On a p-Capacity of a Condenser and KD^{p} -Null Sets

Hiromichi Үамамото

(Received September 19, 1977)

Introduction

Ahlfors and Beurling [1] introduced the notion of null sets of class N_D in the complex plane and characterized such null sets by means of the extremal length. Hedberg [6] considered a generalization of this notion, namely, removable sets for the class FD^p (1 in an N-dimensional euclidean space $<math>R^N$, and characterized such removable sets by means of condenser capacities. We can consider a class KD^p of p-precise functions on R^N $(N \ge 3)$ and define KD^{p} null sets. In the present paper, we shall show several relations between KD^{p} null sets and p-capacities of a condenser.

A real valued function u defined in a domain D of \mathbb{R}^N is called a p-precise function, if it is absolutely continuous along p-a.e. curve in D and |grad u| belongs to $L^p(D)$. A p-precise function u in D has a finite curvilinear limit $u(\gamma)$ along p-a.e. curve γ in D (see [9, Theorem 5.4]). Let α be a compact subset of ∂D and $\Gamma_D(\alpha)$ be the family of all locally rectifiable curves in D each of which starts from some point of D and tends to α . Let α_0, α_1 be non-empty compact subsets of ∂D such that $\alpha_0 \cap \alpha_1 = \emptyset$. We follow [9] in defining the p-capacity of condenser ($\alpha_0, \alpha_1; D$):

$$C_p(\alpha_0, \alpha_1; D) = \inf_u \int_D |\operatorname{grad} u|^p dx,$$

where the infimum is taken over all *p*-precise functions *u* in *D* such that $u(\gamma)=0$ (resp. 1) for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0)$ (resp. $\Gamma_D(\alpha_1)$). Denote by \hat{D} the Kerékjártó-Stoïlow compactification of *D*. For a condenser $(\alpha_0, \alpha_1; D)$ such that α_0 and α_1 are two mutually disjoint closed subsets of $\hat{D}-D$ and a partition $\{\beta_i\}$ of $\hat{D}-D$ $-\alpha_0-\alpha_1$, we shall consider a new kind of *p*-capacity $C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\})$ as follows. Let the boundary components of *D* be divided into α_0, α_1 and $\{\beta_i\}$. We set

$$C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\}) = \inf_u \int_D |\operatorname{grad} u|^p dx,$$

where the infimum is taken over all *p*-precise functions u in D such that $u(\gamma)=0$ (resp. 1) for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0)$ (resp. $\Gamma_D(\alpha_1)$) and $u(\gamma)=a_i$ for *p*-a.e. $\gamma \in \Gamma_D(\beta_i)$, where each a_i is a constant depending on u. On the other hand, we take an exhaustion $\{D_n\}$ and set $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\}) = \lim_{n \to \infty} C_p^*(\alpha_{0n}, \alpha_{1n}; D_n, \{\beta_i^{(n)}\})$, where $\alpha_{in} = \partial D_n \cap \partial A_{in}$ (i=0, 1), A_{in} being the component of $\overline{D} - D_n$ which contains α_i , and $\{\beta_i^{(n)}\}$ is some partition of $\partial D_n - \alpha_{0n} - \alpha_{1n}$ depending on $\{\beta_i\}$.

In §2, we shall give a characterization of the extremal functions for $C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\})$ and $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$. In §3, for some condenser $(\alpha_0, \alpha_1; D)$ and some partition $\{\beta_i\}$ we shall relate $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ to the *p*-module of the family of curves each of which connects α_0 and α_1 in \hat{D} . This is a generalization of Gehring's result in [4].

A compact set E in \mathbb{R}^N will be called a KD^p -null set with respect to an open set G containing E, if any function in $KD^p(G-E; E)$ can be extended to a function in $KD^p(G)$, where $KD^p(G)$ (resp. $KD^p(G-E; E)$) is the class of p-precise functions u in G (resp. G-E) satisfying the following condition:

$$\int_{G} |\operatorname{grad} u|^{p-2} (\operatorname{grad} u, \operatorname{grad} \phi) dx = 0$$

for all $\phi \in C_0^{\infty}(G)$ (resp. for all $\phi \in C_0^{\infty}(G)$ such that grad ϕ vanishes in some neighborhood of E).

In §4, we shall give a necessary condition for a set to be KD^{p} -null in terms of *p*-capacities. In §5, we observe some relations between KD^{p} -null sets and sets removable for the class FD^{p} . In §6, we shall give a characterization of KD^{2} -null sets by means of 2-capacities.

§1. Preliminaries

We shall denote by $x = (x_1, x_2, ..., x_N)$ a point in \mathbb{R}^N , and set $|x| = (x_1^2 + x_2^2 + \dots + x_N^2)^{1/2}$. For sets E and F in \mathbb{R}^N , let dist(E, F) denote the distance between E and F. We denote by ∂E and \overline{E} the boundary and the closure of E respectively. Let p be a finite number such that p > 1. For an open set G in \mathbb{R}^N , let $L^p(G)$ be the family of functions f on G for which $|f|^p$ is integrable, and let $||f||_p$ be the L^p -norm. For a measurable vector field $v = (v_1, v_2, \dots, v_N)$ on G, we define $||v||_p$ by $|||v|||_p$. We denote by $C^{\infty}(G)$ the family of infinitely differentiable functions in G and by $C_0^{\infty}(G)$ the subfamily consisting of functions with compact support in G.

Let Γ be a family of locally rectifiable curves in \mathbb{R}^N none of which is a point. A non-negative Borel measurable function f is called admissible in association with Γ if $\int_{\gamma} f ds \ge 1$ for each $\gamma \in \Gamma$. The *p*-module $M_p(\Gamma)$ of Γ is defined by $\inf_f \int f^p dx$, where the infimum is taken over all functions f admissible in association with Γ . A property will be said to hold *p*-almost everywhere (=*p*-a.e.) on Γ if the *p*-module of the subfamily of exceptional curves is zero. The following properties are well known (see, e.g., [3, Chapter I] or [9, Chapter I]):

(1.1) If
$$\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$$
, then $M_p(\Gamma) \leq \sum_{n=1}^{\infty} M_p(\Gamma_n)$.

(1.2) $M_p(\Gamma) = 0$ if and only if there is a non-negative Borel measurable function $f \in L^p(\mathbb{R}^N)$ such that $\int_{\gamma} f ds = \infty$ for every $\gamma \in \Gamma$. (1.3) Every sequence $\{f_n\}$ of Borel measurable functions in an open set G

(1.3) Every sequence $\{f_n\}$ of Borel measurable functions in an open set G such that $\int_C |f_n|^p dx$ tends to zero as $n \to \infty$ has a subsequence $\{f_n\}$ such that

$$\lim_{i\to\infty}\int_{\gamma}|f_{n_i}|ds=0$$

for *p*-a.e. curve γ in *G*.

A real valued function u defined in an open set G is called a p-precise function, if (i) it is absolutely continuous along p-a.e. curve in G, and (ii) $|\mathcal{V}u|$ belongs to $L^p(G)$; from (i) it follows that the gradient $\mathcal{V}u$ exists almost everywhere in G. The following results are known:

(1.4) Let u be a p-precise function in G. Then

$$u(x^{1}) - u(x^{0}) = \int_{\widehat{x^{0}x^{1}}} \left(\sum_{k=1}^{N} \frac{\partial u}{\partial x_{k}} \frac{dx_{k}}{ds} \right) ds$$

for any points x^0 and x^1 on *p*-a.e. curve γ in *G*, where x^0x^1 is the subarc of γ connecting x^0 and x^1 (cf. [3, Chapter III, 2] or [9, Theorem 4.16]).

(1.5) Let $\{u_n\}$ be a sequence of p-precise functions in G and assume

$$\lim_{n,m\to\infty} \| \mathcal{V}(u_n - u_m) \|_p = 0.$$

Then there exists a *p*-precise function *u* in *G* such that $||V(u_n-u)||_p \to 0$ as $n \to \infty$ (see [3, Theorem 14] or [9, Theorem 4.18]).

(1.6) Every *p*-precise function *u* in *G* has a finite curvilinear limit $u(\gamma)$ along *p*-a.e. curve γ in *G* (see [9, Theorem 5.4]).

(1.7) Let u be a p-precise function defined in G, and v a p-precise function defined in an open set $G' \subset G$ such that, for p-a.e. curve γ in G' terminating at a point x of $\partial G' \cap G$, $\lim v(y)$ exists and equals u(x) as y tends to x along γ . Then the function w which is equal to v in G' and to u on G - G' is a p-precise function in G (see [9, Theorem 5.5]).

Let D be a domain in \mathbb{R}^N and denote by D^* the closure of D in the Aleksandrov compactification $\mathbb{R}^N \cup \{\infty\}$. Let α be a closed subset of the boundary $D^* - D$. We shall denote by Γ_D (resp. $\Gamma_D(\alpha)$) the family of all locally rectifiable curves in D each of which starts from a point of D and tends to $D^* - D$ (resp. α). Let α_0, α_1 be non-empty closed subsets of $D^* - D$ such that $\alpha_0 \cap \alpha_1 = \emptyset$. We shall denote by $\mathcal{D}(\alpha_0, \alpha_1; D)$ the family of all p-precise functions u in D such that $u(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_D(\alpha_0)$ and $u(\gamma)=1$ for p-a.e. $\gamma \in \Gamma_D(\alpha_1)$. Following Ohtsuka [9, §6.2], we define the p-capacity of condenser $(\alpha_0, \alpha_1; D)$ as Hiromichi Yамамото

$$C_p(\alpha_0, \alpha_1; D) = \inf_{u \in \mathscr{D}(\alpha_0, \alpha_1; D)} \int_D |\nabla u|^p dx.$$

If a *p*-precise function *u* in $\mathscr{D}(\alpha_0, \alpha_1; D)$ satisfies

$$C_p(\alpha_0, \alpha_1; D) = \int_D |\nabla u|^p dx,$$

then u is called an extremal function for $C_p(\alpha_0, \alpha_1; D)$.

Denote by \hat{D} the Kerékjártó-Stoïlow compactification of D (see [11]). Throughout the rest of the paper let α_0 and α_1 be non-empty mutually disjoint closed sets consisting of boundary components. Divide the boundary components of $\hat{D} - D - \alpha_0 - \alpha_1$ into mutually disjoint sets $\{\beta_i\}$, and let $\mathscr{D}^*(\alpha_0, \alpha_1; D, \{\beta_i\})$ be the family consisting of all $u \in \mathscr{D}(\alpha_0, \alpha_1; D)$ such that $u(\gamma) = a_i$ for *p*-a.e. $\gamma \in \Gamma_D(\beta_i)$, where each a_i is a constant depending on *u*. We define the *p*-capacity of condenser $(\alpha_0, \alpha_1; D, \{\beta_i\})$ as

$$C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\}) = \inf_{u \in \mathscr{D}^*(\alpha_0, \alpha_1; D, \{\beta_i\})} \int_D |\mathcal{V}u|^p dx.$$

If a *p*-precise function *u* in $\mathscr{D}^*(\alpha_0, \alpha_1; D, \{\beta_i\})$ satisfies

$$C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\}) = \int_D |\mathcal{V}u|^p dx,$$

then u is called an extremal function for $C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\})$.

We shall give another definition of *p*-capacity. Let $\{\beta_i\}$ be as above. Let $\{D_n\}$ be an exhaustion of *D*, that is, each D_n is a bounded subdomain of *D*, each ∂D_n consists of a finite number of C^1 -surfaces, $\overline{D}_n \subset D_{n+1}$ (n=1, 2,...) and $\bigcup_{n=1}^{\infty} D_n = D$. Let A_{0n} (resp. A_{1n}) consist of the components of $\widehat{D} - D_n$ each of which meets α_0 (resp. α_1). We may assume $A_{01} \cap A_{11} = \emptyset$. Set $\alpha_{in} = \partial D_n \cap \partial A_{in}$ (i=0, 1). Take any boundary components β and β' in $\partial D_n - \partial A_{0n} - \partial A_{1n}$, and let A and A' be the components of $\widehat{D} - D_n$ such that $\partial A = \beta$ and $\partial A' = \beta'$. We say that β and β' are in the same class if there exists some β_i such that $\beta_i \cap A \neq \emptyset$ and $\beta_i \cap A' \neq \emptyset$. We classify the boundary components of $\partial D_n - \partial A_{0n} - \partial A_{1n}$ in this way and denote them by $\{\beta_i^{(n)}\}$; these are naturally finite in number. Let $B_i^{(n)}$ consist of the components of $\widehat{D} - D_n$ such that $\partial B_j^{(n)} = \beta_j^{(n)}$. We suppose that $\{\beta_i\}$ has the following property:

(1.8) We can take an exhaustion $\{D_n\}$ such that for each β_i and D_n , if $\beta_i \cap \bigcup_{j=1}^{j(n)} B_j^{(n)} \neq \emptyset$ then $\beta_i \cap A_{0n} = \emptyset$ and $\beta_i \cap A_{1n} = \emptyset$.

Let $\{D_n\}$ be an exhaustion of the type considered in (1.8). By property (1.7) for any u in $\mathscr{D}^*(\alpha_{0n}, \alpha_{1n}; D_n, \{\beta_j^{(n)}\})$, the function \tilde{u} in D_{n+1} which is an extension of u with a suitable constant on each component of $D_{n+1} - D_n$ belongs to $\mathscr{D}^*(\alpha_{0(n+1)}, \alpha_{1(n+1)}; D_{n+1}, \{\beta_j^{(n+1)}\})$. Therefore $C_p^*(\alpha_{0n}, \alpha_{1n}; D_n, \{\beta_j^{(n)}\}) \ge$

$$C_p^*(\alpha_{0(n+1)}, \alpha_{1(n+1)}; D_{n+1}, \{\beta_j^{(n+1)}\}) \ (n=1, 2, ...).$$
 We set

$$C_{p}^{**}(\alpha_{0}, \alpha_{1}; D, \{\beta_{i}\}) = \lim_{n \to \infty} C_{p}^{*}(\alpha_{0n}, \alpha_{1n}; D_{n}, \{\beta_{j}^{(n)}\}).$$

We note that $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ does not depend on the choice of exhaustion of the type considered in (1.8). When $\{\beta_i\}$ is the canonical partition, we write $C_p^{**}(\alpha_0, \alpha_1; D, \beta_Q)$ for $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$.

§2. Extremal functions for the p-capacity of a condenser

We begin with

LEMMA 1. Let Γ be a family of curves in a domain D in \mathbb{R}^N , and $\{\phi_n\}$ be a sequence of functions defined p-a.e. and tending to a finite-valued function ϕ p-a.e. on Γ . Let u_0, u_1, u_2, \ldots be p-precise functions such that $u_n(\gamma) = \phi_n(\gamma)$ for each $n \ge 1$ and p-a.e. $\gamma \in \Gamma$ and $\|\nabla(u_n - u_0)\|_p \to 0$ as $n \to \infty$. Then there exists a constant c such that $u_0(\gamma) = \phi(\gamma) - c$ for p-a.e. $\gamma \in \Gamma$.

PROOF. We may assume that $M_p(\Gamma) > 0$. In view of properties (1.1) and (1.6) we may assume furthermore that ϕ_n and ϕ are defined everywhere on Γ , $u_0(\gamma)$, $u_1(\gamma)$,... exist and are finite everywhere on Γ and $u_n(\gamma) = \phi_n(\gamma)$ for all $n \ge 1$ and $\gamma \in \Gamma$. By properties (1.3) and (1.4) there is a family Γ' of curves in D with $M_n(\Gamma') = 0$ and having the following properties:

(1) There exists a subsequence $\{u_{n_i}\}$ such that

$$\lim_{i\to\infty}\int_{\gamma}|\mathcal{V}(u_{n_i}-u_0)|ds=0$$

for all $\gamma \notin \Gamma'$.

(2)
$$u_n(x^1) - u_n(x^0) = \int_{\widehat{x^0 x^1}} \left(\sum_{k=1}^N \frac{\partial u_n}{\partial x_k} \frac{d x_k}{ds} \right) ds$$

for each n=0, 1,..., for all $\gamma \notin \Gamma'$ and for arbitrary points x^0 and x^1 on γ .

We shall denote $\{u_n\}$ again by $\{u_n\}$.

By property (1.2) there exists a non-negative Borel measurable function hin $L^{p}(D)$ such that $\int_{\gamma} h \, ds = \infty$ for every $\gamma \in \Gamma'$. We can find a subset D_{h} of Dcontaining almost all points of D such that for any two points x and y in D_{h} there exists a curve γ which passes through x and y and along which $\int_{\gamma} h \, ds < \infty$ and such that for p-a.e. curve γ' in D it is contained in D_{h} and $\int_{\gamma'} h \, ds < \infty$ (see [9, Lemma 4.6]). Take $x^{0} \in D_{h}$ at which all u_{n} and u_{0} are finite, and take any $\gamma \in \Gamma - \Gamma'$ such that γ is contained in D_{h} and $\int_{\gamma} h \, ds < \infty$. Then we can find a curve γ_{0} in D_{h} which contains x^{0} and some end part of γ and for which $\int_{\gamma_{0}} h \, ds < \infty$. Let x(t), 0 < t < 1, be a representation of γ_0 . Since $\gamma_0 \notin \Gamma'$, by (2)

$$u_n(x(t)) - u_n(x^0) = \int_{x^0 x(t)} \left(\sum_{k=1}^N \frac{\partial u_n}{\partial x_k} \frac{dx_k}{ds} \right) ds$$

for any $t \in (0, 1)$ and $n = 0, 1, \dots$. It follows that

$$|u_n(x^0) - \phi_n(\gamma) - u_0(x^0) + u_0(\gamma)|$$

=
$$\lim_{t \to 1} |u_n(x^0) - u_n(x(t)) - u_0(x^0) + u_0(x(t))|$$
$$\leq \int_{\gamma_0} |\mathcal{V}(u_n - u_0)| ds \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty$$

Since $\phi_n(\gamma) \rightarrow \phi(\gamma)$ (=a finite value), $u_n(x^0)$ tends to $\phi(\gamma) + u_0(x^0) - u_0(\gamma)$. Set $c_0 = \phi(\gamma) - u_0(\gamma)$. Then $u_n(x^0)$ tends to $u_0(x^0) + c_0$. Thus c_0 does not depend on γ . This proves our lemma.

Let α_0 , α_1 , $\{\beta_i\}$ be as in §1. We denote by $\mathscr{A}^*(\alpha_0, \alpha_1; D, \{\beta_i\})$ the family of all *p*-precise functions *v* in *D* such that $v(\gamma)=0$ for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0) \cup \Gamma_D(\alpha_1)$ and $v(\gamma)=a_i$ for *p*-a.e. $\gamma \in \Gamma_D(\beta_i)$, where each a_i is a constant depending on *v*.

First we shall show the following theorem.

THEOREM 1. Let D be a domain and divide its boundary components into $\alpha_0, \alpha_1, \{\beta_j\}_{j=1}^{\infty}$. Then there exists an extremal function u^* for $C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\})$ and it is characterized by the condition that

$$\int_D |\nabla u^*|^{p-2} (\nabla u^*, \nabla v) dx = 0$$

for every v in $\mathscr{A}^*(\alpha_0, \alpha_1; D, \{\beta_j\})$. Here $(\nabla u^*, \nabla v)$ means the inner product of ∇u^* and ∇v , and at a point x^0 where $|\nabla u^*(x^0)| = 0$ we set

$$|\nabla u^*(x^0)|^{p-2}(\nabla u^*(x^0), \nabla v(x^0)) = 0.$$

The difference of two extremal functions is constant a.e. in D.

PROOF. In this proof we write C_p^* and \mathscr{D}^* for $C_p^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ and $\mathscr{D}^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ respectively. For the existence of u^* , we may assume that $M_p(\Gamma_D(\alpha_i)) > 0$ (i=0, 1), for, otherwise, the constant 0 or 1 belongs to \mathscr{D}^* so that the assertion is trivial. Choose a sequence $\{u_n\}$ in \mathscr{D}^* such that $\| \mathcal{F} u_n \|_p^p$ tends to C_p^* as $n \to \infty$. By using Clarkson's inequality (see [2] or [9, Lemma 1.1]) and the fact $(u_n + u_m)/2 \in \mathscr{D}^*$, we see that $\lim_{n,m\to\infty} \| \mathcal{F}(u_n - u_m) \|_p = 0$. Applying property (1.5) we have a *p*-precise function u_0 such that $C_p^* = \| \mathcal{F} u_0 \|_p^p$.

We observe that $u'_n = \max(0, \min(u_n, 1))$ belongs to \mathscr{D}^* (see [9, Theorem 4.15]) and $\||\nabla u'_n\|_p \le \|\nabla u_n\|_p$. Hence we may assume that $0 \le u_n \le 1$ for all *n*. By Lemma 1 there exists a constant *c* such that $u_0(\gamma) + c = 0$ (resp. 1) *p*-a.e. on

 $\Gamma_D(\alpha_0)$ (resp. $\Gamma_D(\alpha_1)$). We write u_0 for $u_0 + c$. Suppose $u_n(\gamma) = a_j^n$ for p-a.e. $\gamma \in \Gamma_D(\beta_j)$. By choosing a suitable subsequence we may assume that $\{a_j^n\}_{n=1}^{\infty}$ converges to a_j . By Lemma 1 again $u_0(\gamma) = a_j$ p-a.e. on $\Gamma_D(\beta_j)$. Thus $u_0 \in \mathcal{D}^*(\alpha_0, \alpha_1; D, \{\beta_j\})$, and hence u_0 is an extremal function.

For the latter half, let u^* be any extremal function for C_p^* . For any $v \in \mathscr{A}^*(\alpha_0, \alpha_1; D, \{\beta_j\})$, there exists an integrable function f(x) in D such that

$$\left|\frac{|\mathcal{V}(u^* \pm \varepsilon v)(x)|^p - |\mathcal{V}u^*(x)|^p}{\varepsilon}\right| \leq f(x) \quad \text{for all } \varepsilon \in (0, 1).$$

By Lebesgue's dominated convergence theorem,

$$\begin{split} &\lim_{\varepsilon \to 0} \int_{D} \frac{|\nabla(u^* \pm \varepsilon v)|^p - |\nabla u^*|^p}{\varepsilon} dx \\ &= \int_{D} \lim_{\varepsilon \to 0} \frac{|\nabla(u^* \pm \varepsilon v)|^p - |\nabla u^*|^p}{\varepsilon} dx \\ &= \pm p \int_{D} |\nabla u^*|^{p-2} (\nabla u^*, \nabla v) dx. \end{split}$$

Since $u^* \pm \varepsilon v \in \mathcal{D}^*$,

$$\int_{D} |\mathcal{V}(u^* \pm \varepsilon v)|^p dx \ge \int_{D} |\mathcal{V}u^*|^p dx.$$

Hence we have

$$\int_D |\nabla u^*|^{p-2} (\nabla u^*, \nabla v) dx = 0.$$

Conversely, suppose that $u \in \mathcal{D}^*$ satisfies the equation

$$\int_{D} |\nabla u|^{p-2} (\nabla u, \nabla v) dx = 0$$

for every $v \in \mathscr{A}^*(\alpha_0, \alpha_1; D, \{\beta_i\})$. Since $u^* - u \in \mathscr{A}^*(\alpha_0, \alpha_1; D, \{\beta_i\})$,

$$\int_D |\mathcal{V}u|^{p-2} (\mathcal{V}u, \, \mathcal{V}(u^*-u)) dx = 0.$$

By using Hölder's inequality, we derive that

$$\int_D |\nabla u|^p dx \leq \int_D |\nabla u^*|^p dx = C_p^*.$$

This implies that u is an extremal function for C_p^* .

Finally, let u^* , v^* be extremal. Since $(u^* + v^*)/2 \in \mathscr{D}^*$, $\|\mathcal{V}(u^* - v^*)\|_p = 0$ by Clarkson's inequality so that $u^* - v^* = \text{const. a.e. in } D$. This completes the

proof of our theorem.

Let D' be a relatively compact subdomain of D with C¹ boundary such that no component of D-D' is relatively compact in D. We classify the boundary components of $\partial D'$ into $\alpha_0^{(D')}, \alpha_1^{(D')}$ and $\{\beta_j^{(D')}\}$ as we did to D_n in §1. We extend each function of $\mathcal{D}^*(\alpha_0^{(D')}, \alpha_1^{(D')}; D', \{\beta_j^{(D')}\})$ by suitable constants to a p-precise function on D, and denote by $\mathcal{D}^*(D')$ the family of all such functions on D. Let $A_0^{(D')}, A_1^{(D')}$ and $B_j^{(D')} = \beta_j^{(D')}$. Let $\{\beta_i\}$ be a partition with property (1.8). We can take some D' such that for each β_i , if $\beta_i \cap \bigcup_{j=1}^{j(D')} B_j^{(D')} \neq \emptyset$ then $\beta_i \cap A_0^{(D')} = \emptyset$ and $\beta_i \cap A_1^{(D')} = \emptyset$. Let D'' be such a domain. Set

$$\widetilde{\mathcal{D}}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\}) = \bigcup_{D''} \mathscr{D}^*(D''),$$

and denote by $\mathcal{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ the family of all *p*-precise functions *u* in *D* with the following properties:

(1) For each u, there exists a sequence $\{u_n\}$ in $\mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ such that $\lim_{n\to\infty} \|\mathcal{V}(u_n-u)\|_p = 0$.

(2) $u(\gamma) = 0$ (resp. 1) for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0)$ (resp. $\Gamma_D(\alpha_1)$). We observe that

$$C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\}) = \inf_{u \in \mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})} \int_D |\mathcal{V}u|^p dx.$$

We call u in $\mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ an extremal function for $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ if $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\}) = \int_D |\nabla u|^p dx$. We denote by $\mathscr{A}^{**}(\alpha_0, \alpha_1; D, \beta_Q)$ the family of all $C^{\infty}(D)$ -functions ϕ in D such that the support of $|\nabla \phi|$ is compact in D, $\phi = 0$ on $U \cap D$ for some neighborhood U of $\alpha_0 \cup \alpha_1$. Denote by $\mathscr{A}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ the family consisting of all $\phi \in \mathscr{A}^{**}(\alpha_0, \alpha_1; D, \beta_Q)$ such that $\phi = \text{const.}$ on each $B_i^{(D'')} \cap D$ and $\phi = 0$ on $(A_0^{(D'')} \cup A_1^{(D'')}) \cap D$ for some D''.

Now we prove

THEOREM 2. a) There exists an extremal function u^* for $C_p^{**}(\alpha_0, \alpha_1; D, \beta_0)$ and it is characterized by the condition that

$$\int_D |\mathcal{V}u^*|^{p-2} (\mathcal{V}u^*, \mathcal{V}\phi) dx = 0$$

for every ϕ in $\mathscr{A}^{**}(\alpha_0, \alpha_1; D, \beta_Q)$. The difference of two extremal functions is constant a.e. in D.

b) Let $\{\beta_i\}$ be a partition with property (1.8). Then there exists an extremal function u^* for $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ and it is characterized by the condition that

On a p-Capacity of a Condenser and KD^p-Null Sets

$$\int_{D} |\nabla u^*|^{p-2} (\nabla u^*, \nabla \phi) dx = 0$$

for every ϕ in $\mathscr{A}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$. The difference of two extremal functions is constant a.e. in D.

PROOF. a) Let $\{D_n\}$ be an exhaustion of D, and u_n^* be an extremal function for $C_p^*(\alpha_{0n}, \alpha_{1n}; D_n, \{\beta_j^{(n)}\})$. We have seen near the end of §1 that $|| \nabla u_n^* ||_p^p$ $= C_p^*(\alpha_{0n}, \alpha_{1n}; D_n, \{\beta_j^{(n)}\})$ decreases as $n \to \infty$. As in the proof of Theorem 1, we see that there exists a *p*-precise function u^* in D such that

$$\lim_{n\to\infty} \| \nabla (u_n^* - u^*) \|_p = 0$$

and

$$u^*(\gamma) = 0$$
 (resp. 1) for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0)$ (resp. $\Gamma_D(\alpha_1)$)

It is easy to see that u^* is an extremal function for $C_p^{**}(\alpha_0, \alpha_1; D, \beta_0)$.

Let v^* be another extremal function. Then there exists a sequence $\{v_n\}$ in $\mathcal{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ such that $\|\mathcal{P}(v_n - v^*)\|_p \to 0$. Since $(u^* + v^*)/2 \in \mathcal{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$, by Clarkson's inequality we see that $\|\mathcal{P}(u^* - v^*)\|_p = 0$ so that $u^* - v^* = \text{const. a.e. in } D$.

Next, let u^* be any extremal function for $C_p^{**}(\alpha_0, \alpha_1; D, \beta_Q)$. Then there is a sequence $\{u_n\}$ in $\mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ such that $\lim_{n\to\infty} \|\mathcal{P}(u_n-u^*)\|_p=0$. For any ε ($0 < \varepsilon < 1$) and ϕ in $\mathscr{A}^{**}(\alpha_0, \alpha_1; D, \beta_Q)$, we see that $u_n \pm \varepsilon \phi \in \mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$. It follows that $u^* \pm \varepsilon \phi \in \mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$. Hence, as in the latter half of the proof of Theorem 1, we have

$$\int_D |\nabla u^*|^{p-2} (\nabla u^*, \nabla \phi) dx = 0.$$

Conversely, let $u \in \mathcal{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ satisfy the equation

$$\int_{D} |\nabla u|^{p-2} (\nabla u, \nabla \phi) dx = 0$$

for every ϕ in $\mathscr{A}^{**}(\alpha_0, \alpha_1; D, \beta_Q)$. Let u^* be an extremal function for $C_p^{**}(\alpha_0, \alpha_1; D, \beta_Q)$. Then there are two sequences $\{u_n\}$ and $\{\tilde{u}_n\}$ in $\mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ such that $\lim_{n\to\infty} \|\mathcal{V}(u_n-u)\|_p = 0$ and $\lim_{n\to\infty} \|\mathcal{V}(\tilde{u}_n-u^*)\|_p = 0$. Set $f_n = u_n - \tilde{u}_n$. It vanishes in a neighborhood U of $\alpha_0 \cup \alpha_1$ with compact relative boundary $\partial U \subset D$. We can find a function h_n in $C^{\infty}(D)$ such that $h_n = 0$ on $U \cap D$ and $h_n - f_n = 0$ on $U' \cap D$ for a neighborhood U' of $D^* - D - U$. Then $f_n - h_n$ has a compact support in D. There exists a sequence $\{f_n^i\}_{i=1}^\infty$ in $C_0^{\infty}(D)$ such that

$$\lim_{i\to\infty} \| \mathcal{V}(f_n - h_n - f_n^i) \|_p = 0.$$

Since $h_n + f_n^i \in \mathscr{A}^{**}(\alpha_0, \alpha_1; D, \beta_Q)$, we see that

$$\int_{D} |\nabla u|^{p-2} (\nabla u, \nabla (h_n + f_n^i)) dx = 0$$

for all *i*. Using Hölder's inequality and letting $i \rightarrow \infty$, we obtain

$$\int_{D} |\nabla u|^{p-2} (\nabla u, \nabla f_n) dx = 0$$

for all *n*. Since $\lim_{n\to\infty} \| V(u-u^*) - V f_n \|_p = 0$, Hölder's inequality again gives

$$\int_D |\nabla u|^{p-2} (\nabla u, \nabla (u-u^*)) dx = 0.$$

It follows from this equality and Hölder's inequality that

$$\| \mathbf{\nabla} u \|_{p}^{p} \leq \| \mathbf{\nabla} u^{*} \|_{p}^{p} = C_{p}^{**}(\alpha_{0}, \alpha_{1}; D, \beta_{Q}).$$

This implies that u is an extremal function for $C_p^{**}(\alpha_0, \alpha_1; D, \beta_Q)$.

b) We note that (u+v)/2 and $u \pm \varepsilon \phi$ belong to $\mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ for any u, v in $\mathscr{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ and ϕ in $\mathscr{A}^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$. Then we can complete the proof in the same way as a).

REMARK. In case $M_p(\Gamma_D(\alpha_0) \cup \Gamma_D(\alpha_1)) > 0$ two extremal functions coincide a.e. in D.

Let us compare the results in Theorems 1 and 2. Let $\{\beta_j\}_{j=1}^{\infty}$ be a partition with property (1.8). Let u_1 and u_2 be extremal functions in Theorems 1 and 2 respectively. By Lemma 1 we see that $u_2 \in \mathcal{D}^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ so that $C_p^*(\alpha_0, \alpha_1; D, \{\beta_j\}) \leq C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_j\})$. We obtain the equality in a special case. We give first

LEMMA 2 ([9, Theorem 6.16]). Let u be a p-precise function in D whose limit along p-a.e. $\gamma \in \Gamma_D$ vanishes. Then there exists a sequence $\{u_n\}$ in $C_0^{\infty}(D)$ such that $\|F(u-u_n)\|_p \to 0$ as $n \to \infty$.

We shall prove

THEOREM 3. Suppose the boundary of D in $\mathbb{R}^N \cup \{\infty\}$ consists of mutually disjoint closed sets $\alpha_0, \alpha_1, \beta_1, \dots, \beta_k$. Then

$$C_{p}^{*}(\alpha_{0}, \alpha_{1}; D, \{\beta_{i}\}) = C_{p}^{**}(\alpha_{0}, \alpha_{1}; D, \{\beta_{i}\}).$$

PROOF. Take any $u \in \mathscr{D}^*(\alpha_0, \alpha_1; D, \{\beta_j\})$. Let $\{D_n\}$ be an exhaustion. If *n* is large, then each component of $\hat{D} - D_n$ contains points of only one of α_0 , $\alpha_1, \beta_1, ..., \beta_k$. Hence, we may assume that it is so for n=1. Denote by A_i

(resp. B_j) the union of the components of $\hat{D} - D_1$ such that $A_i \cap (\hat{D} - D) = \alpha_i$ (resp. $B_j \cap (\hat{D} - D) = \beta_j$). For each $j, 1 \leq j \leq k$, there is a value b_j such that $u(\gamma) = b_j p$ -a.e. on $\Gamma_D(\beta_j)$. We can find a C^{∞} function v in D which is equal to i (=0, 1) (resp. b_j) on $A_i - \alpha_i$ (resp. $B_j - \beta_j$). Then $u(\gamma) - v(\gamma) = 0$ for p-a.e. $\gamma \in \Gamma_D$. By Lemma 2 there exists $\{u_n\}$ in $C_0^{\infty}(D)$ such that $\|\mathcal{P}(u - v - u_n)\|_p \to 0$ as $n \to \infty$. Since $v + u_n \in \mathcal{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_j\}), u \in \mathcal{D}^{**}(\alpha_0, \alpha_1; D, \{\beta_j\})$ so that $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_j\}) \leq \|\mathcal{P}u\|_p^p$ as was observed before Theorem 2. We obtain the inequality $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_j\}) \leq C_p^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ and hence the equality.

We obtain the following theorem with respect to $C_p(\alpha_0, \alpha_1; D)$, which is proved in the same way as Theorem 1.

THEOREM 4 (cf. [5, Theorem 1]). Let D be a domain in \mathbb{R}^N and α_0, α_1 be non-empty compact subsets of $\partial D \cup \{\infty\}$ such that $\alpha_0 \cap \alpha_1 = \emptyset$. Then there exists an extremal function u_0 for $C_p(\alpha_0, \alpha_1; D)$ and it is characterized by the condition that

$$\int_{D} |\mathcal{V}u_0|^{p-2} (\mathcal{V}u_0, \mathcal{V}v) dx = 0$$

for every p-precise function v in D such that $v(\gamma) = 0$ for p-a.e. $\gamma \in \Gamma_D(\alpha_0) \cup \Gamma_D(\alpha_1)$. The difference of two extremal functions is constant a.e. in D.

REMARK 1. Weyl's lemma shows that each of extremal functions for $C_2(\alpha_0, \alpha_1; D), C_2^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ and $C_2^{**}(\alpha_0, \alpha_1; D, \{\beta_i\})$ is equal to a harmonic function a.e. in D.

REMARK 2. Let α_0 , α_1 be disjoint boundary components of a domain D. In general $C_p(\alpha_0, \alpha_1; D) \leq C_p^*(\alpha_0, \alpha_1; D, \{\beta_j\})$. Now we shall give an example in which $C_p(\alpha_0, \alpha_1; D) < C_p^*(\alpha_0, \alpha_1; D, \{\beta_j\})$. Let $\Omega = \{x; 1 < |x| < 2\}$ and E be a closed ball in Ω . Set $D = \Omega - E$, $\alpha_0 = \{x; |x| = 1\}$, $\alpha_1 = \{x; |x| = 2\}$ and $\beta = \partial E$. Suppose $C_p(\alpha_0, \alpha_1; D) = C_p^*(\alpha_0, \alpha_1; D, \beta)$. Let u^* and u_0 be extremal functions for $C_p^*(\alpha_0, \alpha_1; D, \beta)$ and $C_p(\alpha_0, \alpha_1; D)$ respectively. Since $u^* \in \mathcal{D}(\alpha_0, \alpha_1; D)$, from Theorem 4 it follows that $u^* = u_0$ except on a set of measure zero in D. Then the extension \tilde{u}_0 of u_0 by a suitable constant on E belongs to $\mathcal{D}(\alpha_0, \alpha_1; \Omega)$ by (1.7). Since

$$C_p(\alpha_0, \alpha_1; \Omega) \ge C_p(\alpha_0, \alpha_1; D) = \int_D |\mathcal{V}u_0|^p dx = \int_\Omega |\mathcal{V}\tilde{u}_0|^p dx,$$

 \tilde{u}_0 is an extremal function for $C_p(\alpha_0, \alpha_1; \Omega)$. It is well known that an extremal function for $C_p(\alpha_0, \alpha_1; \Omega)$ is given by

$$g(x) = \begin{cases} (|x|^{\frac{p-N}{p-1}} - 1)/(2^{\frac{p-N}{p-1}} - 1) & \text{if } p \neq N \\ (\log |x|)/\log 2 & \text{if } p = N. \end{cases}$$

By Theorem 4, $g = \tilde{u}_0$ except on a set of measure zero in Ω , which is impossible since $\tilde{u}_0 = \text{const.}$ on E. Hence $C_p(\alpha_0, \alpha_1; D) < C_p^*(\alpha_0, \alpha_1; D, \beta)$.

§3. Reation between the *p*-capacity and the *p*-module

Let D be a domain in \mathbb{R}^N . By a locally rectifiable chain in D we mean a countable formal sum $\gamma = \Sigma \gamma_i$, where each γ_i is a locally rectifiable curve in D. If f is a non-negative Borel measurable function defined in D and $\gamma = \Sigma \gamma_i$ is a locally rectifiable chain in D, then we set $\int_{\gamma} f ds = \Sigma \int_{\gamma_i} f ds$. Let Γ be a family of locally rectifiable chains in D. A non-negative Borel measurable function f defined in D is called admissible in association with Γ if $\int_{\gamma} f ds \ge 1$ for every $\gamma \in \Gamma$. The p-module $M_p(\Gamma)$ is defined by $\inf_f \int_D f^p dx$, where the infimum is taken over all admissible functions f in association with Γ ; if there is no such a function, then $M_p(\Gamma)$ is set to be ∞ .

Suppose that the boundary components of D are partitioned into nonempty mutually disjoint closed sets α_0 , α_1 , β_1 ,..., β_k . Let $\beta = \bigcup_{j=1}^k \beta_j$. Each β_j is called a part of β . Let $\Gamma^* = \Gamma^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ be the family of all chains γ in \overline{D} such that:

(1) γ is a continuous mapping from a union of closed intervals $[t_1, t_2] \cup [t_3, t_4] \cup \cdots \cup [t_{2n-1}, t_{2n}]$ into \overline{D} with $t_1 < t_2 < \cdots < t_{2n}$.

(2) $\gamma(t_1) \in \alpha_0, \ \gamma(t_{2n}) \in \alpha_1$ and for each $i=1, 2, ..., n-1, \ \gamma(t_{2i})$ and $\gamma(t_{2i+1})$ belong to the same part of β .

(3) $\gamma(t) \in D$ if $t \in \bigcup_{i=1}^{n} (t_{2i-1}, t_{2i})$.

(4) $\gamma \cap D$ is a locally rectifiable chain in D, where $\gamma \cap D$ is the restriction of γ to D.

We define the *p*-module $M_p(\Gamma^*)$ to be the *p*-module of the family of locally rectifiable chains obtained by restricting each chain in Γ^* to *D*.

Now we prove

THEOREM 5 (cf. [9, Theorem 6.10]). Suppose that the boundary components of D are partitioned into non-empty mutually disjoint closed sets α_0 , α_1 , β_1 ,..., β_k . Let Γ^* be the family defined as above. Then $C_p^*(\alpha_0, \alpha_1; D, \{\beta_j\}) = M_p(\Gamma^*)$.

PROOF. In this proof we write \mathscr{D}^* and C_p^* for $\mathscr{D}^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ and $C_p^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ respectively. Since dist $(\alpha_0, \alpha_1) > 0$, we see that $\mathscr{D}^* \neq \emptyset$, and hence $C_p^* < \infty$. Take any function u in \mathscr{D}^* . Then from property (1.4) we see easily that

$$\int_{\gamma \cap D} |\mathcal{V}u| ds \ge 1 \quad \text{for} \quad p\text{-a.e. } \gamma \in \Gamma^*.$$

It follows that $C_p^* \ge M_p(\Gamma^*)$. Hence $M_p(\Gamma^*) < \infty$.

We note that we may restrict admissible f to belong to $L^p(D)$ and to be continuous in defining $M_p(\Gamma^*)$ (see [9, Theorem 2.8]). Let f be such a function. Given $x \in D$, denote by $\Gamma^*(x)$ the family of all chains γ in \overline{D} of type given in the definition of Γ^* , condition $\gamma(t_{2n}) \in \alpha_1$ being replaced by $\gamma(t_{2n}) = x$. Set

$$g(x) = \inf_{\gamma \in \Gamma^*(x)} \int_{\gamma \cap D} f \, ds.$$

We know that $\int_{\gamma} f ds < \infty$ for p-a.e. curve γ in D. If γ is such a curve, then

$$|g(x) - g(x^0)| \leq \int_{\widetilde{xx^0}} f ds$$

for any points x and x^0 on γ , where $xx^0 \subset \gamma$. It follows that g is absolutely continuous along p-a.e. curve in D. By Rademacher-Stepanov's theorem we have $|\nabla g(x)| \leq f(x)$ a.e. in D. Thus g is a p-precise function in D. As in the proof of [9, Theorem 6.10] (also cf. the arguments below) we see that

$$g(\gamma) = 0$$
 for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0)$

and

$$g(\gamma) \ge 1$$
 for *p*-a.e. $\gamma \in \Gamma_D(\alpha_1)$.

Let us show that g has the same curvilinear limit along p-a.e. curve in $\Gamma_D(\beta_j)$. For this, assume $M_p(\Gamma_D(\beta_j)) > 0$. Denote by $\Gamma'_D(\beta_j)$ the subfamily of $\Gamma_D(\beta_j)$ consisting of curves γ such that $\int_{\gamma} f ds < \infty$, γ tends to a point on β_j and g has a finite curvilinear limit $g(\gamma)$ along γ . Since $M_p(\Gamma_D(\beta_j) - \Gamma'_D(\beta_j)) = 0$, it suffices to show that $g(\gamma_1) = g(\gamma_2)$ for any curves γ_1 and γ_2 in $\Gamma'_D(\beta_j)$. For any $\varepsilon > 0$, we can take two points $x^1 \in \gamma_1$ and $x^2 \in \gamma_2$ such that

$$|g(\gamma_i) - g(x^i)| < \varepsilon \qquad (i = 1, 2)$$

and

$$\int_{\gamma'_i} f \, ds < \varepsilon \qquad (i=1,\,2)\,,$$

where γ'_i is the part of γ_i starting at x^i and tending to β_j . Since each γ'_i tends to a point in β_j , by adding these limiting points to γ'_i , we can regard $\gamma + \gamma'_1 + (-\gamma'_2)$ as an element of $\Gamma^*(x^2)$ for each $\gamma \in \Gamma^*(x^1)$, and we have

$$g(x^2) \leq g(x^1) + \int_{\gamma'_1} f ds + \int_{\gamma'_2} f ds < g(x^1) + 2\varepsilon.$$

Similarly $g(x^1) < g(x^2) + 2\varepsilon$, and hence $|g(x^1) - g(x^2)| < 2\varepsilon$. It follows that

$$|g(\gamma_1) - g(\gamma_2)| \le |g(\gamma_1) - g(x^1)| + |g(x^1) - g(x^2)| + |g(x^2) - g(\gamma_2)| < 4\varepsilon.$$

Therefore $g(\gamma_1) = g(\gamma_2)$. Thus we see that min (g, 1) belongs to \mathcal{D}^* . Hence

$$C_p^* \leq \int_D |\mathcal{V}[\min(g, 1)]|^p dx \leq \int_D f^p dx.$$

It follows that $C_p^* \leq M_p(\Gamma^*)$.

REMARK. On a compact bordered Riemann surface, Minda [8] showed that the extremal distances are computed in terms of principal functions having prescribed boundary behavior (see [8, Theorem 1]). We shall show later in Theorem 12 that a principal function is extremal for $C_2^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ with respect to a regular domain D. Thus, Theorem 5 is a euclidean space version of Minda's result.

Marden and Rodin [7] gave a useful continuity lemma for extremal length on Riemann surfaces. Here we shall establish a similar continuity lemma for extremal length of order p on a domain D in \mathbb{R}^{N} .

Let D be a domain in \mathbb{R}^{N} and partition its boundary components into nonempty mutually disjoint sets α_{0} , α_{1} and β such that α_{0} and α_{1} are closed sets in \hat{D} . Let the boundary components in β be divided into mutually disjoint closed sets $\{\beta_{j}\}_{j=1}^{\infty}$ with property (1.8). Let $\{D_{n}\}$ be an exhaustion of D of the type considered in (1.8) such that each ∂D_{n} consists of a finite number of \mathbb{C}^{∞} -surfaces. Then, as in § 1, the boundary components of D_{n} are divided into α_{0n} , α_{1n} and $\{\beta_{j}^{(n)}\}_{j=1}^{j(n)}$. Let $\tilde{\beta}_{n} = \bigcup_{j=1}^{j(n)} \beta_{j}^{(n)}$ and $\Gamma_{n}^{*} = \Gamma^{*}(\alpha_{0n}, \alpha_{1n}; D_{n}, \{\beta_{j}^{(n)}\})$. Given $\gamma \in \Gamma_{n}^{*}$ and $m \leq n$, as in the proof of [7, Lemma III.2.1] we obtain a "sequence" $C_{0}, C_{1},..., C_{k}$ such that $C_{0} = \alpha_{0m}, C_{k} = \alpha_{1m}$ and $C_{1},..., C_{k-1}$ are distinct parts of $\tilde{\beta}_{m}$ and a sequence of "stopping times" $t_{1}' < t_{2}' < \cdots < t_{2k}'$ such that $\gamma(t_{2i-1}) \in C_{i-1}, \gamma(t_{2i}) \in C_{i}$ (i=1,...,k) and $\gamma(t) \in D_{m}$ if $t \in \bigcup_{i=1}^{k} (t_{2i-1}', t_{2i}')$. We define $\gamma \| D_{m}$ to be the restriction of γ to $[t_{1}', t_{2}'] \cup [t_{3}', t_{4}'] \cup \cdots \cup [t_{2k-1}', t_{2k}']$, which we call the domain of $\gamma \| D_{m}$.

Let $\hat{\Gamma}$ be the family of all locally rectifiable chains γ in D such that:

(1) γ is a continuous mapping of an open dense subset J_{γ} of (0, 1) into D.

(2) If $t_0 \notin J_{\gamma}$ and $0 < t_0 < 1$, then there exists a part β_j of β such that $\lim_{t \to t_0} \gamma(t)$ belongs to β_j .

(3) $\lim_{t\to 0} \gamma(t)$ (resp. $\lim_{t\to 1} \gamma(t)$) belongs to α_0 (resp. α_1).

Next, we shall define a family Γ^* following Marden and Rodin [7]. A locally rectifiable chain γ in D belongs to Γ^* if either γ is some chain in $\hat{\Gamma}$ or if γ is a continuous mapping of an open dense subset J_{γ} of (0, 1) into D such that:

(1) If $t_0 \notin J_y$ and $0 < t_0 < 1$, then there exist sequences $\{r_n\}, \{s_n\}$ in J_y and a

part β_j of β such that $r_n \uparrow t_0$, $s_n \downarrow t_0$ and $\gamma(r_n) \rightarrow \beta_j$, $\gamma(s_n) \rightarrow \beta_j$. If $t_0 = 0$ (resp. 1), we require only a sequence $\{s_n\}$ (resp. $\{r_n\}$) from J_{γ} with $s_n \downarrow 0$ (resp. $r_n \uparrow 1$) and $\gamma(s_n) \rightarrow \alpha_0$ (resp. $\gamma(r_n) \rightarrow \alpha_1$).

(2) There is an exhaustion $\{D_n\}$ of D such that the restriction of γ to $\gamma^{-1}[\gamma(J_{\gamma}) \cap \overline{D}_n]$, which we denote by $\gamma | \overline{D}_n$, is a chain in \overline{D}_n and $\gamma || \overline{D}_n \equiv (\gamma | \overline{D}_n) || D_n \in \Gamma_n^*$ for each $n \ge 1$.

(3) If $t \in J_{\gamma}$, then there is n_0 such that t belongs to the domain of $\gamma || D_n$ for all $n \ge n_0$.

LEMMA 3 (cf. the proof of [7, Lemma III.2.1]). Let f be a non-negative continuous function on D, and $\{D_n\}$ be an exhaustion of D. If $\gamma_n \in \Gamma_n^* = \Gamma^*(\alpha_{0n}, \alpha_{1n}; D_n, \{\beta_i^{(n)}\})$ for each n, then given $\varepsilon > 0$, there exists $\gamma(\varepsilon)$ in Γ^* satisfying

$$\int_{\gamma(\varepsilon)} f ds \leq \liminf_{n \to \infty} \int_{\gamma_n} f ds + \varepsilon.$$

PROOF. We may assume that $\lim_{n\to\infty} \int_{\gamma_n} f ds$ exists and is finite. As in the proof of [7, Lemma III.2.1] we can find a subsequence of $\{\gamma_n\}$, which we again denote by $\{\gamma_n\}$, such that for each m, all $\gamma_n || D_m$ $(n \ge m)$ have the same sequence of boundary components on ∂D_m and $\lim_{n\to\infty} x_{n,m}^i = x_m^i \in \partial D_m$ for all i and m, where $x_{n,m}^i$ (i=1,...,k(m)) are the stopping points for $\gamma_n || D_m$. Let S(x, r) denote the closed N-ball of radius r and centered at x. Since ∂D_m is smooth and f is continuous, we can take $r_{i,m} > 0$ (i=1,...,k(m)) with the following properties:

(1) For each *i*, $S(x_m^i, r_{i,m}) \subset D_{m+1}$ and $S(x_m^i, r_{i,m}) \cap (\partial D_m - C_m^i) = \emptyset$, where C_m^i is the boundary component of D_m such that $x_m^i \in C_m^i$.

(2) Any $y \in \partial S(x_m^i, r_{i,m}) \cap D_m$ (resp. $\partial S(x_m^i, r_{i,m}) - \overline{D}_m$, $S(x_m^i, r_{i,m}) \cap \partial D_m$) and x_m^i can be joined by a curve in $S(x_m^i, r_{i,m}) \cap D_m$ (resp. $S(x_m^i, r_{i,m}) - \overline{D}_m$, $S(x_m^i, r_{i,m}) \cap \partial D_m$) along which $\int f ds < \varepsilon/2^{m+2}k(m)$.

By taking a subsequence again we may assume that $|x_{n,m}^i - x_m^i| < r_{i,m}$ for all i, n and m with $n \ge m$. Denote by $\gamma_{n,m}^i$ the subarc of $\gamma_n || D_m$ connecting $x_{n,m}^i$ and a point $y_{n,m}^i \in \gamma_n || D_m \cap \partial S(x_m^i, r_{i,m})$ in $S(x_m^i, r_{i,m}) \cap D_m$ and by $\tilde{\gamma}_{n,m}^i$ the subarc of $\gamma_n - \gamma_n || D_m$ connecting $x_{n,m}^i$ and a point $\tilde{y}_{n,m}^i \in (\gamma_n - \gamma_n || D_m) \cap \partial S(x_m^i, r_{i,m})$ in $S(x_m^i, r_{i,m}) \cap D_m$ and by $\tilde{\gamma}_{n,m}^i$ the subarc of $\gamma_n - \gamma_n || D_m$ connecting $x_{n,m}^i$ and a point $\tilde{y}_{n,m}^i \in (\gamma_n - \gamma_n || D_m) \cap \partial S(x_m^i, r_{i,m})$ in $S(x_m^i, r_{i,m})$ for each $m \le n$ and i = 1, ..., k(m). For each n, we modify γ_n as follows: for each m < n and i = 1, ..., k(m), replace a subarc $\gamma_{n,m}^i + \tilde{\gamma}_{n,m}^i$ of γ_n by a curve in $S(x_m^i, r_{i,m})$ which passes through x_m^i and connects $y_{n,m}^i$ and $\tilde{y}_{n,m}^i$ and along which $\int f ds < \varepsilon/2^{m+1}k(m)$, for each i = 1, ..., k(n), replace $\gamma_{n,n}^i$ by a curve in $S(x_n^i, r_{i,n}) \cap D_n$ which connects x_n^i and $y_{n,n}^i$ and along which $\int f ds < \varepsilon/2^{n+2}k(n)$. The modified curve will be denoted by γ_n^n . We have

$$\int_{\gamma_n^*} f ds \leq \int_{\gamma_n} f ds + \frac{\varepsilon}{2}.$$

Hiromichi **Ү**амамото

Let $\tilde{\Gamma}_m = \{\gamma_n^* \| D_m - \gamma_n^* \| D_{m-1}; n \ge m\}$ (m = 1, 2,...), where $D_0 = \emptyset$, and choose $\tilde{\gamma}_m \in \tilde{\Gamma}_m$ such that

$$\int_{\tilde{\gamma}_m} f ds < \inf_{\gamma \in \Gamma_m} \int_{\gamma} f ds + \frac{\varepsilon}{2^{m+1}}.$$

Then, we see

$$\int_{\tilde{\gamma}_1+\tilde{\gamma}_2+\cdots+\tilde{\gamma}_n} f ds < \sum_{m=1}^n \inf_{\gamma \in \Gamma_m} \int_{\gamma} f ds + \sum_{m=1}^n \frac{\varepsilon}{2^{m+1}} < \int_{\gamma_n^*} f ds + \frac{\varepsilon}{2} < \int_{\gamma_n} f ds + \varepsilon$$

The chain $\gamma(\varepsilon) = \sum_{n=1}^{\infty} \tilde{\gamma}_n$ can be regarded as an element of Γ^* by a suitable parametrization (cf. the proof of [7, Lemma III.2.1]). From the above inequalities we have

$$\int_{\gamma(\varepsilon)} f ds = \lim_{n \to \infty} \int_{\tilde{\gamma}_1 + \dots + \tilde{\gamma}_n} f ds \leq \lim_{n \to \infty} \int_{\gamma_n} f ds + \varepsilon.$$

Thus $\gamma(\varepsilon)$ satisfies all the requirements.

LEMMA 4 (cf. [7, Lemma III.2.1] and [9, Theorem 2.6]).

$$\lim_{n\to\infty}M_p(\Gamma_n^*)=M_p(\widehat{\Gamma}).$$

PROOF. In general, $M_p(\hat{\Gamma}) \leq M_p(\Gamma_n^*)$. So assume $M_p(\hat{\Gamma}) < \infty$. As in the proof of [7, Lemma III.2.1] we have $M_p(\hat{\Gamma}) = M_p(\Gamma^*)$. We may restrict admissible f to be continuous in D in defining $M_p(\Gamma^*)$ (cf. [9, Theorem 2.8]). Given ε , $0 < \varepsilon < 1$, choose a continuous function f in D which is admissible in association with Γ^* such that $\int_D f^p dx < M_p(\Gamma^*) + \varepsilon$. We infer that there is n_0 such that if $n \geq n_0$ then $\int_{\gamma} f ds \geq 1 - \varepsilon$ for every γ in Γ_n^* . In fact, otherwise there would be $n_1 < n_2 < \cdots$ and $\gamma_{n_j} \in \Gamma_{n_j}^*$, $j = 1, 2, \ldots$, such that $\int_{\gamma_{n_j}} f ds < 1 - \varepsilon$ for each j. We apply Lemma 3 and find $\gamma(\varepsilon)$ in Γ^* which satisfies $\int_{\gamma(\varepsilon)} f ds \leq 1 - \varepsilon$. This is a contradiction. Thus $f/(1-\varepsilon)$ is admissible in association with Γ_n^* , and hence

$$M_p(\Gamma_n^*) \leq \frac{1}{(1-\varepsilon)^p} \int_D f^p dx < \frac{1}{(1-\varepsilon)^p} (M_p(\Gamma^*) + \varepsilon)$$

for $n \ge n_0$. It follows that $\lim_{n \to \infty} M_p(\Gamma_n^*) = M_p(\Gamma^*)$. Hence we have $\lim_{n \to \infty} M_p(\Gamma_n^*) = M_p(\hat{\Gamma})$.

On account of Theorem 5 and Lemma 4, we have

THEOREM 6. Suppose that the boundary components of D are partitioned

into mutually disjoint sets α_0 , α_1 and β such that α_0 and α_1 are closed sets in \hat{D} . Let the boundary components in β be divided into mutually disjoint closed sets $\{\beta_i\}$ with property (1.8). Then $C_p^{**}(\alpha_0, \alpha_1; D, \{\beta_i\}) = M_p(\hat{\Gamma})$.

REMARK. As to C_p , the following result is well-known (see, e.g., [9, Theorem 6.10] or [13, Theorem 3.8]): Let D be a domain and α_0, α_1 be nonempty compact subsets of ∂D such that $\alpha_0 \cap \alpha_1 = \emptyset$. Let Γ be the family of all curves connecting α_0 and α_1 in D. Then $C_p(\alpha_0, \alpha_1; D) = M_p(\Gamma)$.

Finally we are concerned with the case that β is given the canonical partition throughout the rest of this paper. Let $\hat{\Gamma}^*$ be the family of all arcs in \hat{D} connecting α_0 and α_1 . $M_p(\hat{\Gamma}^*)$ is the *p*-module of the family of locally rectifiable chains in *D* obtained by restricting each arc in $\hat{\Gamma}^*$ to *D*. Since each γ in $\hat{\Gamma}$ can be extended continuously to [0, 1] with values in \hat{D} , $M_p(\hat{\Gamma}^*) = M_p(\hat{\Gamma})$. Thus we have

THEOREM 7. Let $\hat{\Gamma}^*$ be the family of all arcs in \hat{D} connecting α_0 and α_1 . Then $C_p^{**}(\alpha_0, \alpha_1; D, \beta_Q) = M_p(\hat{\Gamma}^*)$.

§4. KD^p-null sets

Let *E* be a compact set in \mathbb{R}^N and *G* be a bounded open set which contains *E*. We denote by $C_1^{\infty}(G; E)$ the family of all functions ϕ in $C_0^{\infty}(G)$ such that $\mathcal{V}\phi$ vanishes in some neighborhood of *E*. Let $KD^p(G)$ (resp. $KD^p(G-E; E)$) be the class of *p*-precise functions *u* in *G* (resp. G-E) satisfying the condition that

$$\int_G |\nabla u|^{p-2} (\nabla u, \nabla \phi) \, dx = 0$$

for every ϕ in $C_0^{\infty}(G)$ (resp. $C_1^{\infty}(G; E)$). We say that a compact set E is a KD^{p} null set with respect to G if every function u in $KD^p(G-E; E)$ can be extended to a function belonging to $KD^p(G)$. The class of KD^p -null sets with respect to Gis denoted by $N_{KD^p}^{c}$. The following lemma is an easy consequence of the definition.

LEMMA 5. If $E \in N_{KD^p}^G$, then $E \in N_{KD^p}^{G_1}$ for any bounded open set G_1 containing G.

Next we prove

LEMMA 6. If $E \in N_{KD^p}^G$, then $\mathbb{R}^N - E$ is a domain.

PROOF. Suppose $\mathbb{R}^N - \mathbb{E}$ is not a domain, and denote by Ω the union of

Hiromichi Yамамото

all bounded components of $\mathbb{R}^{N} - \mathbb{E}$. Take a ring domain $G_{1} = \{x; r_{1} < |x - x^{0}| < r_{2}\}$ such that $G_{1} \supset G \cup \Omega$. Let $\alpha_{0} = \{x; |x - x^{0}| = r_{1}\}$ and $\alpha_{1} = \{x; |x - x^{0}| = r_{2}\}$. Let u_{0} be an extremal function for $C_{p}(\alpha_{0}, \alpha_{1}; G_{1} - \mathbb{E} \cup \Omega)$. Setting $\tilde{u} = u_{0}$ on $G_{1} - \mathbb{E} \cup \Omega$ and $\tilde{u} = 0$ on Ω , we easily see that $\tilde{u} \in KD^{p}(G_{1} - \mathbb{E}; \mathbb{E})$ by Theorem 4. By Lemma 5, $\mathbb{E} \in N_{KD^{p}}^{G_{1}}$, so that there exists a *p*-precise function u_{1} in $KD^{p}(G_{1})$ such that $u_{1} = \tilde{u}$ in $G_{1} - \mathbb{E}$. Obviously u_{1} belongs to $\mathcal{D}(\alpha_{0}, \alpha_{1}; G_{1})$. Since $u_{1} \in KD^{p}(G_{1})$, by using Lemma 2 and Hölder's inequality we see that

$$\int_{G_1} |\nabla u_1|^{p-2} (\nabla u_1, \nabla v) dx = 0$$

for every *p*-precise function v in G_1 such that $v(\gamma) = 0$ for *p*-a.e. $\gamma \in \Gamma_{G_1}$. From Theorem 4 it follows that u_1 is extremal for $C_p(\alpha_0, \alpha_1; G_1)$. It is known that an extremal function for $C_p(\alpha_0, \alpha_1; G_1)$ is given by

(4.1)
$$g(x) = \begin{cases} \left(|x - x^0|^{\frac{p-N}{p-1}} - r_1^{\frac{p-N}{p-1}} \right) / \left(r_2^{\frac{p-N}{p-1}} - r_1^{\frac{p-N}{p-1}} \right) & \text{if } p \neq N \\ \left(\log \frac{|x - x^0|}{r_1} \right) / \log \frac{r_2}{r_1} & \text{if } p = N. \end{cases}$$

By Theorem 4, $g = u_1$ except for x in a set of measure zero in G_1 . This is a contradiction since $u_1 = 0$ on Ω . Thus we see that $R^N - E$ is a domain.

A bounded domain D is called a ring domain if it has two boundary components. We shall show a necessary condition for $E \in N_{KDP}^{G}$.

THEOREM 8. If $E \in N_{KDP}^{G}$, then $C_{p}(\alpha_{0}, \alpha_{1}; D-E) = C_{p}^{**}(\alpha_{0}, \alpha_{1}; D-E, \beta_{Q})$ for every ring domain D containing G, where α_{0} and α_{1} are two boundary components of D and $\beta = \partial E$.

PROOF. By Lemma 6 we note that $C_p(\alpha_0, \alpha_1; D-E)$ and $C_p^{**}(\alpha_0, \alpha_1; D-E, \beta_Q)$ are well-defined. Let u_0 and u^* be extremal functions for $C_p(\alpha_0, \alpha_1; D-E)$ and $C_p^{**}(\alpha_0, \alpha_1; D-E, \beta_Q)$ respectively. By Lemma 5, $E \in N_{KDP}^D$. Hence there exist two functions \tilde{u}_0 and \tilde{u}^* in $KD^p(D)$ such that $\tilde{u}_0 = u_0$ in D-E and $\tilde{u}^* = u^*$ in D-E. These imply that $\tilde{u}_0, \tilde{u}^* \in \mathcal{D}(\alpha_0, \alpha_1; D)$,

$$\int_{D} |\nabla \tilde{u}_{0}|^{p-2} (\nabla \tilde{u}_{0}, \nabla \phi) dx = 0$$

for every ϕ in $C_0^{\infty}(D)$ and

$$\int_{D} |\nabla \tilde{u}^*|^{p-2} (\nabla \tilde{u}^*, \nabla \phi) dx = 0$$

for every ϕ in $C_0^{\infty}(D)$. As in the proof of Lemma 6, we conclude that \tilde{u}_0 and \tilde{u}^* are extremal for $C_p(\alpha_0, \alpha_1; D)$. By Theorem 4, $\tilde{u}_0 = \tilde{u}^*$ a.e. in D. Hence $C_p(\alpha_0, \alpha_1; D)$.

 $\alpha_1; D-E = C_p^{**}(\alpha_0, \alpha_1; D-E, \beta_Q).$

COROLLARY 1. If $E \in N_{KD^p}^G$, then the N-dimensional Lebesgue measure of E is equal to zero.

PROOF. Take a ring domain $D = \{x; r_1 < |x - x^0| < r_2\}$ such that $D \supset G$. Let $\alpha_0 = \{x; |x - x^0| = r_1\}$, $\alpha_1 = \{x, |x - x^0| = r_2\}$ and $\beta = \partial E$. In general $C_p(\alpha_0, \alpha_1; D - E) \leq C_p(\alpha_0, \alpha_1; D) \leq C_p^{**}(\alpha_0, \alpha_1; D - E, \beta_Q)$. By Theorem 8, we see $C_p(\alpha_0, \alpha_1; D - E) = C_p(\alpha_0, \alpha_1; D)$. Let u_1 be the function defined by the right hand side of (4.1). Then u_1 is an extremal function for $C_p(\alpha_0, \alpha_1; D)$ and its restriction to D - E belongs to $\mathcal{D}(\alpha_0, \alpha_1; D - E)$. Hence

$$\int_{D} |\nabla u_1|^p dx = C_p(\alpha_0, \alpha_1; D) = C_p(\alpha_0, \alpha_1; D - E) \leq \int_{D-E} |\nabla u_1|^p dx,$$

which implies

$$\int_E |\nabla u_1|^p dx = 0.$$

Since $|\nabla u_1| \neq 0$ on D, we conclude that the N-dimensional Lebesgue measure of E is equal to zero.

§5. Relations between KD^{p} -null sets and FD^{p} -null sets

In [6], Hedberg considered the following notion of null sets. For an open set G in \mathbb{R}^N , denote by $FD^p(G)$ the class of real valued harmonic functions u in G such that |Fu| belongs to $L^p(G)$ and u has no flux, i. e., $\int_C \partial u/\partial v dS = 0$ for all (N-1)-cycles C in G. A compact set E is said to be removable for FD^p if for some open set G containing E every function in $FD^p(G-E)$ can be extended to a function in $FD^p(G)$. The class of removable sets for FD^p is denoted by N_{FD^p} . Denote by $W_1^p(G)$ the Sobolev space of real valued functions f in $L^p(G)$ whose derivatives in the distribution sense are functions in $L^p(G)$. When G is bounded $||Ff||_p$ is a norm on $C_0^{\infty}(G)$ by the Poincaré inequality, and the closure in $W_1^p(G)$ of $C_0^{\infty}(G)$ with respect to this norm is denoted by $\tilde{W}_1^p(G)$. Hedberg proved

THEOREM A ([6, Theorem 1, b]). $E \in N_{FDP}$ if and only if $C_1^{\infty}(G; E)$ is dense in $W_1^q(G)$ for some bounded open set $G \supset E$, where q = p/(p-1).

Let D be an N-dimensional open rectangle with sides parallel to the coordinate planes, E be a compact set in D (possibly an empty set) and G_1 be a bounded open set containing \overline{D} . We set

$$M_p^i(D-E) = \inf_{\psi} \int_{D-E} |\nabla \psi|^p dx$$
 $(i = 1,...,N),$

where the infimum is taken over all $\psi \in C_1^{\infty}(G_1; E)$ such that $\psi(x)=0$ on α_0^i which is one of the sides of D parallel to the coordinate plane $x_i=0$, and $\psi(x)=1$ on α_1^i which is the opposite side of α_0^i . Obviously $M_p^i(D-E)$ does not depend on the choice of G_1 .

THEOREM B ([6, Theorem 4]). $E \in N_{FD^q}$ if and only if the equalities $M_p^i(D - E) = M_p^i(D)$, i = 1, ..., N, hold for some open rectangle $D \supset E$.

By using these theorems we shall give some results on KD^{p} -null sets.

LEMMA 7. If $C_1^{\infty}(G; E)$ is dense in $\mathring{W}_1^p(G)$ for a bounded open set G, then the N-dimensional Lebesgue measure of E is zero and $\mathbb{R}^N - E$ is a domain.

PROOF. Choose a function $\phi \in C_0^{\infty}(G)$ such that $\phi(x) = x_1$ on a neighborhood of E for $x = (x_1, ..., x_N)$. By the assumption of the lemma there is a sequence $\{\phi_n\}$ in $C_1^{\infty}(G; E)$ such that

$$\lim_{n\to\infty}\int_G |\mathcal{V}(\phi-\phi_n)|^p dx = 0.$$

Then

$$\int_E dx = \int_E |\mathcal{V}(\phi - \phi_n)|^p dx \leq \int_G |\mathcal{V}(\phi - \phi_n)|^p dx.$$

Hence $\int_{E} dx = 0.$

Next, suppose $\mathbb{R}^N - E$ is not a domain. Then there is a non-empty bounded domain $\Omega \subset \mathbb{R}^N - E$ such that $\partial \Omega \subset E$. Take a bounded open ball G_1 containing G and a function $\psi \in C_0^{\infty}(G_1)$ such that $\psi = 1$ on Ω . Let $\phi(x) = x_1 \psi(x)$ for $x = (x_1, \dots, x_N)$. By the assumption of the lemma, we easily see that $C_1^{\infty}(G_1; E)$ is dense in $\hat{W}_1^p(G_1)$. Since $\phi(x) \in C_0^{\infty}(G_1)$, there is a sequence $\{\phi_n\}$ in $C_1^{\infty}(G_1; E)$ such that

$$\lim_{n\to\infty}\int_{G_1}|\mathcal{F}(\phi-\phi_n)|^pdx=0.$$

We take a subdomain Ω' of Ω such that $\partial \Omega'$ consists of a finite number of C^1 -surfaces β_j (j=1,...,m) and $\phi_n = \text{const.}$ on each β_j . By using Stokes' theorem, we have

$$\int_{\Omega} \frac{\partial \phi_n}{\partial x_1} dx = \int_{\Omega'} \frac{\partial \phi_n}{\partial x_1} dx = 0.$$

It follows that

$$\int_{\Omega} dx = \int_{\Omega} \frac{\partial (\phi - \phi_n)}{\partial x_1} dx.$$

By Hölder's inequality, we have

$$\int_{\Omega} dx \leq C \left\{ \int_{\Omega} | \mathcal{V}(\phi - \phi_n) |^p dx \right\}^{1/p}.$$

Since the right-hand side tends to zero as $n \to \infty$, we obtain a contradiction. Therefore $R^N - E$ is a domain.

THEOREM 9. Let q = p/(p-1). If $C_1^{\infty}(G; E)$ is dense both in $\mathring{W}_1^p(G)$ and in $\mathring{W}_1^q(G)$ for a bounded open set G, then E belongs to N_{KDP}^G .

PROOF. By Lemma 7, $\mathbb{R}^N - E$ is a domain and the N-dimensional Lebesgue measure of E is equal to zero. Moreover, since $C_1^{\infty}(G; E)$ is dense in $\mathring{W}_1^q(G)$, as in the first half of the proof of [6, Theorem 1], we see that for any u in $KD^p(G - E; E)$ there is a function in $W_1^p(G)$ which is equal to u in G - E. Hence, by [9, Theorem 4.21], there is a p-precise function u_0 in G such that $u_0 = u$ and $\partial u_0 / \partial x_i = \partial u / \partial x_i$ (i = 1, ..., N) except on a set of measure zero in G - E. Next, since $C_1^{\infty}(G; E)$ is dense in $\mathring{W}_1^p(G)$, for any ψ in $C_0^{\infty}(G)$ there is a sequence $\{\phi_n\}$ in $C_1^{\infty}(G; E)$ such that

$$\lim_{n\to\infty}\int_G |\nabla(\psi-\phi_n)|^p dx=0.$$

Then, by Hölder's inequality we have

$$\int_{G} |\mathcal{V}u_{0}|^{p-2} (\mathcal{V}u_{0}, \mathcal{V}\psi) dx$$

$$= \lim_{n \to \infty} \int_{G} |\mathcal{V}u_{0}|^{p-2} (\mathcal{V}u_{0}, \mathcal{V}\phi_{n}) dx$$

$$= \lim_{n \to \infty} \int_{G-E} |\mathcal{V}u|^{p-2} (\mathcal{V}u, \mathcal{V}\phi_{n}) dx$$

$$= 0.$$

Hence $u_0 \in KD^p(G)$, so that $E \in N^G_{KD^p}$.

THEOREM 10. If $E \in N^G_{KDP}$, then $C^{\infty}_1(G; E)$ is dense in $W^p_1(G)$.

PROOF. By Theorems A and B it is enough to show that

$$M_{p}^{i}(D-E) = M_{p}^{i}(D)$$
 $(i = 1,..., N)$

for some open rectangle D containing G. Take a bounded open set $G_1 \supset \overline{D}$. First we observe by using Lemma 2 that

$$M_p^i(D-E) = \inf_u \int_{D-E} |\mathcal{V}u|^p dx,$$

where the infimum is taken over all *p*-precise functions *u* defined in $G_0 = G_1 - E - \alpha_0^i - \alpha_1^i$ such that $u(\gamma) = 0$ for *p*-a.e. $\gamma \in \Gamma_{G_0}(\alpha_0^i) \cup \Gamma_{G_0}(\partial G_1)$, $u(\gamma) = 1$ for *p*-a.e. $\gamma \in \Gamma_{G_0}(\alpha_1^i)$ and u = const. on each component of some neighborhood of *E*. Moreover, in the same way as in Theorem 2, we have a *p*-precise function u_0 defined in D - E such that $u_0(\gamma) = 0$ for *p*-a.e. $\gamma \in \Gamma_{D-E}(\alpha_0^i)$, $u_0(\gamma) = 1$ for *p*-a.e. $\gamma \in \Gamma_{D-E}(\alpha_1^i)$, $M_p^i(D-E) = \int_{D-E} |\nabla u_0|^p dx$ and $\int_{D-E} |\nabla u_0|^{p-2} (\nabla u_0, \nabla \psi) dx = 0$ for every ψ in $C_1^{\infty}(D; E)$. By Lemma 5, we see that $E \in N_{KDP}^p$. Since $u_0 \in KD^p(D-E; E)$, there exists a function \tilde{u}_0 in $KD^p(D)$ such that $\tilde{u}_0 = u_0$ in D - E. On the other hand $M_p^i(D) = C_p(\alpha_0^i, \alpha_1^i; D)$. Obviously $\tilde{u}_0 \in \mathcal{D}(\alpha_0^i, \alpha_1^i; D)$. Take ϕ_0 in $C_0^{\infty}(D)$ such that $\phi_0 = 1$ on a neighborhood of *E*. For any *p*-precise function *v* in *D* such that $v(\gamma) = 0$ for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0^i) \cup \Gamma_D(\alpha_1^i)$, we have

$$\begin{split} & \int_{D} |\mathcal{V}\tilde{u}_{0}|^{p-2} (\mathcal{V}\tilde{u}_{0}, \mathcal{V}v) dx \\ & = \int_{D} |\mathcal{V}\tilde{u}_{0}|^{p-2} (\mathcal{V}\tilde{u}_{0}, \mathcal{V}(\phi_{0}v)) dx + \int_{D} |\mathcal{V}\tilde{u}_{0}|^{p-2} (\mathcal{V}\tilde{u}_{0}, \mathcal{V}(v(1-\phi_{0}))) dx. \end{split}$$

Using Lemma 2 and the fact $\tilde{u}_0 \in KD^p(D)$ we conclude that

$$\int_{D} |\mathcal{F}\tilde{u}_{0}|^{p-2} (\mathcal{F}\tilde{u}_{0}, \mathcal{F}v) dx = 0.$$

From Theorem 4 it follows that \tilde{u}_0 is an extremal function for $M_p^i(D)$. By Corollary 1, we have that $M_p^i(D-E) = M_p^i(D)$ for all i=1,...,N. The proof is completed.

COROLLARY 2. If $p \ge 2$, then $E \in N^G_{KD^p}$ if and only if $C^{\infty}_1(G; E)$ is dense in $\mathring{W}^p_1(G)$.

COROLLARY 3. If $p \ge 2$, then the property $E \in N_{KDP}^G$ does not depend on the choice of G.

By virtue of Corollary 3, in case $p \ge 2$ we may omit the suffix G in the notation $N_{KD^p}^G$ and have a notion of KD^p -null sets. We combine these results with Theorem A and have the following theorem.

THEOREM 11. If $p \ge 2$, then a compact set E is a KD^p-null set if and only if E is removable for FD^q, where q = p/(p-1).

REMARK. In case $p \ge 2$, by Corollary 2 any compact subset of a KD^p -null set is a KD^p -null set. If E_1, \ldots, E_n are totally disconnected and KD^p -null sets, then so is $E_i \cap E_j$. Hence we see that $\bigcup_{i=1}^n E_i \in N_{KD^p}$.

§6. The case p=2

Here we shall give a characterization of KD^2 -null sets. Let D be a bounded domain with a finite number of boundary components α_0 , α_1 and β_j (j=1,...,k). Denote by $\mathscr{D}' = \mathscr{D}'(\alpha_0, \alpha_1; D, \{\beta_j\})$ the family of all $C^{\infty}(D)$ -functions u in D each of which is identically equal to 0 (resp. 1, a constant $a_j, j=1,...,k$) in the intersections with D of some neighborhoods of α_0 (resp. $\alpha_1, \beta_j, j=1,...,k$).

LEMMA 8. $C_p^*(\alpha_0, \alpha_1; D, \{\beta_j\}) = \inf_{u \in \mathscr{D}'} \int_D |\mathcal{V}u|^p dx.$

PROOF. Put $C'_p = \inf_{u \in \mathscr{D}'} \int_D |\mathcal{F}u|^p dx$ and $C^*_p = C^*_p(\alpha_0, \alpha_1; D, \{\beta_j\})$. Obviously, $C^*_p \leq C'_p$. For any $u \in \mathscr{D}^*(\alpha_0, \alpha_1; D, \{\beta_j\})$ there is $f \in \mathscr{D}'$ such that $(u-f)(\gamma) = 0$ for p-a.e. $\gamma \in \Gamma_D$. By Lemma 2 we can take $\{f_n\}_{n=1}^{\infty}$ in $C^{\infty}_0(D)$ such that $\lim_{n \to \infty} \|\mathcal{F}(u - f - f_n)\|_p = 0$. Therefore $\lim_{n \to \infty} \|\mathcal{F}(f + f_n)\|_p = \|\mathcal{F}u\|_p$. Since $f + f_n \in \mathscr{D}'$, $C'_p \leq C^*_p$.

In the same way as Lemma 8, we have

LEMMA 9 (cf. [9, Theorems 6.13 and 6.14]).

$$C_p(\alpha_0, \alpha_1; D) = \inf_u \int_D |\nabla u|^p dx,$$

where the infimum is taken over all $C^{\infty}(D)$ -functions u each of which is identically equal to 0 and 1 in the intersections with D of some neighborhoods of α_0 and α_1 respectively.

Let D be a regular domain, that is a domain for which ∂D consists of a finite number of compact C¹-surfaces α_0 , α_1 and β_j (j=1,...,k). We know (cf. [11]) that there exist principal functions h_i (i=0, 1) with respect to α_0 , α_1 and D, which are characterized by the following properties:

- (1) h_i is harmonic in D and is continuous on \overline{D} ;
- (2) $h_i = 0$ on α_0 and $h_i = 1$ on α_1 ;

(3) $\partial h_0 / \partial v = 0$ on each β_j , $h_1 = \text{const.}$ on each β_j and $\int_{\beta_j} \partial h_1 / \partial v dS = 0$ for j = 1, ..., k, where $\partial / \partial v$ indicates the normal derivative and dS is the surface element.

In case p=2, by Green's formula and Lemmas 8 and 9, we have

THEOREM 12. Let D be a regular domain with $\partial D = \alpha_0 \cup \alpha_1 \cup \beta_1 \cup \cdots \cup \beta_k$. Then $C_2^*(\alpha_0, \alpha_1; D, \{\beta_j\}) = \int_D |\nabla h_1|^2 dx$ and $C_2(\alpha_0, \alpha_1; D) = \int_D |\nabla h_0|^2 dx$. We note by Theorem 11 that the notion of KD^2 -null sets coincides with the notion of KD-null sets defined in [12]. The author showed in [12, Theorem 3] a relation between N_{KD} and the span for the canonical partition of E. By this result and Theorem 12, we obtain the following theorem.

THEOREM 13. $E \in N_{KD^2}$ if and only if $C_2(\alpha_0, \alpha_1; D-E) = C_2^{**}(\alpha_0, \alpha_1; D-E, \beta_Q)$ for every unbounded domain D such that $D \supset E$ and ∂D consists of two disjoint compact boundary components α_0, α_1 , where $\beta = \partial E \cup \{\infty\}$.

PROOF. Suppose $E \in N_{KD^2}$. Let D be an unbounded domain such that $D \supset E$ and ∂D consists of two disjoint compact boundary components α_0, α_1 . Let u_0 and u^* be the extremal functions for $C_2(\alpha_0, \alpha_1; D-E)$ and $C_2^{**}(\alpha_0, \alpha_1; D-E, \beta_Q)$ respectively. Take a bounded domain G such that $G \supset E$ and $R^N - G \supset \alpha_0, \alpha_1$. Since $u_0, u^* \in KD^2(G-E; E)$, there exist 2-precise functions \hat{u}_0, \hat{u}^* in $KD^2(G)$ such that $u_0 = \hat{u}_0$ in G - E and $u^* = \hat{u}^*$ in G - E. Let

$$\tilde{u}_0 = \begin{cases} \hat{u}_0 & \text{in } G \\ u_0 & \text{in } D - G \end{cases}$$

and

$$\tilde{u}^* = \begin{cases} \hat{u}^* & \text{ in } G \\ \\ u^* & \text{ in } D - G. \end{cases}$$

We take $\psi_0 \in C_0^{\infty}(G)$ such that $\psi_0 = 1$ on a neighborhood of E. We extend ψ_0 by 0 to $\mathbb{R}^N - G$. Let ψ be any function in $\mathbb{C}^{\infty}(D)$ such that the support of $|\mathcal{F}\psi|$ is bounded and $\psi = 0$ on $\alpha_0 \cup \alpha_1$. Then we have

$$\begin{split} &\int_{D} (\mathcal{F}\tilde{u}^{*}, \mathcal{F}\psi) dx \\ &= \int_{D} (\mathcal{F}\tilde{u}^{*}, \mathcal{F}(\psi(1-\psi_{0}))) dx + \int_{D} (\mathcal{F}\tilde{u}^{*}, \mathcal{F}(\psi\psi_{0})) dx \\ &= \int_{D-E} (\mathcal{F}u^{*}, \mathcal{F}(\psi(1-\psi_{0}))) dx + \int_{G} (\mathcal{F}\tilde{u}^{*}, \mathcal{F}(\psi\psi_{0})) dx. \end{split}$$

Since $\psi\psi_0 \in C_0^{\infty}(G)$, the last integral vanishes. Since $\psi(1-\psi_0)$ is a function in $C^{\infty}(D-E)$ such that the support of $|\mathcal{V}(\psi(1-\psi_0))|$ is bounded, $\psi(1-\psi_0)=0$ on $\alpha_0 \cup \alpha_1$ and $\psi(1-\psi_0)=0$ on a neighborhood of E, we have $\int_{D-E} (\mathcal{V}u^*, \mathcal{V}(\psi(1-\psi_0))) dx = 0$. Hence

$$\int_D (\nabla \tilde{u}^*, \nabla \psi) dx = 0.$$

Let $\Gamma_D(\infty)$ be the family of all locally rectifiable curves in *D* each of which starts from a point of *D* and tends to the point at infinity. By [9, Theorem 9.12], $\tilde{u}^* - \tilde{u}_0$ has a finite constant limit along 2-a. e. curve in $\Gamma_D(\infty)$. By using Lemma 2 and Hölder's inequality, we have

$$\int_D (\nabla \tilde{u}^*, \nabla (\tilde{u}^* - \tilde{u}_0)) dx = 0.$$

From this we see that

$$\int_{D} | \mathcal{V} \tilde{u}^* |^2 dx \leq \int_{D} | \mathcal{V} \tilde{u}_0 |^2 dx.$$

By Corollary 1 to Theorem 8,

$$\int_{D-E} |\nabla u^*|^2 dx \leq \int_{D-E} |\nabla u_0|^2 dx.$$

Since the converse inequality is trivial, we conclude that

$$C_{2}(\alpha_{0}, \alpha_{1}; D - E) = C_{2}^{**}(\alpha_{0}, \alpha_{1}; D - E, \beta_{Q}).$$

Conversely we suppose that $C_2(\alpha_0, \alpha_1; D-E) = C_2^{**}(\alpha_0, \alpha_1; D-E, \beta_Q)$ for every *D* as in the theorem. Take distinct two points x^0 , x^1 in the domain $\mathbb{R}^N - E$ $(=E^c)$ and balls S_r^0 , S_r^1 of radius *r*, with centers at x^0 , x^1 and with disjoint closures in E^c . Let $\{D_n\}$ be an exhaustion of E^c such that $D_1 \supset S_r^0$, S_r^1 . Denote by β_j (j=1,...,j(n)) the boundary components of D_n . We know (cf. [11]) that there exist principal functions $P_{i,n}$ (i=0, 1) with respect to x^0 , x^1 and D_n , which are characterized by the following properties:

(1) $P_{i,n}$ is harmonic in $D_n - (\{x^0\} \cup \{x^1\});$

(2)
$$P_{i,n} = \frac{1}{\sigma |x - x^0|^{N-2}} + h_{i,n}$$
 on S_r^0 ,
 $P_{i,n} = \frac{-1}{\sigma |x - x^1|^{N-2}} + f_{i,n}$ on S_r^1 ,

where σ is the surface area of unit sphere in \mathbb{R}^N , and $h_{i,n}$ and $f_{i,n}$ are harmonic in S_r^0 and S_r^1 respectively and $f_{i,n}(x^1)=0$;

(3) $\partial P_{0,n}/\partial v = 0$ on ∂D_n , $P_{1,n} = \text{const.}$ on each β_j and $\int_{\beta_j} \partial P_{1,n}/\partial v \, dS = 0$ for j = 1, ..., j(n).

We see that the limits

$$h_i = \lim_{n \to \infty} h_{i,n}, \quad f_i = \lim_{n \to \infty} f_{i,n} \qquad (i = 0, 1)$$

exist and the convergences are uniform on every compact subset of E^c . Set

$$\begin{aligned} \alpha_0 &= \partial S_r^0, \ \alpha_1 &= \partial S_r^1; \\ a_n &= \max_{x \in \alpha_0} P_{0,n}(x), \ a'_n &= \min_{x \in \alpha_0} P_{0,n}(x), \\ b'_n &= \max_{x \in \alpha_1} P_{0,n}(x), \ b_n &= \min_{x \in \alpha_1} P_{0,n}(x); \\ A_n &= \{x; \ P_{0,n}(x) \ge a_n\}, \ A'_n &= \{x; \ P_{0,n}(x) \ge a'_n\}, \\ B'_n &= \{x; \ P_{0,n}(x) \le b'_n\}, \ B_n &= \{x; \ P_{0,n}(x) \le b_n\} \end{aligned}$$

and

$$\alpha_{0n} = \partial A_n, \ \alpha'_{0n} = \partial A'_n, \ \alpha_{1n} = \partial B_n, \ \alpha'_{1n} = \partial B'_n.$$

For sufficiently small r, we easily see that

$$C_2(\alpha_{0n}, \alpha_{1n}; D_n - A_n - B_n) \leq C_2(\alpha_0, \alpha_1; D_n - \overline{S_r^0} - \overline{S_r^1})$$
$$\leq C_2(\alpha'_{0n}, \alpha'_{1n}; D_n - A'_n - B'_n).$$

By Theorem 12, $(a_n - P_{0,n})/(a_n - b_n)$ is extremal for $C_2(\alpha_{0n}, \alpha_{1n}; D_n - A_n - B_n)$. Therefore we have

$$C_2(\alpha_{0n}, \alpha_{1n}; D_n - A_n - B_n) = \frac{N-2}{a_n - b_n}.$$

From this we derive that

$$\max_{x \in \alpha_0} h_{0,n} - \min_{x \in \alpha_1} f_{0,n} = a_n - b_n - \frac{2}{\sigma r^{N-2}}$$
$$= \frac{N-2}{C_2(\alpha_{0n}, \alpha_{1n}; D_n - A_n - B_n)} - \frac{2}{\sigma r^{N-2}}.$$

Similarly,

$$\min_{x \in \alpha_0} h_{0,n} - \max_{x \in \alpha_1} f_{0,n} = \frac{N-2}{C_2(\alpha'_{0,n}, \alpha'_{1,n}; D_n - A'_n - B'_n)} - \frac{2}{\sigma r^{N-2}}.$$

From the above inequalities we see

$$\max_{x \in \alpha_0} h_{0,n} - \min_{x \in \alpha_1} f_{0,n} \ge \frac{N-2}{C_2(\alpha_0, \alpha_1; D_n - \overline{S}_r^0 - \overline{S}_r^1)} - \frac{2}{\sigma r^{N-2}}$$
$$\ge \min_{x \in \alpha_0} h_{0,n} - \max_{x \in \alpha_1} f_{0,n}.$$

Letting $n \rightarrow \infty$, we have

$$\max_{x \in \alpha_0} h_0 - \min_{x \in \alpha_1} f_0 \ge \frac{N-2}{C_2(\alpha_0, \alpha_1; E^c - \overline{S}_r^0 - \overline{S}_r^1)} - \frac{2}{\sigma r^{N-2}} \ge \min_{x \in \alpha_0} h_0 - \max_{x \in \alpha_1} f_0.$$

In the same way we have

$$\max_{x \in \alpha_0} h_1 - \min_{x \in \alpha_1} f_1 \ge \frac{N-2}{C_2^{**}(\alpha_0, \alpha_1; E^c - \overline{S}_r^0 - \overline{S}_r^1, \beta_Q)} - \frac{2}{\sigma r^{N-2}} \ge \min_{x \in \alpha_0} h_1 - \max_{x \in \alpha_1} f_1.$$

By assumption the equality

$$C_{2}(\alpha_{0}, \alpha_{1}; E^{c} - \overline{S_{r}^{0}} - \overline{S_{r}^{1}}) = C_{2}^{**}(\alpha_{0}, \alpha_{1}; E^{c} - \overline{S_{r}^{0}} - \overline{S_{r}^{1}}, \beta_{Q})$$

holds for every small r > 0. Hence

$$\max_{x \in \alpha_0} h_0 - \min_{x \in \alpha_1} f_0 \ge \min_{x \in \alpha_0} h_1 - \max_{x \in \alpha_1} f_1$$

and

$$\max_{x \in \alpha_0} h_1 - \min_{x \in \alpha_1} f_1 \geq \min_{x \in \alpha_0} h_0 - \max_{x \in \alpha_1} f_0.$$

Since $f_i(x^1)=0$ (i=0, 1), letting $r \to 0$ we have that $h_0(x^0)=h_1(x^0)$. This means that the span is equal to zero for all couples (x^0, x^1) of distinct points in E^c , so that by [12, Theorem 3], we conclude that $E \in N_{KD^2}$. The proof is completed.

REMARK. This theorem is a euclidean space version of Rodin's result on Riemann surfaces in [10].

References

- L. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101-129.
- [2] J. A. Clarkson: Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [3] B. Fuglede: Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
- [4] F. W. Gehring: Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J. 9 (1962), 137-150.
- [5] F. W. Gehring: Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393.
- [6] L. I. Hedberg: Removable singularities and condenser capacities, Ark. Mat. 12 (1974), 181-201.
- [7] A. Marden and B. Rodin: Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings, Acta Math. 115 (1966), 237-269.
- [8] C. D. Minda: Extremal length and harmonic functions on Riemann surfaces, Trans. Amer. Math. Soc. 171 (1972), 1-22.
- [9] M. Ohtsuka: Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
- [10] B. Rodin: Extremal length and removable boundaries of Riemann surfaces, Bull. Amer. Math. Soc. 72 (1966), 274–276.

Hiromichi YAMAMOTO

- [11] B. Rodin and L. Sario: Principal functions, D. Van Nostrand, Princeton, 1968.
- [12] H. Yamamoto: On KD-null sets in N-dimensional cuclidean space, J. Sci. Hiroshima Univ. Ser. A-1 Math. 34 (1970), 59-68.
- [13] W. P. Ziemer: Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43-51.

Department of Mathematics, Faculty of Science, Kôchi University