσ = 0, (1)

22'+1(rσ(l) + 22ί+2rσ) = 0, (2)

2\κ + 2ί(rσ(l) + 22ί+2rσ)) = 0, (3)

V(κ rσ - 23ί+3rσ) = 0. (4)

On the other hand, by (4.2.2) and (4.2.3),
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c(rσ(l) + 22ί+1rσ) = O(2)σ(l) + 23ί+2σ - 2ί+1σ(l) + 2ί+1σ(l)σ)

+ (σ(2) + 2ί+1σ(l)) - 2ί+1σ(l)σ + 2(<τ(l) + 22ί+1σ) - 23ί+2(2<

Thus we see from Proposition (3.7) that, in K(L4ί+1(8)), 22ίc(rσ(l) + 22ί+1rσ)

= 0. Since re = 2, we have

22ί+1(rσ(l) + 22ί+1rσ) = 0. (5)

It follows from (2) and (5) that 24ί+2rσ = 0. This equality combined with (3)

and (4) gives 2f(fc + 2frσ(l)) = 0 and 2'κ; rσ = 0, respectively. Now, by (4.2.2)-

(4.2.4),

φc rσ + 2<(rσ(l) 4- 22ί+1rσ)

= - (σ(2)σ(l)σ - 23ί+3σ - 2ί+2σ(l) - 2ί+V(l)σ) - (σ(2)σ(l) + 23ί+2σ

- 2ί+1σ(l) + 2ί+1σ(l)σ) - 2(σ(2)

Hence we see from Proposition (3.7) that, in K(L4ί+1(8)), 2ί~1c(κ; rσ + 2'(rσ(l)
+ 22ί+1rσ) + 24ί+1rσ) = 0. Since rc = 2,

2'(fc rσ + 2<(rσ(l) + 22ί+1rσ) + 24ί+1rσ) = 0.

Therefore, we obtain 22ί(rσ(l) + 22ί+1rσ) = 0.
Finally, we consider the case n = 4t (t>G). As in the previous case, we

notice that the inclusion / : L4ί(8)-> L4ί+1(8) induces the epimorphism V:

KO(L4ί+1(8))->^0(L4ί(8)), that * KO(L4ί(8)) = 28ί+1, and that Keri' is equal

to the kernel of the complexification c: KO(L4ί+1(8))->X(L4ί+1(8)), which is
isomorphic to Z2 generated by 2ί~1(κ rσ f 2'(rσ(l) + 22ί+1rσ)). For the proofs

of these facts, refer to [5, Lemmas 5.14-5.17]. Combining the result for the case
n = 4t+ 1 with the above facts, we obtain the result for the case n = 4ί.

The proofs in the remaining cases are easy. q. e. d.

COROLLARY (4.4). In case n = 4f + 3, the complexification c: KO(Ln($))
->X(L"(8)) is monomorphίc.

Next, we determine the structure of KO(Lg(8)), where Lg(8) is the 2n-skeleton
of the standard C ̂ -decomposition of L"(8).

PROPOSITION (4.5). In case nφQ mod 4,
In case n = 4t,

Z24t + ι ® Z22t Θ Z2t

Each direct summand is generated by rσ, rcr(l), K, κ rσ — 23ί+1rcτ — 2ίrσ(l), res-
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pectiυely.

PROOF. The first part follows easily from the Puppe exact sequence.
To prove the second part, we put the generators of X(Lg(8)) (^

as follows (cf. Prop. (3.7)):

σ = σ l f σ(l) = σ2, σ(l)σ + 22<+ίσ = σ3, <j(2) = <74,

σ(2)σ - (23ί+1σ - 2<<τ(l>7) = <75, σ(2)<τ(l) + 2ί+1σ(l) = σ6,

23ί+2σ = σ7.

Define A = rσ, B = rσ(l\ C = κ, D = κ.rσ-23ί+1r<7-2frσ(l); and A' = cA, B' =
cB, C = cC,D' = cD. Then

A9 = crσ = <τ7 + σ6 + σ5 + σ4 + (1 - 2')σ3 + (1 - 2ί+1)σ2 + (2 -

β' = crσ(l) = σ6 + σ4 + (2 - 2ί+1)σ2,

C = CK = σ4,

D' = c(ιc rσ - 23t+ίrσ - 2frσ(l)) = - σ7 - σ6 - 2σ4.

It can be easily shown that the elements A', B'9 C' and D' generate the subgroup

Z24 t +l 0 Z22t 0 Z2t Θ Z2t-l

of K(Lg<(8)). Now, we see SKO(L^(8))^28ί in the way similar to Lemma

(4.1). Therefore, A, B, C and D generate XO(Lg(8)), as desired. q.e.d.

The multiplicative structure of KO(L"(8)) and XO(Lg(8)) is given by the
next proposition.

PROPOSITION (4.6). The following relations hold.

(rσ)
2 = - 4rσ + rσ(l), (rσ(l))2 = - 4rσ(l) + 2κ,

κ2 = - 2κ = /c rσ(l), rσ rσ(l) = κ rσ — 2rσ(l) + 2ιc.

PROOF. It is sufficient to prove the relations in the case w=4ί + 3. Accord-
ing to Corollary (4.4), the complexification c is monomorphic in this case. Hence,
the first equality is seen from the equalities.

c(rσ)2 = σ4/(l + σ)2 by (4.2.2)

= {- 4σ2(l + σ) + (2σ + σ2)2}/(l + σ)2

= - 4σ2/(l + σ) + σ(l)2/(l + σ(l)) by (3.3)



702 Teiichi KOBAYASHI and Masahiro SUGAWARA

= c(— 4rσ -f

Other equalities are obtained similarly.

by(4.2.2)-(4.2.3).

q.e.d.

§5. The structure of /(L"(8)) and /(Ig(8))

It is known that the J-homomorphism J: KO(X)-*J(X) is isomorphic if
X is the real projective space RPn [1, (6.3)] or the mod 4 lens space L"(4) [6,
Th. 4.5]. In this section we see that J is not isomorphic for the mod 8 lens space

In order to study the groups JXLΠ(8)) and J(Lg(8)) we determine the Adams
operations.

LEMMA (5.1). The Adams operation ψJ on XO(L"(8)) (or KO(Lg(8)))
is given by

K

0

ψJ(rσ) = I

rσ

rσ(l)

rσ + κ rσ + 2κ

2k

( 0

rσ(l)

= 2κ

0

if j is odd,

if j is even.

if j = ± 1 mod 8,

if j= ±2 mod 8,

if j = ± 3 mod 8,

if j ΞΞ 4 mod 8,

if 7 = 0 mod 8.

if j is odd,

if j = 2 mod 4,

if j = 0 mod 4.

PROOF. As in the proof of Proposition (4.6), it is sufficient to prove the
equalities in the case n=4ί + 3. Let us prove Ψj(rσ) = rσ+κ rσ+2κ if 7 =
±3 mod 8. In fact,

cΨ*(rσ) = ψJ'(crσ) = ψJ(σ2/(σ + 1)) by (4.2.2)

= ψJσ2lψJ(σ + 1) = ((σ + I)' - l)2/(σ + iχ

= (σ + I)3 - 2 + (σ +• I)5 by the first equality of (3.1)

= σ(2)σ + σ(2) + σ(l)σ + σ(l) + 2σ by (3.3)
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= crσ + c(κ rσ) + 2cκ by (4.2.1), (4.2.2), (4.2.4)

= c(rσ + κ rσ + 2κ) .

Other equalities are proved similarly. q. e. d.

Now, we prove

LEMMA (5.2). The kernel of the J-homomorphism

J : XO(L«(8)) - > J"(L(8)) (or J : XO(Lj|(8)) - > J(Lg(8)))

is the submodule of KO(Ln(8J) generated by κ rσ + 2κ, whose order is 2[(n+2)/4ί.

PROOF. Notice that

Ker J = Σkr\ek<(Ψk - l)XO(L-(8)) (cf. [7, (1.1)]) .

If fc = 2/(/^l), keKO(Ln(S)) = le2eKO(Ln(S))=0 for a sufficiently large
integer e by Proposition (4.3).

If fe = ± 1 mod 8, Ψk - 1 = 0 by Lemma (5.1).

If /c=±3mod8, fee(ϊFfc-l)XO(Lw(8)) = (ϊP3-l)£θ(Ln(8)) for a sufficiently
large integer e by Proposition (4.3) and the proof of Lemma (5.1). On the other
hand, we have

= 0, (<F3 - l)(rσ) = κ rσ + 2κ,

(Ψ3 - 1) (rσ - rσ(l)) = (Ψ3 - 1) (ic rσ - 2rσ(l) + 2κ) = (Ψ3 - 1) (ιe - rσ)

= τc(rσ + TO rσ + 2κ) - K - rσ = κ2 rσ + 2κ2 = - 2(κ: rσ + 2κ)

by Lemma (5.1) and Proposition (4.6). Thus, Ker J is generated by κ: rσ + 2κ:.
The order of K rσ + 2κ is easily seen by Proposition (4.3). q. e. d.

Combining Proposition (4.3) with Lemma (5.2), we obtain

PROPOSITION (5.3). Ifn=4t+3orn=4t+2,

J(L"(8)) £ J(Lg(8)) s Z24t+3 Θ Z22t+ι Θ Z2t.

summand is generated by Jrσ, Jrσ(Γ) + 22t+2Jrσ9 Jκ + 2*(Jrσ(ϊ)
+ 22ί+2Jrσ), respectively.

Ifn=4t+l(t>0)9

J(L«(8)) s J(LJ(8)) £ Z2 4 t +2ΘZ22t® Z2t.

direcί summand is generated by Jrσ, Jrσ(l) + 22ί+1Jrσ, Jκ: + 2fJrσ(l),
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respectively.
Ifn = 4t,

J(LΠ(8)) ^ Z24t + 2 ® Z22t-l ® Z2t ,

where each direct summand is generated by Jrσ, Jrσ(l) — 22t+1Jrσ, Jκ +

2ίJrσ(l), respectively, and

J(Lg(8)) £ Z24t+l ® Z22t-l

eαcft di'recf summand is generated by Jrσ, Jrσ(l) + 22t+iJrσ, Jκ9 respec-

tively.

s J(LJ(8)) £ Z2 Θ Z2 ( s

w/iere ί/i^ ^/ϊrsί summand is generated by Jrσ and the second is generated by

JK.

PROOF. Consider the case n = 4ί + 3. Since J(κ rσ)=—2Jκ and J is

epimorphic, the elements Jrσ, Jrσ(l) + 22f+2J>σ and J/c + 2r(7rσ(l) + 22t+2Jrσ)

generate J(L"(8)). By Proposition (4.3), the equality

K - rσ + 2κ = (K rσ - 23ί+3rσ) + 2(/c + 2ί(rσ(l) + 22ί+2rσ))

- 2ί+1(rσ(l) + 22ί+2rσ) + 23ί+3r<τ

implies that 24ί+3Jrσ = 0. On the other hand, we have evidently

22t+1(Jrσ(l) + 22t+2Jrσ) = 0, 2<(Jκ + 2\Jrσ(ϊ) + 22ί+2Jrσ)) = 0,

by Proposition (4.3). But, 24ί+3 22ί+1.2ί = 27ί+4 = ίtXO(Lw(8))/ίtKerJ = ίf J(Ln(8)).

Hence we get the desired result.
The other cases are similar. q. e. d.

As a corollary we obtain

COROLLARY (5.4). The order of the element Jrσ is equal to

2n+2 in J(L"(8)) for n = 0 mod 4,

2n+1 in J(LW(8)) for n = 1, 2 mod 4 and n > 1,

or in J(Lg(8)) for n φ 3 mod 4 and n > 1,

2" in J(L"(8)) or in J(Lg(8)) /or n = 3 mod 4 or n = 1.

Now we are in a position to prove Theorems 4 and 5.
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PROOF OF THEOREM 4. According to Corollary (5.4), the element Jrσ
(e J(LΠ~W(8))) is of order 2n~m+ε and the element Jrσ (e J(L3~m(8))) is of order
2«-w+ε' Then the theorem is proved in the same way as Theorem 1.

q.e.d.

PROOF OF THEOREM 5. Using Corollary (5.4) we prove the theorem in the

same way as Theorem 3. q. e. d.
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