The Minimal Condition for Ascendant Subalgebras of Lie Algebras

Shigeaki TôGô

(Received April 20, 1977)

1.

Let L be a Lie algebra over an arbitrary field Φ which is not necessarily of finite dimension. We write $H \leq L$ when H is a subalgebra of L and $H \triangleleft L$ when H is an ideal of L. For an integer $n \geq 0, H \leq L$ is an n-step subideal of L if there is a series of not necessarily distinct subalgebras

$$
H=H_{0} \triangleleft H_{1} \triangleleft H_{2} \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_{n}=L .
$$

In this case we write $H \triangleleft^{n} L . \quad H$ is a subideal of L if $H \triangleleft^{n} L$ for some n. We then write H si L.

There is a transfinite generalization: For an ordinal $\sigma, H \leq L$ is a σ-step ascendant subalgebra of L if there is a series $\left\{H_{\alpha}\right\}_{\alpha \leq \sigma}$ of not necessarily distinct subalgebras of L such that
(i) $H_{0}=H, H_{\sigma}=L$,
(ii) $H_{\alpha} \triangleleft H_{\alpha+1}$ for any $\alpha<\sigma$,
(iii) $H_{\lambda}=\bigcup_{\alpha<\lambda}^{\cup} H_{\alpha} \quad$ for any limit ordinal $\lambda \leq \sigma$.

In this case we write $H \triangleleft^{\sigma} L . \quad H$ is an ascendant subalgebra of L if $H \triangleleft^{\sigma} L$ for some ordinal σ. We then write H asc L. When σ is finite, the σ-step ascendant subalgebras are of course the σ-step subideals.

We denote by Min-si (resp. Min- \triangleleft^{σ}) the class of Lie algebras over Φ satisfying the minimal condition for subideals (resp. σ-step ascendant subalgebras).

The classes Min-si and Min- $\nabla^{n}(n \in \mathbf{N})$ are related by the series of inclusions

$$
\begin{equation*}
\operatorname{Min}-\triangleleft \supseteq \operatorname{Min}-\triangleleft^{2} \supseteq \operatorname{Min}-\triangleleft^{3} \supseteq \cdots \supseteq \text { Min-si. } \tag{1}
\end{equation*}
$$

In [2] Stewart showed that

$$
\begin{equation*}
\operatorname{Min}-\triangleleft^{3}=\operatorname{Min}-\text { si. } \tag{2}
\end{equation*}
$$

The purpose of this paper is to investigate the minimal condition for ascendant subalgebras and to show a transfinite analogue of the result (2).

We introduce the class Min-(asc of step $<\sigma$). By this we mean the class of Lie algebras over Φ satisfying the minimal condition for ascendant subalgebras
of step $<\sigma$. Then, for the first infinite ordinal ω, Min-(asc of step $<\omega)$ is nothing but Min-si. Corresponding to (1), we have the following inclusions:

$$
\begin{aligned}
& \operatorname{Min}-\triangleleft^{\omega} \supseteq \operatorname{Min}-\triangleleft^{\omega+1} \supseteq \cdots \supseteq \operatorname{Min}-\triangleleft^{\omega n_{1}+n_{2}} \supseteq \cdots \supseteq \operatorname{Min} \text {-(asc of step }<\omega^{2} \text {) } \\
& \operatorname{Min}-\square^{\omega^{2}} \supseteq \operatorname{Min}-\square^{\omega^{2}+1} \supseteq \cdots \supseteq \operatorname{Min}-\triangleleft^{\omega^{2} n_{1}+\omega n_{2}+n_{3}} \supseteq \cdots \supseteq \operatorname{Min}-\left(\text { asc of step }<\omega^{3}\right) \\
& \operatorname{Min}-\triangleleft^{\omega^{\alpha}} \supseteq \operatorname{Min}-\triangleleft^{\omega^{\alpha+1}} \supseteq \cdots \quad \cdots \quad \cdots \supseteq \operatorname{Min}-\left(\text { asc of step }<\omega^{\alpha+1}\right) \\
& \vdots \quad \vdots \quad \ddots
\end{aligned}
$$

We shall show that for any ordinal $\alpha \geq 1$

$$
\operatorname{Min}-\triangleleft^{\omega^{\alpha+1}}=\operatorname{Min}-\left(\text { asc of step }<\omega^{\alpha+1}\right) .
$$

2.

For a Lie algebra $L, L^{\omega}=\bigcap_{n=1}^{\infty} L^{n}$ and $L^{(\omega)}=\bigcap_{n=1}^{\infty} L^{(n)}$. The following lemma is well known (see [3]).

Lemma 1. If L is a Lie algebra and H si L, then $H^{\omega} \triangleleft L$ and $H^{(\omega)} \triangleleft L$.
L is perfect if $L=L^{2}$. By using Lemma 1 and transfinite induction, we can easily show the following lemma ($[1, \mathrm{p} .11]$).

Lemma 2. Every perfect ascendant subalgebra of a Lie algebra L is an ideal of L.

Furthermore we need the following two lemmas.
Lemma 3. Min-(asc of step $<\sigma$) is e-closed.
Proof. Let L be a Lie algebra and assume that $N \triangleleft L$ and $N, L / N \in$ Min(asc of step $<\sigma$). If

$$
H_{1} \geq H_{2} \geq \cdots, \quad H_{i} \triangleleft^{\sigma_{i}} L \quad \text { with } \quad \sigma_{i}<\sigma \quad(i=1,2, \ldots),
$$

then

$$
\begin{aligned}
& H_{1} \cap N \geq H_{2} \cap N \geq \cdots, \quad H_{i} \cap N \triangleleft^{\sigma_{i}} N, \\
& \left(H_{1}+N\right) / N \geq\left(H_{2}+N\right) / N \geq \cdots, \quad\left(H_{i}+N\right) / N \triangleleft^{\sigma_{i}} L / N .
\end{aligned}
$$

There exists $n \in \mathbf{N}$ such that

$$
H_{n} \cap N=H_{n+1} \cap N=\cdots,
$$

$$
\left(H_{n}+N\right) / N=\left(H_{n+1}+N\right) / N=\cdots
$$

Therefore for any $m \geq n$

$$
H_{m}=H_{m+1}+\left(H_{m} \cap N\right)=H_{m+1}+\left(H_{m+1} \cap N\right)=H_{m+1}
$$

Thus $L \in$ Min-(asc of step $<\sigma$).
Lemma 4. Let α and β be any ordinals such that $\omega^{\alpha}<\beta<\omega^{\alpha+1}$. Then there exist ordinals ρ and σ such that

$$
\beta=\rho+\sigma \quad \text { and } \quad 1 \leq \sigma \leq \omega^{\alpha}
$$

Proof. β can be written in the form

$$
\beta=\omega^{\alpha} \gamma+\delta \quad \text { with } \quad 1 \leq \gamma<\omega \quad \text { and } \quad \delta<\omega^{\alpha} .
$$

If $\delta=0, \gamma \geq 2$ and we can take

$$
\rho=\omega^{\alpha}(\gamma-1) \quad \text { and } \quad \sigma=\omega^{\alpha}
$$

If $\delta>0$, it suffices to take

$$
\rho=\omega^{\alpha} \gamma \quad \text { and } \quad \sigma=\delta
$$

3.

We shall now prove the following
Theorem. Let α and β be any ordinals such that $\alpha \geq 1$ and $\omega^{\alpha}<\beta<\omega^{\alpha+1}$. Then

$$
\operatorname{Min}-\square^{\omega^{\alpha+1}}=\operatorname{Min}-\triangleleft^{\beta}=\operatorname{Min}-\left(\text { asc of step }<\omega^{\alpha+1}\right) .
$$

Proof. Put $\gamma=\omega^{\alpha}$ and $\delta=\omega^{\alpha+1}$. Then

$$
\text { Min- }-\nabla^{\gamma+1} \supseteq \operatorname{Min}-\nabla^{\beta} \supseteq \operatorname{Min}-(\text { asc of step }<\delta) .
$$

Assume that there exists a Lie algebra L such that

$$
L \in \operatorname{Min}-\Delta^{\gamma+1} \quad \text { and } \quad L \notin \operatorname{Min}-(\text { asc of step }<\delta) .
$$

(a) There exists M minimal with respect to

$$
M \triangleleft L \quad \text { and } \quad M \notin \text { Min-(asc of step }<\delta)
$$

This follows immediately from the fact that $L \in \operatorname{Min}-\triangle$.
(b) Any proper ideal N of M belongs to Min-(asc of step< δ). In fact, we have

$$
N^{i} \operatorname{ch} N \triangleleft M \triangleleft L .
$$

Hence $N^{i} \triangleleft^{2} L$. Since $L \in$ Min- \triangleleft^{2},

$$
N^{\omega}=N^{c} \quad \text { for some } c \in \mathbf{N} .
$$

By Lemma $1 N^{c} \triangleleft L$ and therefore by minimality of M

$$
N^{c} \in \text { Min-(asc of step }<\delta \text {). }
$$

Since $L \in \operatorname{Min}-\triangleleft^{3}, N^{i} \in \operatorname{Min}-\triangleleft$ and therefore

$$
N^{i} / N^{i+1} \in \mathfrak{A} \cap \operatorname{Min}-\triangleleft \subseteq \mathscr{F}
$$

where \mathfrak{A} (resp. \mathfrak{F}) is the class of all abelian (resp. finite-dimensional) Lie algebras. It follows that

$$
N / N^{c} \in \mathfrak{F} .
$$

We now use Lemma 3 to conclude that $N \in \operatorname{Min}$-(asc of step $<\delta$).
(c) $M \in \operatorname{Min}-\Delta^{\gamma}$. This follows from the fact that $M \triangleleft L \in$ Min- $\Delta^{\gamma+1}$.

Now, since $M \notin \operatorname{Min}$-(asc of step $<\delta$), there exists an infinite series $\left\{I_{n}\right\}$ of distinct subalgebras of M such that

$$
I_{1} \supset I_{2} \supset \cdots, \quad I_{i} \triangleleft^{\beta_{i}} M \quad \text { with } \quad \beta_{i}<\delta \quad(i=1,2, \ldots) .
$$

We may assume that $I_{i}<^{\varepsilon} M$ is false for any $\varepsilon<\beta_{i}$. By (c) $\beta_{i} \geq \gamma+1$ for almost all i. Therefore we may furthermore assume that $\beta_{i} \geq \gamma+1$ for all i.

Case 1. β_{i} is not a limit ordinal for some i. In this case, $\beta_{i}=\varepsilon+1$ and

$$
I_{i} \triangleleft^{\varepsilon} N \triangleleft M .
$$

By (b), $N \in \operatorname{Min}$-(asc of step $<\delta$). But $I_{i} \triangle^{\varepsilon} N$ and $I_{i+k} \nabla^{\beta_{i+k}} N(k=1,2, \ldots$) with $\varepsilon, \beta_{i+k}<\delta$, which is a contradiction.

Case 2. β_{i} is a limit ordinal for some i. In this case, by Lemma 4 we have

$$
\beta_{i}=\rho+\sigma \quad \text { with } \quad 1 \leq \sigma \leq \gamma .
$$

Here σ is a limit ordinal. We can obviously write

$$
I_{i} \triangleleft^{\rho} N \triangleleft^{\sigma} M .
$$

But $N^{(i)} \triangleleft^{\sigma} M$ and therefore $N^{(i)} \triangleleft^{\sigma+1} L$. Since $\sigma+1 \leq \gamma+1, L \in \operatorname{Min}-\triangleleft^{\gamma+1} \subseteq$ Min- $\triangleleft^{\sigma+1}$. Consequently

$$
N^{(\omega)}=N^{(c)} \quad \text { for some } c \in \mathbf{N} .
$$

Hence $N^{(c)}$ is a perfect ascendant subalgebra of L. It follows from Lemma 2
that $N^{(c)} \triangleleft L . \quad$ By (b), we obtain

$$
N^{(c)} \in \operatorname{Min}-(\text { asc of step }<\delta) .
$$

On the other hand, observing the facts that $N \triangleleft^{\sigma+1} L \in \operatorname{Min}-\triangleleft^{\sigma+1}$ and that σ is a limit ordinal, we obtain $N^{(j)} \in \operatorname{Min}-\triangleleft(j=1,2, \ldots)$. Hence

$$
N^{(j)} / N^{(j+1)} \in \mathfrak{A} \cap \operatorname{Min}-\triangleleft \subseteq \mathscr{F} .
$$

Consequently

$$
N / N^{(c)} \in \mathfrak{F}
$$

Therefore we can use Lemma 3 to see that

$$
N \in \text { Min-(asc of step }<\delta)
$$

However, $I_{i} \square^{\rho} N$ and $I_{i+k} \triangleleft^{\beta_{i+k}} N(k=1,2, \ldots)$ with $\rho, \beta_{i+k}<\delta$, which is a contradiction. This completes the proof.

Remark. Stewart's result (2) stated in Section 1 is shown in the above proof of Theorem where we replace ω^{α} and $\omega^{\alpha+1}$ by 2 and ω respectively.

References

[1] R.K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
[2] I. Stewart, The minimal condition for subideals of Lie algebras, Math. Z. 111 (1969), 301-310.
[3] S. Tôgô, Radicals of infinite-dimensional Lie algebras, Hiroshima Math. J. 2 (1972), 179-203.

Department of Mathematics, Faculty of Science, Hiroshima University

