On a p-Capacity of a Condenser and KD ${ }^{p}$-Null Sets

Hiromichi Yamamoto

(Received September 19, 1977)

Introduction

Ahlfors and Beurling [1] introduced the notion of null sets of class N_{D} in the complex plane and characterized such null sets by means of the extremal length. Hedberg [6] considered a generalization of this notion, namely, removable sets for the class $F D^{p}(1<p<\infty)$ in an N-dimensional euclidean space R^{N}, and characterized such removable sets by means of condenser capacities. We can consider a class $K D^{p}$ of p-precise functions on $R^{N}(N \geqq 3)$ and define $K D^{p_{-}}$ null sets. In the present paper, we shall show several relations between $K D^{p_{-}}$ null sets and p-capacities of a condenser.

A real valued function u defined in a domain D of R^{N} is called a p-precise function, if it is absolutely continuous along p-a. e. curve in D and $|\operatorname{grad} u|$ belongs to $L^{p}(D)$. A p-precise function u in D has a finite curvilinear limit $u(\gamma)$ along p-a.e. curve γ in D (see [9, Theorem 5.4]). Let α be a compact subset of ∂D and $\Gamma_{D}(\alpha)$ be the family of all locally rectifiable curves in D each of which starts from some point of D and tends to α. Let α_{0}, α_{1} be non-empty compact subsets of ∂D such that $\alpha_{0} \cap \alpha_{1}=\emptyset$. We follow [9] in defining the p-capacity of condenser $\left(\alpha_{0}, \alpha_{1} ; D\right)$:

$$
C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)=\inf _{u} \int_{D}|\operatorname{grad} u|^{p} d x
$$

where the infimum is taken over all p-precise functions u in D such that $u(\gamma)=0$ (resp. 1) for p-a.e. $\gamma \in \Gamma_{D}\left(\alpha_{0}\right)$ (resp. $\Gamma_{D}\left(\alpha_{1}\right)$). Denote by \hat{D} the KerékjártóStoïlow compactification of D. For a condenser $\left(\alpha_{0}, \alpha_{1} ; D\right)$ such that α_{0} and α_{1} are two mutually disjoint closed subsets of $\hat{D}-D$ and a partition $\left\{\beta_{\imath}\right\}$ of $\hat{D}-D$ $-\alpha_{0}-\alpha_{1}$, we shall consider a new kind of p-capacity $C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ as follows. Let the boundary components of D be divided into α_{0}, α_{1} and $\left\{\beta_{\iota}\right\}$. We set

$$
C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)=\inf _{u} \int_{D}|\operatorname{grad} u|^{p} d x
$$

where the infimum is taken over all p-precise functions u in D such that $u(\gamma)=0$ (resp. 1) for p-a.e. $\gamma \in \Gamma_{D}\left(\alpha_{0}\right)\left(\right.$ resp. $\left.\Gamma_{D}\left(\alpha_{1}\right)\right)$ and $u(\gamma)=a_{\imath}$ for p-a.e. $\gamma \in \Gamma_{D}\left(\beta_{\imath}\right)$, where each a_{\imath} is a constant depending on u. On the other hand, we take an
exhaustion $\left\{D_{n}\right\}$ and set $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)=\lim _{n \rightarrow \infty} C_{p}^{*}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n},\left\{\beta_{\imath}^{(n)}\right\}\right)$, where $\alpha_{i n}=\partial D_{n} \cap \partial A_{i n}(i=0,1), A_{\text {in }}$ being the component of $\bar{D}-D_{n}$ which contains α_{i}, and $\left\{\beta_{\imath}^{(n)}\right\}$ is some partition of $\partial D_{n}-\alpha_{0 n}-\alpha_{1 n}$ depending on $\left\{\beta_{\imath}\right\}$.

In $\S 2$, we shall give a characterization of the extremal functions for $C_{p}^{*}\left(\alpha_{0}\right.$, $\left.\alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ and $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\iota}\right\}\right)$. In $\S 3$, for some condenser ($\left.\alpha_{0}, \alpha_{1} ; D\right)$ and some partition $\left\{\beta_{\imath}\right\}$ we shall relate $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\hat{1}}\right\}\right)$ to the p-module of the family of curves each of which connects α_{0} and α_{1} in \hat{D}. This is a generalization of Gehring's result in [4].

A compact set E in R^{N} will be called a $K D^{p}$-null set with respect to an open set G containing E, if any function in $K D^{p}(G-E ; E)$ can be extended to a function in $K D^{p}(G)$, where $K D^{p}(G)$ (resp. $K D^{p}(G-E ; E)$) is the class of p-precise functions u in G (resp. $G-E$) satisfying the following condition:

$$
\int_{G}|\operatorname{grad} u|^{p-2}(\operatorname{grad} u, \operatorname{grad} \phi) d x=0
$$

for all $\phi \in C_{0}^{\infty}(G)$ (resp. for all $\phi \in C_{0}^{\infty}(G)$ such that $\operatorname{grad} \phi$ vanishes in some neighborhood of E).

In §4, we shall give a necessary condition for a set to be $K D^{p}$-null in terms of p-capacities. In $\S 5$, we observe some relations between $K D^{p}$-null sets and sets removable for the class $F D^{p}$. In § 8 , we shall give a characterization of $K D^{2}$ null sets by means of 2-capacities.

§ 1. Preliminaries

We shall denote by $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ a point in R^{N}, and set $|x|=\left(x_{1}^{2}+x_{2}^{2}\right.$ $\left.+\cdots+x_{N}^{2}\right)^{1 / 2}$. For sets E and F in R^{N}, let $\operatorname{dist}(E, F)$ denote the distance between E and F. We denote by ∂E and \bar{E} the boundary and the closure of E respectively. Let p be a finite number such that $p>1$. For an open set G in R^{N}, let $L^{p}(G)$ be the family of functions f on G for which $|f|^{p}$ is integrable, and let $\|f\|_{p}$ be the L^{p}-norm. For a measurable vector field $v=\left(v_{1}, v_{2}, \ldots, v_{N}\right)$ on G, we define $\|v\|_{p}$ by $\||v|\|_{p}$. We denote by $C^{\infty}(G)$ the family of infinitely differentiable functions in G and by $C_{0}^{\infty}(G)$ the subfamily consisting of functions with compact support in G.

Let Γ be a family of locally rectifiable curves in R^{N} none of which is a point. A non-negative Borel measurable function f is called admissible in association with Γ if $\int_{\gamma} f d s \geqq 1$ for each $\gamma \in \Gamma$. The p-module $M_{p}(\Gamma)$ of Γ is defined by $\inf _{f} \int f^{p} d x$, where the infimum is taken over all functions f admissible in association with Γ. A property will be said to hold p-almost everywhere ($=p$-a.e.) on Γ if the p module of the subfamily of exceptional curves is zero. The following properties are well known (see, e. g., [3, Chapter I] or [9, Chapter I]):
(1.1) If $\Gamma=\cup_{n=1}^{\infty} \Gamma_{n}$, then $M_{p}(\Gamma) \leqq \sum_{n=1}^{\infty} M_{p}\left(\Gamma_{n}\right)$.
(1.2) $M_{p}(\Gamma)=0$ if and only if there is a non-negative Borel measurable function $f \in L^{p}\left(R^{N}\right)$ such that $\int_{\gamma} f d s=\infty$ for every $\gamma \in \Gamma$.
(1.3) Every sequence $\left\{f_{n}\right\}^{\gamma}$ of Borel measurable functions in an open set G such that $\int_{G}\left|f_{n}\right|^{p} d x$ tends to zero as $n \rightarrow \infty$ has a subsequence $\left\{f_{n_{i}}\right\}$ such that

$$
\lim _{i \rightarrow \infty} \int_{\gamma}\left|f_{n_{i}}\right| d s=0
$$

for p-a. e. curve γ in G.
A real valued function u defined in an open set G is called a p-precise function, if (i) it is absolutely continuous along p-a.e. curve in G, and (ii) $|\nabla u|$ belongs to $L^{p}(G)$; from (i) it follows that the gradient ∇u exists almost everywhere in G. The following results are known:
(1.4) Let u be a p-precise function in G. Then

$$
u\left(x^{1}\right)-u\left(x^{0}\right)=\int_{x^{0} x^{1}}\left(\sum_{k=1}^{N} \frac{\partial u}{\partial x_{k}} \frac{d x_{k}}{d s}\right) d s
$$

for any points x^{0} and x^{1} on p-a.e. curve γ in G, where $\widetilde{x^{0} x^{1}}$ is the subarc of γ connecting x^{0} and x^{1} (cf. [3, Chapter III, 2] or [9, Theorem 4.16]).
(1.5) Let $\left\{u_{n}\right\}$ be a sequence of p-precise functions in G and assume

$$
\lim _{n, m \rightarrow \infty}\left\|\boldsymbol{V}\left(u_{n}-u_{m}\right)\right\|_{p}=0
$$

Then there exists a p-precise function u in G such that $\left\|\nabla\left(u_{n}-u\right)\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$ (see [3, Theorem 14] or [9, Theorem 4.18]).
(1.6) Every p-precise function u in G has a finite curvilinear limit $u(\gamma)$ along p-a.e. curve γ in G (see [9, Theorem 5.4]).
(1.7) Let u be a p-precise function defined in G, and v a p-precise function defined in an open set $G^{\prime} \subset G$ such that, for p-a. e. curve γ in G^{\prime} terminating at a point x of $\partial G^{\prime} \cap G, \lim v(y)$ exists and equals $u(x)$ as y tends to x along γ. Then the function w which is equal to v in G^{\prime} and to u on $G-G^{\prime}$ is a p-precise function in G (see [9 , Theorem 5.5]).

Let D be a domain in R^{N} and denote by D^{*} the closure of D in the Aleksandrov compactification $R^{N} \cup\{\infty\}$. Let α be a closed subset of the boundary $D^{*}-D$. We shall denote by Γ_{D} (resp. $\left.\Gamma_{D}(\alpha)\right)$ the family of all locally rectifiable curves in D each of which starts from a point of D and tends to $D^{*}-D$ (resp. α). Let α_{0}, α_{1} be non-empty closed subsets of $D^{*}-D$ such that $\alpha_{0} \cap \alpha_{1}=\emptyset$. We shall denote by $\mathscr{D}\left(\alpha_{0}, \alpha_{1} ; D\right)$ the family of all p-precise functions u in D such that $u(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_{D}\left(\alpha_{0}\right)$ and $u(\gamma)=1$ for p-a.e. $\gamma \in \Gamma_{D}\left(\alpha_{1}\right)$. Following Ohtsuka [9, §6.2], we define the p-capacity of condenser ($\alpha_{0}, \alpha_{1} ; D$) as

$$
C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)=\inf _{u \in \mathscr{D}\left(\alpha_{0}, \alpha_{1} ; D\right)} \int_{D}|\nabla u|^{p} d x
$$

If a p-precise function u in $\mathscr{D}\left(\alpha_{0}, \alpha_{1} ; D\right)$ satisfies

$$
C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)=\int_{D}|\nabla u|^{p} d x,
$$

then u is called an extremal function for $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)$.
Denote by \hat{D} the Kerékjártó-Stoïlow compactification of D (see [11]). Throughout the rest of the paper let α_{0} and α_{1} be non-empty mutually disjoint closed sets consisting of boundary components. Divide the boundary components of $\hat{D}-D-\alpha_{0}-\alpha_{1}$ into mutually disjoint sets $\left\{\beta_{\imath}\right\}$, and let $\mathscr{D}^{*}\left(\alpha_{0}, \alpha_{1}\right.$; $\left.D,\left\{\beta_{\iota}\right\}\right)$ be the family consisting of all $u \in \mathscr{D}\left(\alpha_{0}, \alpha_{1} ; D\right)$ such that $u(\gamma)=a_{\imath}$ for p-a.e. $\gamma \in \Gamma_{D}\left(\beta_{\imath}\right)$, where each a_{\imath} is a constant depending on u. We define the p-capacity of condenser $\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\iota}\right\}\right)$ as

$$
C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)=\inf _{u \in \mathscr{\mathscr { * }}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{6}\right)\right.} \int_{D}|\nabla u|^{p} d x .
$$

If a p-precise function u in $\mathscr{D}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ satisfies

$$
C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)=\int_{D}|\nabla u|^{p} d x
$$

then u is called an extremal function for $C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{6}\right\}\right)$.
We shall give another definition of p-capacity. Let $\left\{\beta_{\imath}\right\}$ be as above. Let $\left\{D_{n}\right\}$ be an exhaustion of D, that is, each D_{n} is a bounded subdomain of D, each ∂D_{n} consists of a finite number of C^{1}-surfaces, $\bar{D}_{n} \subset D_{n+1}(n=1,2, \ldots)$ and $\cup_{n=1}^{\infty} D_{n}$ $=D$. Let $A_{0 n}\left(\right.$ resp. $\left.A_{1 n}\right)$ consist of the components of $\hat{D}-D_{n}$ each of which meets α_{0} (resp. α_{1}). We may assume $A_{01} \cap A_{11}=\emptyset$. Set $\alpha_{i n}=\partial D_{n} \cap \partial A_{i n}(i=0,1)$. Take any boundary components β and β^{\prime} in $\partial D_{n}-\partial A_{0_{n}}-\partial A_{1 n}$, and let A and A^{\prime} be the components of $\hat{D}-D_{n}$ such that $\partial A=\beta$ and $\partial A^{\prime}=\beta^{\prime}$. We say that β and β^{\prime} are in the same class if there exists some β_{\imath} such that $\beta_{\imath} \cap A \neq \emptyset$ and $\beta_{\imath} \cap A^{\prime} \neq \emptyset$. We classify the boundary components of $\partial D_{n}-\partial A_{0 n}-\partial A_{1 n}$ in this way and denote them by $\left\{\beta_{j}^{(n)}\right\}$; these are naturally finite in number. Let $B_{j}^{(n)}$ consist of the components of $\hat{D}-D_{n}$ such that $\partial B_{j}^{(n)}=\beta_{j}^{(n)}$. We suppose that $\left\{\beta_{c}\right\}$ has the following property:
(1.8) We can take an exhaustion $\left\{D_{n}\right\}$ such that for each β_{ι} and D_{n}, if $\beta_{\imath} \cap \cup_{j=1}^{j(n)} B_{j}^{(n)} \neq \emptyset$ then $\beta_{\imath} \cap A_{0 n}=\emptyset$ and $\beta_{\iota} \cap A_{1 n}=\emptyset$.

Let $\left\{D_{n}\right\}$ be an exhaustion of the type considered in (1.8). By property (1.7) for any u in $\mathscr{D}^{*}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n},\left\{\beta_{j}^{(n)}\right\}\right)$, the function \tilde{u} in D_{n+1} which is an extension of u with a suitable constant on each component of $D_{n+1}-D_{n}$ belongs to $\mathscr{D}^{*}\left(\alpha_{0(n+1)}, \alpha_{1(n+1)} ; D_{n+1},\left\{\beta_{j}^{(n+1)}\right\}\right)$. Therefore $C_{p}^{*}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n},\left\{\beta_{j}^{(n)}\right\}\right) \geqq$
$C_{p}^{*}\left(\alpha_{0(n+1)}, \alpha_{1(n+1)} ; D_{n+1},\left\{\beta_{j}^{(n+1)}\right\}\right)(n=1,2, \ldots)$. We set

$$
C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)=\lim _{n \rightarrow \infty} C_{p}^{*}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n},\left\{\beta_{j}^{(n)}\right\}\right)
$$

We note that $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ does not depend on the choice of exhaustion of the type considered in (1.8). When $\left\{\beta_{\imath}\right\}$ is the canonical partition, we write $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$ for $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$.

§2. Extremal functions for the p-capacity of a condenser

We begin with
Lemma 1. Let Γ be a family of curves in a domain D in R^{N}, and $\left\{\phi_{n}\right\}$ be a sequence of functions defined p-a.e. and tending to a finite-valued function ϕ p-a.e. on Γ. Let $u_{0}, u_{1}, u_{2}, \ldots$ be p-precise functions such that $u_{n}(\gamma)=\phi_{n}(\gamma)$ for each $n \geqq 1$ and p-a.e. $\gamma \in \Gamma$ and $\left\|\nabla\left(u_{n}-u_{0}\right)\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. Then there exists a constant c such that $u_{0}(\gamma)=\phi(\gamma)-c$ for $p-a . e . \gamma \in \Gamma$.

Proof. We may assume that $M_{p}(\Gamma)>0$. In view of properties (1.1) and (1.6) we may assume furthermore that ϕ_{n} and ϕ are defined everywhere on Γ, $u_{0}(\gamma), u_{1}(\gamma), \ldots$ exist and are finite everywhere on Γ and $u_{n}(\gamma)=\phi_{n}(\gamma)$ for all $n \geqq 1$ and $\gamma \in \Gamma$. By properties (1.3) and (1.4) there is a family Γ^{\prime} of curves in D with $M_{p}\left(\Gamma^{\prime}\right)=0$ and having the following properties:
(1) There exists a subsequence $\left\{u_{n_{i}}\right\}$ such that

$$
\lim _{i \rightarrow \infty} \int_{\gamma}\left|\nabla\left(u_{n_{i}}-u_{0}\right)\right| d s=0
$$

for all $\gamma \notin \Gamma^{\prime}$.

$$
\begin{equation*}
u_{n}\left(x^{1}\right)-u_{n}\left(x^{0}\right)=\int_{x^{0} x^{1}}\left(\sum_{k=1}^{N} \frac{\partial u_{n}}{\partial x_{k}} \frac{d x_{k}}{d s}\right) d s \tag{2}
\end{equation*}
$$

for each $n=0,1, \ldots$, for all $\gamma \notin \Gamma^{\prime}$ and for arbitrary points x^{0} and x^{1} on γ.
We shall denote $\left\{u_{n_{i}}\right\}$ again by $\left\{u_{n}\right\}$.
By property (1.2) there exists a non-negative Borel measurable function h in $L^{p}(D)$ such that $\int_{\gamma} h d s=\infty$ for every $\gamma \in \Gamma^{\prime}$. We can find a subset D_{h} of D containing almost all points of D such that for any two points x and y in D_{h} there exists a curve γ which passes through x and y and along which $\int_{\gamma} h d s<\infty$ and such that for p-a.e. curve γ^{\prime} in D it is contained in D_{h} and $\int_{\gamma^{\prime}} h d s<\infty$ (see [9, Lemma 4.6]). Take $x^{0} \in D_{h}$ at which all u_{n} and u_{0} are finite, and take any $\gamma \in \Gamma-\Gamma^{\prime}$ such that γ is contained in D_{h} and $\int_{\gamma} h d s<\infty$. Then we can find a curve γ_{0} in D_{h} which contains x^{0} and some end part of γ and for which $\int_{\gamma_{0}} h d s<\infty$. Let
$x(t), 0<t<1$, be a representation of γ_{0}. Since $\gamma_{0} \notin \Gamma^{\prime}$, by (2)

$$
u_{n}(x(t))-u_{n}\left(x^{0}\right)=\int_{x^{0} x(t)}\left(\sum_{k=1}^{N} \frac{\partial u_{n}}{\partial x_{k}} \frac{d x_{k}}{d s}\right) d s
$$

for any $t \in(0,1)$ and $n=0,1, \ldots$ It follows that

$$
\begin{aligned}
& \left|u_{n}\left(x^{0}\right)-\phi_{n}(\gamma)-u_{0}\left(x^{0}\right)+u_{0}(\gamma)\right| \\
= & \lim _{t \rightarrow 1}\left|u_{n}\left(x^{0}\right)-u_{n}(x(t))-u_{0}\left(x^{0}\right)+u_{0}(x(t))\right| \\
\leqq & \int_{\gamma_{0}}\left|\nabla\left(u_{n}-u_{0}\right)\right| d s \longrightarrow 0 \quad \text { as } n \longrightarrow \infty .
\end{aligned}
$$

Since $\phi_{n}(\gamma) \rightarrow \phi(\gamma)$ (=a finite value), $u_{n}\left(x^{0}\right)$ tends to $\phi(\gamma)+u_{0}\left(x^{0}\right)-u_{0}(\gamma)$. Set $c_{0}=\phi(\gamma)-u_{0}(\gamma)$. Then $u_{n}\left(x^{0}\right)$ tends to $u_{0}\left(x^{0}\right)+c_{0}$. Thus c_{0} does not depend on γ. This proves our lemma.

Let $\alpha_{0}, \alpha_{1},\left\{\beta_{\imath}\right\}$ be as in $\S 1$. We denote by $\mathscr{A}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ the family of all p-precise functions v in D such that $v(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_{D}\left(\alpha_{0}\right) \cup \Gamma_{D}\left(\alpha_{1}\right)$ and $v(\gamma)=a_{\imath}$ for p-a.e. $\gamma \in \Gamma_{D}\left(\beta_{\imath}\right)$, where each a_{\imath} is a constant depending on v.

First we shall show the following theorem.
Theorem 1. Let D be a domain and divide its boundary components into $\alpha_{0}, \alpha_{1},\left\{\beta_{j}\right\}_{j=1}^{\infty}$. Then there exists an extremal function u^{*} for $C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D\right.$, $\left.\left\{\beta_{j}\right\}\right)$ and it is characterized by the condition that

$$
\int_{D}\left|\nabla u^{*}\right|^{p-2}\left(\nabla u^{*}, \nabla v\right) d x=0
$$

for every v in $\mathscr{A}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$. Here $\left(\nabla u^{*}, \nabla v\right)$ means the inner product of ∇u^{*} and ∇v, and at a point x^{0} where $\left|\nabla u^{*}\left(x^{0}\right)\right|=0$ we set

$$
\left|\nabla u^{*}\left(x^{0}\right)\right|^{p-2}\left(\nabla u^{*}\left(x^{0}\right), \nabla v\left(x^{0}\right)\right)=0 .
$$

The difference of two extremal functions is constant a.e. in D.
Proof. In this proof we write C_{p}^{*} and \mathscr{D}^{*} for $C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ and $\mathscr{D}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ respectively. For the existence of u^{*}, we may assume that $M_{p}\left(\Gamma_{D}\left(\alpha_{i}\right)\right)>0(i=0,1)$, for, otherwise, the constant 0 or 1 belongs to \mathscr{D}^{*} so that the assertion is trivial. Choose a sequence $\left\{u_{n}\right\}$ in \mathscr{D}^{*} such that $\left\|\nabla u_{n}\right\|_{p}^{p}$ tends to C_{p}^{*} as $n \rightarrow \infty$. By using Clarkson's inequality (see [2] or [9, Lemma 1.1]) and the fact $\left(u_{n}+u_{m}\right) / 2 \in \mathscr{D}^{*}$, we see that $\lim _{n, m \rightarrow \infty}\left\|\boldsymbol{\nabla}\left(u_{n}-u_{m}\right)\right\|_{p}=0$. Applying property (1.5) we have a p-precise function u_{0} such that $C_{p}^{*}=\left\|\nabla u_{0}\right\|_{p}^{p}$.

We observe that $u_{n}^{\prime}=\max \left(0, \min \left(u_{n}, 1\right)\right)$ belongs to \mathscr{D}^{*} (see [9, Theorem 4.15]) and $\left\|\nabla u_{n}^{\prime}\right\|_{p} \leqq\left\|\nabla u_{n}\right\|_{p}$. Hence we may assume that $0 \leqq u_{n} \leqq 1$ for all n. By Lemma 1 there exists a constant c such that $u_{0}(\gamma)+c=0$ (resp. 1) p-a.e. on
$\Gamma_{D}\left(\alpha_{0}\right)$ (resp. $\left.\Gamma_{D}\left(\alpha_{1}\right)\right)$. We write u_{0} for $u_{0}+c$. Suppose $u_{n}(\gamma)=a_{j}^{n}$ for p-a.e. γ $\in \Gamma_{D}\left(\beta_{j}\right)$. By choosing a suitable subsequence we may assume that $\left\{a_{j}^{n}\right\}_{n=1}^{\infty}$ converges to a_{j}. By Lemma 1 again $u_{0}(\gamma)=a_{j} p$-a.e. on $\Gamma_{D}\left(\beta_{j}\right)$. Thus $u_{0} \in$ $\mathscr{D}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$, and hence u_{0} is an extremal function.

For the latter half, let u^{*} be any extremal function for C_{p}^{*}. For any $v \in \mathscr{A}^{*}\left(\alpha_{0}\right.$, $\alpha_{1} ; D,\left\{\beta_{j}\right\}$), there exists an integrable function $f(x)$ in D such that

$$
\left|\frac{\left|\nabla\left(u^{*} \pm \varepsilon v\right)(x)\right|^{p}-\left|\nabla u^{*}(x)\right|^{p}}{\varepsilon}\right| \leqq f(x) \quad \text { for all } \varepsilon \in(0,1)
$$

By Lebesgue's dominated convergence theorem,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{D} \frac{\left|\nabla\left(u^{*} \pm \varepsilon v\right)\right|^{p}-\left|\nabla u^{*}\right|^{p}}{\varepsilon} d x \\
= & \int_{D} \lim _{\varepsilon \rightarrow 0} \frac{\left|\nabla\left(u^{*} \pm \varepsilon v\right)\right|^{p}-\left|\nabla u^{*}\right|^{p}}{\varepsilon} d x \\
= & \pm p \int_{D}\left|\nabla u^{*}\right|^{p-2}\left(\nabla u^{*}, \nabla v\right) d x .
\end{aligned}
$$

Since $u^{*} \pm \varepsilon v \in \mathscr{D}^{*}$,

$$
\int_{D}\left|\nabla\left(u^{*} \pm \varepsilon v\right)\right|^{p} d x \geqq \int_{D}\left|\nabla u^{*}\right|^{p} d x
$$

Hence we have

$$
\int_{D}\left|\nabla u^{*}\right|^{p^{-2}}\left(\nabla u^{*}, \nabla v\right) d x=0
$$

Conversely, suppose that $u \in \mathscr{D}^{*}$ satisfies the equation

$$
\int_{D}|\nabla u|^{p-2}(\nabla u, \nabla v) d x=0
$$

for every $v \in \mathscr{A}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$. Since $u^{*}-u \in \mathscr{A}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$,

$$
\int_{D}|\nabla u|^{p-2}\left(\nabla u, \nabla\left(u^{*}-u\right)\right) d x=0 .
$$

By using Hölder's inequality, we derive that

$$
\int_{D}|\nabla u|^{p} d x \leqq \int_{D}\left|\nabla u^{*}\right|^{p} d x=C_{p}^{*}
$$

This implies that u is an extremal function for C_{p}^{*}.
Finally, let u^{*}, v^{*} be extremal. Since $\left(u^{*}+v^{*}\right) / 2 \in \mathscr{D}^{*},\left\|\boldsymbol{\nabla}\left(u^{*}-v^{*}\right)\right\|_{p}=0$ by Clarkson's inequality so that $u^{*}-v^{*}=$ const. a.e. in D. This completes the
proof of our theorem.
Let D^{\prime} be a relatively compact subdomain of D with C^{1} boundary such that no component of $D-D^{\prime}$ is relatively compact in D. We classify the boundary components of ∂D^{\prime} into $\alpha_{0}^{\left(D^{\prime}\right)}, \alpha_{1}^{\left(D^{\prime}\right)}$ and $\left\{\beta_{j}^{\left(D^{\prime}\right)}\right\}$ as we did to D_{n} in $\S 1$. We extend each function of $\mathscr{D}^{*}\left(\alpha_{0}^{\left(D^{\prime}\right)}, \alpha_{1}^{\left(D^{\prime}\right)} ; D^{\prime},\left\{\beta_{j}^{\left(D^{\prime}\right)}\right\}\right.$) by suitable constants to a p-precise function on D, and denote by $\mathscr{D}^{*}\left(D^{\prime}\right)$ the family of all such functions on D. Let $A_{0}^{\left(D^{\prime}\right)}, A_{1}^{\left(D^{\prime}\right)}$ and $B_{j}^{\left(D^{\prime}\right)}$ be the unions of $\hat{D}-D^{\prime}$ such that $\partial A_{0}^{\left(D^{\prime}\right)}$ $=\alpha_{0}^{\left(D^{\prime}\right)}, \partial A_{1}^{\left(D^{\prime}\right)}=\alpha_{1}^{\left(D^{\prime}\right)}$ and $\partial B_{j}^{\left(D^{\prime}\right)}=\beta_{j}^{\left(D^{\prime}\right)}$. Let $\left\{\beta_{\imath}\right\}$ be a partition with property (1.8). We can take some D^{\prime} such that for each β_{\imath}, if $\beta_{\imath} \cap \cup_{j=1}^{j\left(D^{\prime}\right)} B_{j}^{\left(D^{\prime}\right)} \neq \emptyset$ then $\beta_{\imath} \cap A_{0}^{\left(D^{\prime}\right)}=\emptyset$ and $\beta_{\imath} \cap A_{1}^{\left(D^{\prime}\right)}=\emptyset$. Let $D^{\prime \prime}$ be such a domain. Set

$$
\mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)=\underset{D^{\prime \prime}}{\cup} \mathscr{D}^{*}\left(D^{\prime \prime}\right)
$$

and denote by $\mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ the family of all p-precise functions u in D with the following properties:
(1) For each u, there exists a sequence $\left\{u_{n}\right\}$ in $\mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ such that $\lim _{n \rightarrow \infty}\left\|\nabla\left(u_{n}-u\right)\right\|_{p}=0$.
(2) $u(\gamma)=0$ (resp. 1) for $p-$ a.e. $\gamma \in \Gamma_{D}\left(\alpha_{0}\right)\left(\right.$ resp. $\Gamma_{D}\left(\alpha_{1}\right)$).

We observe that

$$
C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)=\inf _{u \in \mathscr{Q}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{t}\right)\right.} \int_{D}|\nabla u|^{p} d x
$$

We call u in $\mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ an extremal function for $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ if $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)=\int_{D}|\nabla u|^{p} d x$. We denote by $\mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$ the family of all $C^{\infty}(D)$-functions ϕ in D such that the support of $|\nabla \phi|$ is compact in D, $\phi=0$ on $U \cap D$ for some neighborhood U of $\alpha_{0} \cup \alpha_{1}$. Denote by $\mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1}\right.$; $\left.D,\left\{\beta_{6}\right\}\right)$ the family consisting of all $\phi \in \mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{\Omega}\right)$ such that $\phi=$ const. on each $B_{j}^{\left(D^{\prime \prime}\right)} \cap D$ and $\phi=0$ on $\left(A_{0}^{\left(D^{\prime \prime}\right)} \cup A_{1}^{\left(D^{\prime \prime}\right)}\right) \cap D$ for some $D^{\prime \prime}$.

Now we prove
Theorem 2. a) There exists an extremal function u^{*} for $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D\right.$, $\left.\beta_{Q}\right)$ and it is characterized by the condition that

$$
\left.\int_{D}\left|\nabla u^{*}\right|\right|^{p-2}\left(\nabla u^{*}, \nabla \phi\right) d x=0
$$

for every ϕ in $\mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$. The difference of two extremal functions is constant a.e. in D.
b) Let $\left\{\beta_{\imath}\right\}$ be a partition with property (1.8). Then there exists an extremal function u^{*} for $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{l}\right\}\right)$ and it is characterized by the condition that

$$
\left.\int_{D}\left|\nabla u^{*}\right|\right|^{-2}\left(\nabla u^{*}, \nabla \phi\right) d x=0
$$

for every ϕ in $\mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$. The difference of two extremal functions is constant a.e. in D.

Proof. a) Let $\left\{D_{n}\right\}$ be an exhaustion of D, and u_{n}^{*} be an extremal function for $C_{p}^{*}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n},\left\{\beta_{j}^{(n)}\right\}\right)$. We have seen near the end of $\S 1$ that $\left\|\nabla u_{n}^{*}\right\|_{p}^{p}$ $=C_{p}^{*}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n},\left\{\beta_{j}^{(n)}\right\}\right)$ decreases as $n \rightarrow \infty$. As in the proof of Theorem 1, we see that there exists a p-precise function u^{*} in D such that

$$
\lim _{n \rightarrow \infty}\left\|\boldsymbol{\nabla}\left(u_{n}^{*}-u^{*}\right)\right\|_{p}=0
$$

and

$$
u^{*}(\gamma)=0\left(\text { resp. 1) } \quad \text { for } \quad \text { p-a.e. } \gamma \in \Gamma_{D}\left(\alpha_{0}\right)\left(\text { resp. } \Gamma_{D}\left(\alpha_{1}\right)\right) .\right.
$$

It is easy to see that u^{*} is an extremal function for $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$.
Let v^{*} be another extremal function. Then there exists a sequence $\left\{v_{n}\right\}$ in $\mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ such that $\left\|\boldsymbol{V}\left(v_{n}-v^{*}\right)\right\|_{p} \rightarrow 0$. Since $\left(u^{*}+v^{*}\right) / 2 \in \mathscr{D}^{* *}\left(\alpha_{0}\right.$, $\left.\alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$, by Clarkson's inequality we see that $\left\|\boldsymbol{\nabla}\left(u^{*}-v^{*}\right)\right\|_{p}=0$ so that $u^{*}-v^{*}$ $=$ const. a.e. in D.

Next, let u^{*} be any extremal function for $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$. Then there is a sequence $\left\{u_{n}\right\}$ in $\mathscr{g}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\iota}\right\}\right)$ such that $\lim _{n \rightarrow \infty}\left\|\nabla\left(u_{n}-u^{*}\right)\right\|_{p}=0$. For any $\varepsilon(0<\varepsilon<1)$ and ϕ in $\mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$, we see that $u_{n} \pm \varepsilon \phi \in \mathscr{\mathscr { O }}^{* *}\left(\alpha_{0}, \alpha_{1}\right.$; $\left.D,\left\{\beta_{\imath}\right\}\right)$. It follows that $u^{*} \pm \varepsilon \phi \in \mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$. Hence, as in the latter half of the proof of Theorem 1, we have

$$
\int_{D}\left|\nabla u^{*}\right|^{p-2}\left(\nabla u^{*}, \nabla \phi\right) d x=0 .
$$

Conversely, let $u \in \mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\iota}\right\}\right)$ satisfy the equation

$$
\int_{D}|\nabla u|^{p-2}(\nabla u, \nabla \phi) d x=0
$$

for every ϕ in $\mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$. Let u^{*} be an extremal function for $C_{p}^{* *}\left(\alpha_{0}\right.$, $\left.\alpha_{1} ; D, \beta_{Q}\right)$. Then there are two sequences $\left\{u_{n}\right\}$ and $\left\{\tilde{u}_{n}\right\}$ in $\mathscr{\mathscr { O }}^{* *}\left(\alpha_{0}, \alpha_{1} ; D\right.$, $\left.\left\{\beta_{c}\right\}\right)$ such that $\lim _{n \rightarrow \infty}\left\|\nabla\left(u_{n}-u\right)\right\|_{p}=0$ and $\lim _{n \rightarrow \infty}\left\|\nabla\left(\tilde{u}_{n}-u^{*}\right)\right\|_{p}=0$. Set $f_{n}=u_{n}-\tilde{u}_{n}$. It vanishes in a neighborhood U of $\alpha_{0} U \alpha_{1}$ with compact relative boundary $\partial U \subset D$. We can find a function h_{n} in $C^{\infty}(D)$ such that $h_{n}=0$ on $U \cap D$ and $h_{n}-f_{n}=0$ on $U^{\prime} \cap D$ for a neighborhood U^{\prime} of $D^{*}-D-U$. Then $f_{n}-h_{n}$ has a compact support in D. There exists a sequence $\left\{f_{n}^{i}\right\}_{i=1}^{\infty}$ in $C_{0}^{\infty}(D)$ such that

$$
\lim _{i \rightarrow \infty}\left\|\boldsymbol{V}\left(f_{n}-h_{n}-f_{n}^{i}\right)\right\|_{p}=0
$$

Since $h_{n}+f_{n}^{i} \in \mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$, we see that

$$
\int_{D}|\nabla u|^{p-2}\left(\nabla u, \nabla\left(h_{n}+f_{n}^{i}\right)\right) d x=0
$$

for all i. Using Hölder's inequality and letting $i \rightarrow \infty$, we obtain

$$
\int_{D}|\nabla u|^{p-2}\left(\nabla u, \nabla f_{n}\right) d x=0
$$

for all n. Since $\lim _{n \rightarrow \infty}\left\|\nabla\left(u-u^{*}\right)-\nabla f_{n}\right\|_{p}=0$, Hölder's inequality again gives

$$
\int_{D}|\nabla u|^{p-2}\left(\nabla u, \nabla\left(u-u^{*}\right)\right) d x=0 .
$$

It follows from this equality and Hölder's inequality that

$$
\|\nabla u\|_{p}^{p} \leqq\left\|\nabla u^{*}\right\|_{p}^{p}=C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right) .
$$

This implies that u is an extremal function for $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)$.
b) We note that $(u+v) / 2$ and $u \pm \varepsilon \phi$ belong to $\mathscr{\mathscr { D }}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ for any u, v in $\mathscr{g}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$ and ϕ in $\mathscr{A}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\imath}\right\}\right)$. Then we can complete the proof in the same way as a).

Remark. In case $M_{p}\left(\Gamma_{D}\left(\alpha_{0}\right) \cup \Gamma_{D}\left(\alpha_{1}\right)\right)>0$ two extremal functions coincide a.e. in D.

Let us compare the results in Theorems 1 and 2. Let $\left\{\beta_{j}\right\}_{j=1}^{\infty}$ be a partition with property (1.8). Let u_{1} and u_{2} be extremal functions in Theorems 1 and 2 respectively. By Lemma 1 we see that $u_{2} \in \mathscr{D}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ so that $C_{p}^{*}\left(\alpha_{0}\right.$, $\left.\alpha_{1} ; D,\left\{\beta_{j}\right\}\right) \leqq C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$. We obtain the equality in a special case. We give first

Lemma 2 ([9, Theorem 6.16]). Let u be a p-precise function in D whose limit along p-a.e. $\gamma \in \Gamma_{D}$ vanishes. Then there exists a sequence $\left\{u_{n}\right\}$ in $C_{0}^{\infty}(D)$ such that $\left\|\boldsymbol{\nabla}\left(u-u_{n}\right)\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$.

We shall prove
Theorem 3. Suppose the boundary of D in $R^{N} \cup\{\infty\}$ consists of mutually disjoint closed sets $\alpha_{0}, \alpha_{1}, \beta_{1}, \ldots, \beta_{k}$. Then

$$
C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)=C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)
$$

Proof. Take any $u \in \mathscr{D}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$. Let $\left\{D_{n}\right\}$ be an exhaustion. If n is large, then each component of $\hat{D}-D_{n}$ contains points of only one of α_{0}, $\alpha_{1}, \beta_{1}, \ldots, \beta_{k}$. Hence, we may assume that it is so for $n=1$. Denote by A_{i}
(resp. B_{j}) the union of the components of $\hat{D}-D_{1}$ such that $A_{i} \cap(\hat{D}-D)=\alpha_{i}$ (resp. $B_{j} \cap(\hat{D}-D)=\beta_{j}$). For each $j, 1 \leqq j \leqq k$, there is a value b_{j} such that $u(\gamma)$ $=b_{j} p$-a.e. on $\Gamma_{D}\left(\beta_{j}\right)$. We can find a C^{∞} function v in D which is equal to $i(=0$, 1) (resp. b_{j}) on $A_{i}-\alpha_{i}$ (resp. $B_{j}-\beta_{j}$). Then $u(\gamma)-v(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_{D}$. By Lemma 2 there exists $\left\{u_{n}\right\}$ in $C_{0}^{\infty}(D)$ such that $\left\|\nabla\left(u-v-u_{n}\right)\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. Since $v+u_{n} \in \mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right), u \in \mathscr{D}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ so that $C_{p}^{* *}\left(\alpha_{0}\right.$, $\left.\alpha_{1} ; D,\left\{\beta_{j}\right\}\right) \leqq\|\nabla u\|_{p}^{p}$ as was observed before Theorem 2. We obtain the inequality $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right) \leqq C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ and hence the equality.

We obtain the following theorem with respect to $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)$, which is proved in the same way as Theorem 1.

Theorem 4 (cf. [5, Theorem 1]). Let D be a domain in R^{N} and α_{0}, α_{1} be non-empty compact subsets of $\partial D \cup\{\infty\}$ such that $\alpha_{0} \cap \alpha_{1}=\emptyset$. Then there exists an extremal function u_{0} for $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)$ and it is characterized by the condition that

$$
\int_{D}\left|\nabla u_{0}\right|^{p-2}\left(\nabla u_{0}, \nabla v\right) d x=0
$$

for every p-precise function v in D such that $v(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_{D}\left(\alpha_{0}\right) \cup \Gamma_{D}\left(\alpha_{1}\right)$. The difference of two extremal functions is constant a.e. in D.

Remark 1. Weyl's lemma shows that each of extremal functions for $C_{2}\left(\alpha_{0}, \alpha_{1} ; D\right), C_{2}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ and $C_{2}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{\iota}\right\}\right)$ is equal to a harmonic function a.e. in D.

Remark 2. Let α_{0}, α_{1} be disjoint boundary components of a domain D. In general $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right) \leqq C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$. Now we shall give an example in which $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)<C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$. Let $\Omega=\{x ; 1<|x|<2\}$ and E be a closed ball in Ω. Set $D=\Omega-E, \alpha_{0}=\{x ;|x|=1\}, \alpha_{1}=\{x ;|x|=2\}$ and $\beta=\partial E$. Suppose $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)=C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D, \beta\right)$. Let u^{*} and u_{0} be extremal functions for $C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D, \beta\right)$ and $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)$ respectively. Since $u^{*} \in \mathscr{D}\left(\alpha_{0}, \alpha_{1} ; D\right)$, from Theorem 4 it follows that $u^{*}=u_{0}$ except on a set of measure zero in D. Then the extension \tilde{u}_{0} of u_{0} by a suitable constant on E belongs to $\mathscr{D}\left(\alpha_{0}, \alpha_{1} ; \Omega\right)$ by (1.7). Since

$$
C_{p}\left(\alpha_{0}, \alpha_{1} ; \Omega\right) \geqq C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)=\int_{D}\left|\nabla u_{0}\right|^{p} d x=\int_{\Omega}\left|\nabla \tilde{u}_{0}\right|^{p} d x
$$

\tilde{u}_{0} is an extremal function for $C_{p}\left(\alpha_{0}, \alpha_{1} ; \Omega\right)$. It is well known that an extremal function for $C_{p}\left(\alpha_{0}, \alpha_{1} ; \Omega\right)$ is given by

$$
g(x)= \begin{cases}\left(|x|^{\frac{p-N}{p-1}}-1\right) /\left(2^{\frac{p-N}{p-1}}-1\right) & \text { if } p \neq N \\ (\log |x|) / \log 2 & \text { if } p=N\end{cases}
$$

By Theorem 4, $g=\tilde{u}_{0}$ except on a set of measure zero in Ω, which is impossible since $\tilde{u}_{0}=$ const. on E. Hence $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)<C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D, \beta\right)$.

§3. Reation between the \boldsymbol{p}-capacity and the \boldsymbol{p}-module

Let D be a domain in R^{N}. By a locally rectifiable chain in D we mean a countable formal sum $\gamma=\Sigma \gamma_{i}$, where each γ_{i} is a locally rectifiable curve in D. If f is a non-negative Borel measurable function defined in D and $\gamma=\Sigma \gamma_{i}$ is a locally rectifiable chain in D, then we set $\int_{\gamma} f d s=\Sigma \int_{\gamma i} f d s$. Let Γ be a family of locally rectifiable chains in D. A non-negative Borel measurable function f defined in D is called admissible in association with Γ if $\int_{\gamma} f d s \geqq 1$ for every $\gamma \in \Gamma$. The p-module $M_{p}(\Gamma)$ is defined by $\inf _{f} \int_{D} f^{p} d x$, where the infimum is taken over all admissible functions f in association with Γ; if there is no such a function, then $M_{p}(\Gamma)$ is set to be ∞.

Suppose that the boundary components of D are partitioned into nonempty mutually disjoint closed sets $\alpha_{0}, \alpha_{1}, \beta_{1}, \ldots, \beta_{k}$. Let $\beta=\cup_{j=1}^{k} \beta_{j}$. Each β_{j} is called a part of β. Let $\Gamma^{*}=\Gamma^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ be the family of all chains γ in \bar{D} such that:
(1) γ is a continuous mapping from a union of closed intervals $\left[t_{1}, t_{2}\right]$ $\cup\left[t_{3}, t_{4}\right] \cup \cdots \cup\left[t_{2 n-1}, t_{2 n}\right]$ into \bar{D} with $t_{1}<t_{2}<\cdots<t_{2 n}$.
(2) $\gamma\left(t_{1}\right) \in \alpha_{0}, \gamma\left(t_{2 n}\right) \in \alpha_{1}$ and for each $i=1,2, \ldots, n-1, \gamma\left(t_{2 i}\right)$ and $\gamma\left(t_{2 i+1}\right)$ belong to the same part of β.
(3) $\gamma(t) \in D$ if $t \in \cup_{i=1}^{n}\left(t_{2 i-1}, t_{2 i}\right)$.
(4) $\gamma \cap D$ is a locally rectifiable chain in D, where $\gamma \cap D$ is the restriction of γ to D.
We define the p-module $M_{p}\left(\Gamma^{*}\right)$ to be the p-module of the family of locally rectifiable chains obtained by restricting each chain in Γ^{*} to D.

Now we prove
Theorem 5 (cf. [9, Theorem 6.10]). Suppose that the boundary components of D are partitioned into non-empty mutually disjoint closed sets α_{0}, $\alpha_{1}, \beta_{1}, \ldots, \beta_{k}$. Let Γ^{*} be the family defined as above. Then $C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ $=M_{p}\left(\Gamma^{*}\right)$.

Proof. In this proof we write \mathscr{D}^{*} and C_{p}^{*} for $\mathscr{D}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ and $C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ respectively. Since $\operatorname{dist}\left(\alpha_{0}, \alpha_{1}\right)>0$, we see that $\mathscr{D}^{*} \neq \emptyset$, and hence $C_{p}^{*}<\infty$. Take any function u in \mathscr{D}^{*}. Then from property (1.4) we see easily that

$$
\int_{\gamma \cap D}|\nabla u| d s \geqq 1 \quad \text { for } \quad p \text {-a.e. } \gamma \in \Gamma^{*} .
$$

It follows that $C_{p}^{*} \geqq M_{p}\left(\Gamma^{*}\right)$. Hence $M_{p}\left(\Gamma^{*}\right)<\infty$.
We note that we may restrict admissible f to belong to $L^{p}(D)$ and to be continuous in defining $M_{p}\left(\Gamma^{*}\right)$ (see [9, Theorem 2.8]). Let f be such a function. Given $x \in D$, denote by $\Gamma^{*}(x)$ the family of all chains γ in \bar{D} of type given in the definition of Γ^{*}, condition $\gamma\left(t_{2 n}\right) \in \alpha_{1}$ being replaced by $\gamma\left(t_{2 n}\right)=x$. Set

$$
g(x)=\inf _{\gamma \in \Gamma^{*}(x)} \int_{\gamma \cap D} f d s
$$

We know that $\int_{\gamma} f d s<\infty$ for p-a.e. curve γ in D. If γ is such a curve, then

$$
\left|g(x)-g\left(x^{0}\right)\right| \leqq \int_{\widetilde{x x}^{0}} f d s
$$

for any points x and x^{0} on γ, where $\widetilde{x x^{0}} \subset \gamma$. It follows that g is absolutely continuous along p-a.e. curve in D. By Rademacher-Stepanov's theorem we have $|\nabla g(x)| \leqq f(x)$ a.e. in D. Thus g is a p-precise function in D. As in the proof of [9, Theorem 6.10] (also cf. the arguments below) we see that

$$
g(\gamma)=0 \quad \text { for } \quad p \text {-a.e. } \quad \gamma \in \Gamma_{D}\left(\alpha_{0}\right)
$$

and

$$
g(\gamma) \geqq 1 \quad \text { for } \quad p \text {-a.e. } \quad \gamma \in \Gamma_{D}\left(\alpha_{1}\right) .
$$

Let us show that g has the same curvilinear limit along p-a. e. curve in $\Gamma_{D}\left(\beta_{j}\right)$. For this, assume $M_{p}\left(\Gamma_{D}\left(\beta_{j}\right)\right)>0$. Denote by $\Gamma_{D}^{\prime}\left(\beta_{j}\right)$ the subfamily of $\Gamma_{D}\left(\beta_{j}\right)$ consisting of curves γ such that $\int_{\gamma} f d s<\infty, \gamma$ tends to a point on β_{j} and g has a finite curvilinear limit $g(\gamma)$ along γ. Since $M_{p}\left(\Gamma_{D}\left(\beta_{j}\right)-\Gamma_{D}^{\prime}\left(\beta_{j}\right)\right)=0$, it suffices to show that $g\left(\gamma_{1}\right)=g\left(\gamma_{2}\right)$ for any curves γ_{1} and γ_{2} in $\Gamma_{D}^{\prime}\left(\beta_{j}\right)$. For any $\varepsilon>0$, we can take two points $x^{1} \in \gamma_{1}$ and $x^{2} \in \gamma_{2}$ such that

$$
\left|g\left(\gamma_{i}\right)-g\left(x^{i}\right)\right|<\varepsilon \quad(i=1,2)
$$

and

$$
\int_{\gamma_{i}^{\prime}} f d s<\varepsilon \quad(i=1,2)
$$

where γ_{i}^{\prime} is the part of γ_{i} starting at x^{i} and tending to β_{j}. Since each γ_{i}^{\prime} tends to a point in β_{j}, by adding these limiting points to γ_{i}^{\prime}, we can regard $\gamma+\gamma_{1}^{\prime}+\left(-\gamma_{2}^{\prime}\right)$ as an element of $\Gamma^{*}\left(x^{2}\right)$ for each $\gamma \in \Gamma^{*}\left(x^{1}\right)$, and we have

$$
g\left(x^{2}\right) \leqq g\left(x^{1}\right)+\int_{y_{1}^{\prime}} f d s+\int_{\gamma_{2}^{\prime}} f d s<g\left(x^{1}\right)+2 \varepsilon
$$

Similarly $g\left(x^{1}\right)<g\left(x^{2}\right)+2 \varepsilon$, and hence $\left|g\left(x^{1}\right)-g\left(x^{2}\right)\right|<2 \varepsilon$. It follows that

$$
\left|g\left(\gamma_{1}\right)-g\left(\gamma_{2}\right)\right| \leqq\left|g\left(\gamma_{1}\right)-g\left(x^{1}\right)\right|+\left|g\left(x^{1}\right)-g\left(x^{2}\right)\right|+\left|g\left(x^{2}\right)-g\left(\gamma_{2}\right)\right|<4 \varepsilon .
$$

Therefore $g\left(\gamma_{1}\right)=g\left(\gamma_{2}\right)$. Thus we see that $\min (g, 1)$ belongs to \mathscr{D}^{*}. Hence

$$
C_{p}^{*} \leqq \int_{D}|\nabla[\min (g, 1)]|^{p} d x \leqq \int_{D} f^{p} d x
$$

It follows that $C_{p}^{*} \leqq M_{p}\left(\Gamma^{*}\right)$.
Remark. On a compact bordered Riemann surface, Minda [8] showed that the extremal distances are computed in terms of principal functions having prescribed boundary behavior (see [8, Theorem 1]). We shall show later in Theorem 12 that a principal function is extremal for $C_{2}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ with respect to a regular domain D. Thus, Theorem 5 is a euclidean space version of Minda's result.

Marden and Rodin [7] gave a useful continuity lemma for extremal length on Riemann surfaces. Here we shall establish a similar continuity lemma for extremal length of order p on a domain D in R^{N}.

Let D be a domain in R^{N} and partition its boundary components into nonempty mutually disjoint sets α_{0}, α_{1} and β such that α_{0} and α_{1} are closed sets in \hat{D}. Let the boundary components in β be divided into mutually disjoint closed sets $\left\{\beta_{j}\right\}_{j=1}^{\infty}$ with property (1.8). Let $\left\{D_{n}\right\}$ be an exhaustion of D of the type considered in (1.8) such that each ∂D_{n} consists of a finite number of C^{∞}-surfaces. Then, as in $\S 1$, the boundary components of D_{n} are divided into $\alpha_{0 n}, \alpha_{1 n}$ and $\left\{\beta_{j}^{(n)}\right\}_{j=1}^{j(n)}$. Let $\widetilde{\beta}_{n}=\cup_{j=1}^{j(n)} \beta_{j}^{(n)}$ and $\Gamma_{n}^{*}=\Gamma^{*}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n},\left\{\beta_{j}^{(n)}\right\}\right)$. Given $\gamma \in \Gamma_{n}^{*}$ and $m \leqq n$, as in the proof of [7, Lemma III.2.1] we obtain a "sequence" $C_{0}, C_{1}, \ldots, C_{k}$ such that $C_{0}=\alpha_{0 m}, C_{k}=\alpha_{1 m}$ and C_{1}, \ldots, C_{k-1} are distinct parts of $\tilde{\beta}_{m}$ and a sequence of "stopping times" $t_{1}^{\prime}<t_{2}^{\prime}<\cdots<t_{2 k}^{\prime}$ such that $\gamma\left(t_{2 i-1}^{\prime}\right) \in C_{i-1}, \gamma\left(t_{2 i}^{\prime}\right) \in C_{i}(i=1, \ldots$, $k)$ and $\gamma(t) \in D_{m}$ if $t \in \cup_{i=1}^{k}\left(t_{2 i-1}^{\prime}, t_{2 i}^{\prime}\right)$. We define $\gamma \| D_{m}$ to be the restriction of γ to $\left[t_{1}^{\prime}, t_{2}^{\prime}\right] \cup\left[t_{3}^{\prime}, t_{4}^{\prime}\right] \cup \cdots \cup\left[t_{2 k-1}^{\prime}, t_{2 k}^{\prime}\right]$, which we call the domain of $\gamma \| D_{m}$. $\gamma\left(t_{i}^{\prime}\right), i=1, \ldots, 2 k$, are called stopping points for $\gamma \| D_{m}$.

Let $\hat{\Gamma}$ be the family of all locally rectifiable chains γ in D such that:
(1) γ is a continuous mapping of an open dense subset J_{γ} of $(0,1)$ into D.
(2) If $t_{0} \notin J_{\gamma}$ and $0<t_{0}<1$, then there exists a part β_{j} of β such that $\lim _{t \rightarrow t_{0}} \gamma(t)$ belongs to β_{j}.
(3) $\lim _{t \rightarrow 0} \gamma(t)\left(\right.$ resp. $\left.\lim _{t \rightarrow 1} \gamma(t)\right)$ belongs to α_{0} (resp. α_{1}).

Next, we shall define a family Γ^{*} following Marden and Rodin [7]. A locally rectifiable chain γ in D belongs to Γ^{*} if either γ is some chain in $\hat{\Gamma}$ or if γ is a continuous mapping of an open dense subset J_{γ} of $(0,1)$ into D such that:
(1) If $t_{0} \notin J_{\gamma}$ and $0<t_{0}<1$, then there exist sequences $\left\{r_{n}\right\},\left\{s_{n}\right\}$ in J_{γ} and a
part β_{j} of β such that $r_{n} \uparrow t_{0}, s_{n} \downarrow t_{0}$ and $\gamma\left(r_{n}\right) \rightarrow \beta_{j}, \gamma\left(s_{n}\right) \rightarrow \beta_{j}$. If $t_{0}=0$ (resp. 1), we require only a sequence $\left\{s_{n}\right\}$ (resp. $\left\{r_{n}\right\}$) from J_{γ} with $s_{n} \downarrow 0$ (resp. $r_{n} \uparrow 1$) and $\gamma\left(s_{n}\right) \rightarrow \alpha_{0}\left(\right.$ resp. $\left.\gamma\left(r_{n}\right) \rightarrow \alpha_{1}\right)$.
(2) There is an exhaustion $\left\{D_{n}\right\}$ of D such that the restriction of γ to $\gamma^{-1}\left[\gamma\left(J_{\gamma}\right)\right.$ $\left.\cap \bar{D}_{n}\right]$, which we denote by $\gamma \mid \bar{D}_{n}$, is a chain in \bar{D}_{n} and $\gamma\left\|\bar{D}_{n} \equiv\left(\gamma \mid \bar{D}_{n}\right)\right\| D_{n} \in \Gamma_{n}^{*}$ for each $n \geqq 1$.
(3) If $t \in J_{\gamma}$, then there is n_{0} such that t belongs to the domain of $\gamma \| D_{n}$ for all $n \geqq n_{0}$.

Lemma 3 (cf. the proof of [7, Lemma III.2.1]). Let f be a non-negative continuous function on D, and $\left\{D_{n}\right\}$ be an exhaustion of D. If $\gamma_{n} \in \Gamma_{n}^{*}=\Gamma^{*}\left(\alpha_{0 n}\right.$, $\left.\alpha_{1 n} ; D_{n},\left\{\beta_{j}^{(n)}\right\}\right)$ for each n, then given $\varepsilon>0$, there exists $\gamma(\varepsilon)$ in Γ^{*} satisfying

$$
\int_{\gamma(\varepsilon)} f d s \leqq \liminf _{n \rightarrow \infty} \int_{\gamma_{n}} f d s+\varepsilon .
$$

Proof. We may assume that $\lim _{n \rightarrow \infty} \int_{\gamma_{n}} f d s$ exists and is finite. As in the proof of [7, Lemma III.2.1] we can find a subsequence of $\left\{\gamma_{n}\right\}$, which we again denote by $\left\{\gamma_{n}\right\}$, such that for each m, all $\gamma_{n} \| D_{m}(n \geqq m)$ have the same sequence of boundary components on ∂D_{m} and $\lim _{n \rightarrow \infty} x_{n, m}^{i}=x_{m}^{i} \in \partial D_{m}$ for all i and m, where $x_{n, m}^{i}(i=1, \ldots, k(m))$ are the stopping points for $\gamma_{n} \| D_{m}$. Let $S(x, r)$ denote the closed N-ball of radius r and centered at x. Since ∂D_{m} is smooth and f is continuous, we can take $r_{i, m}>0(i=1, \ldots, k(m))$ with the following properties:
(1) For each $i, S\left(x_{m}^{i}, r_{i, m}\right) \subset D_{m+1}$ and $S\left(x_{m}^{i}, r_{i, m}\right) \cap\left(\partial D_{m}-C_{m}^{i}\right)=\emptyset$, where C_{m}^{i} is the boundary component of D_{m} such that $x_{m}^{i} \in C_{m}^{i}$.
(2) Any $y \in \partial S\left(x_{m}^{i}, r_{i, m}\right) \cap D_{m}$ (resp. $\left.\partial S\left(x_{m}^{i}, r_{i, m}\right)-\bar{D}_{m}, S\left(x_{m}^{i}, r_{i, m}\right) \cap \partial D_{m}\right)$ and x_{m}^{i} can be joined by a curve in $S\left(x_{m}^{i}, r_{i, m}\right) \cap D_{m}\left(\right.$ resp. $S\left(x_{m}^{i}, r_{i, m}\right)-\bar{D}_{m}, S\left(x_{m}^{i}, r_{i, m}\right)$ $\cap \partial D_{m}$) along which $\int f d s<\varepsilon / 2^{m+2} k(m)$.

By taking a subsequence again we may assume that $\left|x_{n, m}^{i}-x_{m}^{i}\right|<r_{i, m}$ for all i, n and m with $n \geqq m$. Denote by $\gamma_{n, m}^{i}$ the subarc of $\gamma_{n} \| D_{m}$ connecting $x_{n, m}^{i}$ and a point $y_{n, m}^{i} \in \gamma_{n} \| D_{m} \cap \partial S\left(x_{m}^{i}, r_{i, m}\right)$ in $S\left(x_{m}^{i}, r_{i, m}\right) \cap D_{m}$ and by $\tilde{\gamma}_{n, m}^{i}$ the subarc of $\gamma_{n}-\gamma_{n} \| D_{m}$ connecting $x_{n, m}^{i}$ and a point $\tilde{y}_{n, m}^{i} \in\left(\gamma_{n}-\gamma_{n} \| D_{m}\right) \cap \partial S\left(x_{m}^{i}, r_{i, m}\right)$ in $S\left(x_{m}^{i}, r_{i, m}\right)$ for each $m \leqq n$ and $i=1, \ldots, k(m)$. For each n, we modify γ_{n} as follows: for each $m<n$ and $i=1, \ldots, k(m)$, replace a subarc $\gamma_{n, m}^{i}+\tilde{\gamma}_{n, m}^{i}$ of γ_{n} by a curve in $S\left(x_{m}^{i}, r_{i, m}\right)$ which passes through x_{m}^{i} and connects $y_{n, m}^{i}$ and $\tilde{y}_{n, m}^{i}$ and along which $\int f d s<\varepsilon / 2^{m+1} k(m)$, for each $i=1, \ldots, k(n)$, replace $\gamma_{n, n}^{i}$ by a curve in $S\left(x_{n}^{i}, r_{i, n}\right)$ $\cap D_{n}$ which connects x_{n}^{i} and $y_{n, n}^{i}$ and along which $\int f d s<\varepsilon / 2^{n+2} k(n)$. The modified curve will be denoted by γ_{n}^{*}. We have

$$
\int_{\gamma_{n}^{*}} f d s \leqq \int_{\gamma_{n}} f d s+\frac{\varepsilon}{2} .
$$

Let $\tilde{\Gamma}_{m}=\left\{\gamma_{n}^{*}\left\|D_{m}-\gamma_{n}^{*}\right\| D_{m-1} ; n \geqq m\right\}(m=1,2, \ldots)$, where $D_{0}=\emptyset$, and choose $\tilde{\gamma}_{m} \in$ $\tilde{\Gamma}_{m}$ such that

$$
\int_{\tilde{\gamma}_{m}} f d s<\inf _{\gamma \in \Gamma_{m}} \int_{\gamma} f d s+\frac{\varepsilon}{2^{m+1}}
$$

Then, we see

$$
\int_{\tilde{\gamma}_{1}+\tilde{\gamma}_{2}+\cdots+\tilde{\gamma}_{n}} f d s<\sum_{m=1}^{n} \inf _{\gamma \in \Gamma_{m}} \int_{\gamma} f d s+\sum_{m=1}^{n} \frac{\varepsilon}{2^{2+1}}<\int_{\gamma_{n}^{*}} f d s+\frac{\varepsilon}{2}<\int_{\gamma_{n}} f d s+\varepsilon .
$$

The chain $\gamma(\varepsilon)=\sum_{n=1}^{\infty} \tilde{\gamma}_{n}$ can be regarded as an element of Γ^{*} by a suitable parametrization (cf. the proof of [7, Lemma III.2.1]). From the above inequalities we have

$$
\int_{\gamma(\varepsilon)} f d s=\lim _{n \rightarrow \infty} \int_{\tilde{\gamma}_{1}+\cdots+\tilde{\gamma}_{n}} f d s \leqq \lim _{n \rightarrow \infty} \int_{\gamma_{n}} f d s+\varepsilon .
$$

Thus $\gamma(\varepsilon)$ satisfies all the requirements.
Lemma 4 (cf. [7, Lemma III.2.1] and [9, Theorem 2.6]).

$$
\lim _{n \rightarrow \infty} M_{p}\left(\Gamma_{n}^{*}\right)=M_{p}(\hat{\Gamma})
$$

Proof. In general, $M_{p}(\hat{\Gamma}) \leqq M_{p}\left(\Gamma_{n}^{*}\right)$. So assume $M_{p}(\hat{\Gamma})<\infty$. As in the proof of [7, Lemma III.2.1] we have $M_{p}(\hat{\Gamma})=M_{p}\left(\Gamma^{*}\right)$. We may restrict admissible f to be continuous in D in defining $M_{p}\left(\Gamma^{*}\right)$ (cf. [9, Theorem 2.8]). Given $\varepsilon, 0<\varepsilon<1$, choose a continuous function f in D which is admissible in association with Γ^{*} such that $\int_{D} f^{p} d x<M_{p}\left(\Gamma^{*}\right)+\varepsilon$. We infer that there is n_{0} such that if $n \geqq n_{0}$ then $\int_{\gamma} f d s \geqq 1-\varepsilon$ for every γ in Γ_{n}^{*}. In fact, otherwise there would be $n_{1}<n_{2}<\cdots$ and $\gamma_{n_{j}} \in \Gamma_{n_{j}}^{*}, j=1,2, \ldots$, such that $\int_{\gamma_{n_{j}}} f d s<1-\varepsilon$ for each j. We apply Lemma 3 and find $\gamma(\varepsilon)$ in Γ^{*} which satisfies $\int_{\gamma(\varepsilon)} f d s \leqq 1-\varepsilon$. This is a contradiction. Thus $f /(1-\varepsilon)$ is admissible in association with Γ_{n}^{*}, and hence

$$
M_{p}\left(\Gamma_{n}^{*}\right) \leqq \frac{1}{(1-\varepsilon)^{p}} \int_{D} f^{p} d x<\frac{1}{(1-\varepsilon)^{p}}\left(M_{p}\left(\Gamma^{*}\right)+\varepsilon\right)
$$

for $n \geqq n_{0}$. It follows that $\lim _{n \rightarrow \infty} M_{p}\left(\Gamma_{n}^{*}\right)=M_{p}\left(\Gamma^{*}\right)$. Hence we have $\lim _{n \rightarrow \infty} M_{p}\left(\Gamma_{n}^{*}\right)=M_{p}(\hat{\Gamma})$.

On account of Theorem 5 and Lemma 4, we have
Theorem 6. Suppose that the boundary components of D are partitioned
into mutually disjoint sets α_{0}, α_{1} and β such that α_{0} and α_{1} are closed sets in \hat{D}. Let the boundary components in β be divided into mutually disjoint closed sets $\left\{\beta_{j}\right\}$ with property (1.8). Then $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)=M_{p}(\hat{\Gamma})$.

Remark. As to C_{p}, the following result is well-known (see, e.g., [9, Theorem 6.10] or [13, Theorem 3.8]): Let D be a domain and α_{0}, α_{1} be nonempty compact subsets of ∂D such that $\alpha_{0} \cap \alpha_{1}=\emptyset$. Let Γ be the family of all curves connecting α_{0} and α_{1} in D. Then $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)=M_{p}(\Gamma)$.

Finally we are concerned with the case that β is given the canonical partition throughout the rest of this paper. Let $\hat{\Gamma}^{*}$ be the family of all arcs in \hat{D} connecting α_{0} and $\alpha_{1} . \quad M_{p}\left(\hat{\Gamma}^{*}\right)$ is the p-module of the family of locally rectifiable chains in D obtained by restricting each arc in $\hat{\Gamma}^{*}$ to D. Since each γ in $\hat{\Gamma}$ can be extended continuously to $[0,1]$ with values in $\hat{D}, M_{p}\left(\hat{\Gamma}^{*}\right)=M_{p}(\hat{\Gamma})$. Thus we have

Theorem 7. Let $\hat{\Gamma}^{*}$ be the family of all arcs in \hat{D} connecting α_{0} and α_{1}. Then $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D, \beta_{Q}\right)=M_{p}\left(\hat{\Gamma}^{*}\right)$.

§4. KD ${ }^{P}$-null sets

Let E be a compact set in R^{N} and G be a bounded open set which contains E. We denote by $C_{1}^{\infty}(G ; E)$ the family of all functions ϕ in $C_{0}^{\infty}(G)$ such that $\nabla \phi$ vanishes in some neighborhood of E. Let $K D^{p}(G)\left(\right.$ resp. $K D^{p}(G-E ; E)$) be the class of p-precise functions u in G (resp. $G-E$) satisfying the condition that

$$
\int_{G}|\nabla u|^{p-2}(\nabla u, \nabla \phi) d x=0
$$

for every ϕ in $C_{0}^{\infty}(G)\left(\right.$ resp. $\left.C_{1}^{\infty}(G ; E)\right)$. We say that a compact set E is a $K D^{p_{-}}$ null set with respect to G if every function u in $K D^{p}(G-E ; E)$ can be extended to a function belonging to $K D^{p}(G)$. The class of $K D^{p}$-null sets with respect to G is denoted by $N_{K D^{p}}^{G}$. The following lemma is an easy consequence of the definition.

Lemma 5. If $E \in N_{K D^{p}}^{G}$, then $E \in N_{K_{D}}^{G_{1}}$ for any bounded open set G_{1} containing G.

Next we prove
Lemma 6. If $E \in N_{K}^{G}$, then $R^{N}-E$ is a domain.
Proof. Suppose $R^{N}-E$ is not a domain, and denote by Ω the union of
all bounded components of $R^{N}-E$. Take a ring domain $G_{1}=\left\{x ; r_{1}<\left|x-x^{0}\right|\right.$ $\left.<r_{2}\right\}$ such that $G_{1} \supset G \cup \Omega$. Let $\alpha_{0}=\left\{x ;\left|x-x^{0}\right|=r_{1}\right\}$ and $\alpha_{1}=\left\{x ;\left|x-x^{0}\right|=r_{2}\right\}$. Let u_{0} be an extremal function for $C_{p}\left(\alpha_{0}, \alpha_{1} ; G_{1}-E \cup \Omega\right)$. Setting $\tilde{u}=u_{0}$ on G_{1} $-E \cup \Omega$ and $\tilde{u}=0$ on Ω, we easily see that $\tilde{u} \in K D^{p}\left(G_{1}-E ; E\right)$ by Theorem 4 . By Lemma $5, E \in N_{K D_{p}}^{G_{1}}$, so that there exists a p-precise function u_{1} in $K D^{p}\left(G_{1}\right)$ such that $u_{1}=\tilde{u}$ in $G_{1}-E$. Obviously u_{1} belongs to $\mathscr{D}\left(\alpha_{0}, \alpha_{1} ; G_{1}\right)$. Since u_{1} $\in K D^{p}\left(G_{1}\right)$, by using Lemma 2 and Hölder's inequality we see that

$$
\int_{G_{1}}\left|\nabla u_{1}\right|^{p-2}\left(\nabla u_{1}, \nabla v\right) d x=0
$$

for every p-precise function v in G_{1} such that $v(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_{G_{1}}$. From Theorem 4 it follows that u_{1} is extremal for $C_{p}\left(\alpha_{0}, \alpha_{1} ; G_{1}\right)$. It is known that an extremal function for $C_{p}\left(\alpha_{0}, \alpha_{1} ; G_{1}\right)$ is given by

$$
g(x)= \begin{cases}\left(\left|x-x^{0}\right|^{\frac{p-N}{p-1}}-r_{1}^{\frac{p-N}{p-1}}\right) /\left(r_{2}^{\frac{p-N}{p-1}}-r_{1}^{\frac{p-N}{p-1}}\right) & \text { if } p \neq N \tag{4.1}\\ \left(\log \frac{\left|x-x^{0}\right|}{r_{1}}\right) / \log \frac{r_{2}}{r_{1}} & \text { if } p=N\end{cases}
$$

By Theorem 4, $g=u_{1}$ except for x in a set of measure zero in G_{1}. This is a contradiction since $u_{1}=0$ on Ω. Thus we see that $R^{N}-E$ is a domain.

A bounded domain D is called a ring domain if it has two boundary components. We shall show a necessary condition for $E \in N_{K D p}^{G}$.

Theorem 8. If $E \in N_{\text {KDp }}^{G}$, then $C_{p}\left(\alpha_{0}, \alpha_{1} ; D-E\right)=C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D-E, \beta_{Q}\right)$ for every ring domain D containing G, where α_{0} and α_{1} are two boundary components of D and $\beta=\partial E$.

Proof. By Lemma 6 we note that $C_{p}\left(\alpha_{0}, \alpha_{1} ; D-E\right)$ and $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D-E\right.$, β_{Q}) are well-defined. Let u_{0} and u^{*} be extremal functions for $C_{p}\left(\alpha_{0}, \alpha_{1} ; D-E\right)$ and $C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D-E, \beta_{Q}\right)$ respectively. By Lemma $5, E \in N_{K D^{p}}^{D}$. Hence there exist two functions \tilde{u}_{0} and \tilde{u}^{*} in $K D^{p}(D)$ such that $\tilde{u}_{0}=u_{0}$ in $D-E$ and $\tilde{u}^{*}=u^{*}$ in $D-E$. These imply that $\tilde{u}_{0}, \tilde{u}^{*} \in \mathscr{D}\left(\alpha_{0}, \alpha_{1} ; D\right)$,

$$
\int_{D}\left|\nabla \tilde{u}_{0}\right|^{p-2}\left(\nabla \tilde{u}_{0}, \nabla \phi\right) d x=0
$$

for every ϕ in $C_{0}^{\infty}(D)$ and

$$
\int_{D}\left|\nabla \tilde{u}^{*}\right|^{p-2}\left(\nabla \tilde{u}^{*}, \nabla \phi\right) d x=0
$$

for every ϕ in $C_{0}^{\infty}(D)$. As in the proof of Lemma 6, we conclude that \tilde{u}_{0} and \tilde{u}^{*} are extremal for $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)$. By Theorem 4, $\tilde{u}_{0}=\tilde{u}^{*}$ a.e. in D. Hence $C_{p}\left(\alpha_{0}\right.$,
$\left.\alpha_{1} ; D-E\right)=C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D-E, \beta_{Q}\right)$.
Corollary 1. If $E \in N_{K^{p}}^{G}$, then the N-dimensional Lebesgue measure of E is equal to zero.

Proof. Take a ring domain $D=\left\{x ; r_{1}<\left|x-x^{0}\right|<r_{2}\right\}$ such that $D \supset G$. Let $\alpha_{0}=\left\{x ;\left|x-x^{0}\right|=r_{1}\right\}, \alpha_{1}=\left\{x,\left|x-x^{0}\right|=r_{2}\right\}$ and $\beta=\partial E$. In general $C_{p}\left(\alpha_{0}\right.$, $\left.\alpha_{1} ; D-E\right) \leqq C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right) \leqq C_{p}^{* *}\left(\alpha_{0}, \alpha_{1} ; D-E, \beta_{Q}\right)$. By Theorem 8, we see $C_{p}\left(\alpha_{0}, \alpha_{1} ; D-E\right)=C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)$. Let u_{1} be the function defined by the right hand side of (4.1). Then u_{1} is an extremal function for $C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)$ and its restriction to $D-E$ belongs to $\mathscr{D}\left(\alpha_{0}, \alpha_{1} ; D-E\right)$. Hence

$$
\int_{D}\left|\nabla u_{1}\right|^{p} d x=C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)=C_{p}\left(\alpha_{0}, \alpha_{1} ; D-E\right) \leqq \int_{D-E}\left|\nabla u_{1}\right|^{p} d x,
$$

which implies

$$
\int_{E}\left|\nabla u_{1}\right|^{p} d x=0 .
$$

Since $\left|\nabla u_{1}\right| \neq 0$ on D, we conclude that the N-dimensional Lebesgue measure of E is equal to zero.

§ 5. Relations between $K D^{p}$-null sets and $\boldsymbol{F} D^{p}$-null sets

In [6], Hedberg considered the following notion of null sets. For an open set G in R^{N}, denote by $F D^{p}(G)$ the class of real valued harmonic functions u in G such that $|\nabla u|$ belongs to $L^{p}(G)$ and u has no flux, i.e., $\int_{C} \partial u / \partial v d S=0$ for all ($N-1$)-cycles C in G. A compact set E is said to be removable for $F D^{p}$ if for some open set G containing E every function in $F D^{p}(G-E)$ can be extended to a function in $F D^{p}(G)$. The class of removable sets for $F D^{p}$ is denoted by $N_{F D^{p}}$. Denote by $W_{1}^{p}(G)$ the Sobolev space of real valued functions f in $L^{p}(G)$ whose derivatives in the distribution sense are functions in $L^{p}(G)$. When G is bounded $\|\nabla f\|_{p}$ is a norm on $C_{0}^{\infty}(G)$ by the Poincaré inequality, and the closure in $W_{1}^{p}(G)$ of $C_{0}^{\infty}(G)$ with respect to this norm is denoted by $\mathscr{W}_{1}^{p}(G)$. Hedberg proved

Theorem A ([6, Theorem 1, b]). $E \in N_{F D^{p}}$ if and only if $C_{1}^{\infty}(G ; E)$ is dense in $\dot{W}_{1}^{q}(G)$ for some bounded open set $G \supset E$, where $q=p /(p-1)$.

Let D be an N-dimensional open rectangle with sides parallel to the coordinate planes, E be a compact set in D (possibly an empty set) and G_{1} be a bounded open set containing \bar{D}. We set

$$
M_{p}^{i}(D-E)=\inf _{\psi} \int_{D-E}|\nabla \psi|^{p} d x \quad(i=1, \ldots, N)
$$

where the infimum is taken over all $\psi \in C_{1}^{\infty}\left(G_{1} ; E\right)$ such that $\psi(x)=0$ on α_{0}^{i} which is one of the sides of D parallel to the coordinate plane $x_{i}=0$, and $\psi(x)=1$ on α_{1}^{i} which is the opposite side of α_{0}^{i}. Obviously $M_{p}^{i}(D-E)$ does not depend on the choice of G_{1}.

Theorem B ([6, Theorem 4]). $E \in N_{F D^{q}}$ if and only if the equalities $M_{p}^{i}(D$ $-E)=M_{p}^{i}(D), i=1, \ldots, N$, hold for some open rectangle $D \supset E$.

By using these theorems we shall give some results on $K D^{p}$-null sets.
Lemma 7. If $C_{1}^{\infty}(G ; E)$ is dense in $\dot{W}_{1}^{p}(G)$ for a bounded open set G, then the N-dimensional Lebesgue measure of E is zero and $R^{N}-E$ is a domain.

Proof. Choose a function $\phi \in C_{0}^{\infty}(G)$ such that $\phi(x)=x_{1}$ on a neighborhood of E for $x=\left(x_{1}, \ldots, x_{N}\right)$. By the assumption of the lemma there is a sequence $\left\{\phi_{n}\right\}$ in $C_{1}^{\infty}(G ; E)$ such that

$$
\lim _{n \rightarrow \infty} \int_{G}\left|\nabla\left(\phi-\phi_{n}\right)\right|^{p} d x=0
$$

Then

$$
\int_{E} d x=\int_{E}\left|\nabla\left(\phi-\phi_{n}\right)\right|^{p} d x \leqq \int_{G}\left|\nabla\left(\phi-\phi_{n}\right)\right|^{p} d x .
$$

Hence $\int_{E} d x=0$.
Next, suppose $R^{N}-E$ is not a domain. Then there is a non-empty bounded domain $\Omega \subset R^{N}-E$ such that $\partial \Omega \subset E$. Take a bounded open ball G_{1} containing G and a function $\psi \in C_{0}^{\infty}\left(G_{1}\right)$ such that $\psi=1$ on Ω. Let $\phi(x)=x_{1} \psi(x)$ for x $=\left(x_{1}, \ldots, x_{N}\right)$. By the assumption of the lemma, we easily see that $C_{1}^{\infty}\left(G_{1} ; E\right)$ is dense in $\dot{W}_{1}^{p}\left(G_{1}\right)$. Since $\phi(x) \in C_{0}^{\infty}\left(G_{1}\right)$, there is a sequence $\left\{\phi_{n}\right\}$ in $C_{1}^{\infty}\left(G_{1} ; E\right)$ such that

$$
\lim _{n \rightarrow \infty} \int_{G_{1}}\left|\nabla\left(\phi-\phi_{n}\right)\right|^{p} d x=0
$$

We take a subdomain Ω^{\prime} of Ω such that $\partial \Omega^{\prime}$ consists of a finite number of C^{1} surfaces $\beta_{j}(j=1, \ldots, m)$ and $\phi_{n}=$ const. on each β_{j}. By using Stokes' theorem, we have

$$
\int_{\Omega} \frac{\partial \phi_{n}}{\partial x_{1}} d x=\int_{\Omega^{\prime}} \frac{\partial \phi_{n}}{\partial x_{1}} d x=0
$$

It follows that

$$
\int_{\Omega} d x=\int_{\Omega} \frac{\partial\left(\phi-\phi_{n}\right)}{\partial x_{1}} d x
$$

By Hölder's inequality, we have

$$
\int_{\Omega} d x \leqq C\left\{\int_{\Omega}\left|\nabla\left(\phi-\phi_{n}\right)\right|^{p} d x\right\}^{1 / p}
$$

Since the right-hand side tends to zero as $n \rightarrow \infty$, we obtain a contradiction. Therefore $R^{N}-E$ is a domain.

Theorem 9. Let $q=p /(p-1)$. If $C_{1}^{\infty}(G ; E)$ is dense both in $\dot{W}_{1}^{p}(G)$ and in $\dot{W}_{1}^{q}(G)$ for a bounded open set G, then E belongs to $N_{K D^{p}}^{G}$.

Proof. By Lemma 7, $R^{N}-E$ is a domain and the N-dimensional Lebesgue measure of E is equal to zero. Moreover, since $C_{1}^{\infty}(G ; E)$ is dense in $\dot{W}_{1}^{q}(G)$, as in the first half of the proof of [6, Theorem 1], we see that for any u in $K D^{p}(G$ $-E ; E$) there is a function in $W_{1}^{p}(G)$ which is equal to u in $G-E$. Hence, by [9, Theorem 4.21], there is a p-precise function u_{0} in G such that $u_{0}=u$ and $\partial u_{0} / \partial x_{i}$ $=\partial u / \partial x_{i}(i=1, \ldots, N)$ except on a set of measure zero in $G-E$. Next, since $C_{1}^{\infty}(G ; E)$ is dense in $\mathscr{W}_{1}^{p}(G)$, for any ψ in $C_{0}^{\infty}(G)$ there is a sequence $\left\{\phi_{n}\right\}$ in $C_{1}^{\infty}(G$; $E)$ such that

$$
\lim _{n \rightarrow \infty} \int_{G}\left|\nabla\left(\psi-\phi_{n}\right)\right|^{p} d x=0
$$

Then, by Hölder's inequality we have

$$
\begin{aligned}
& \int_{G}\left|\nabla u_{0}\right|^{p-2}\left(\nabla u_{0}, \nabla \psi\right) d x \\
= & \lim _{n \rightarrow \infty} \int_{G}\left|\nabla u_{0}\right|^{p-2}\left(\nabla u_{0}, \nabla \phi_{n}\right) d x \\
= & \lim _{n \rightarrow \infty} \int_{G-E}|\nabla u|^{p-2}\left(\nabla u, \nabla \phi_{n}\right) d x \\
= & 0 .
\end{aligned}
$$

Hence $u_{0} \in K D^{p}(G)$, so that $E \in N_{K D^{p}}^{G}$.
Theorem 10. If $E \in N_{\text {KDp }}^{G}$, then $C_{1}^{\infty}(G ; E)$ is dense in $\dot{W}_{1}^{p}(G)$.
Proof. By Theorems A and B it is enough to show that

$$
M_{p}^{i}(D-E)=M_{p}^{i}(D) \quad(i=1, \ldots, N)
$$

for some open rectangle D containing G. Take a bounded open set $G_{1} \supset \bar{D}$. First we observe by using Lemma 2 that

$$
M_{p}^{i}(D-E)=\inf _{u} \int_{D-E}|\nabla u|^{p} d x
$$

where the infimum is taken over all p-precise functions u defined in $G_{0}=G_{1}-E$ $-\alpha_{0}^{i}-\alpha_{1}^{i}$ such that $u(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_{G_{0}}\left(\alpha_{0}^{i}\right) \cup \Gamma_{G_{0}}\left(\partial G_{1}\right), u(\gamma)=1$ for p-a.e. $\gamma \in \Gamma_{G_{0}}\left(\alpha_{1}^{i}\right)$ and $u=$ const. on each component of some neighborhood of E. Moreover, in the same way as in Theorem 2, we have a p-precise function u_{0} defined in $D-E$ such that $u_{0}(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_{D-E}\left(\alpha_{0}^{i}\right), u_{0}(\gamma)=1$ for $p-$ a. e. $\gamma \in \Gamma_{D-E}\left(\alpha_{1}^{i}\right)$, $M_{p}^{i}(D-E)=\int_{D-E}\left|\nabla u_{0}\right|^{p} d x$ and $\int_{D-E}\left|\nabla u_{0}\right|^{p-2}\left(\nabla u_{0}, \nabla \psi\right) d x=0$ for every ψ in $C_{1}^{\infty}(D ; E)$. By Lemma 5, we see that $E \in N_{K D^{p}}^{D}$. Since $u_{0} \in K D^{p}(D-E ; E)$, there exists a function \tilde{u}_{0} in $K D^{p}(D)$ such that $\tilde{u}_{0}=u_{0}$ in $D-E$. On the other hand $M_{p}^{i}(D)=C_{p}\left(\alpha_{0}^{i}, \alpha_{1}^{i} ; D\right)$. Obviously $\tilde{u}_{0} \in \mathscr{D}\left(\alpha_{0}^{i}, \alpha_{1}^{i} ; D\right)$. Take ϕ_{0} in $C_{0}^{\infty}(D)$ such that $\phi_{0}=1$ on a neighborhood of E. For any p-precise function v in D such that $v(\gamma)=0$ for p-a.e. $\gamma \in \Gamma_{D}\left(\alpha_{0}^{i}\right) \cup \Gamma_{D}\left(\alpha_{1}^{i}\right)$, we have

$$
\begin{aligned}
& \int_{D}\left|\nabla \tilde{u}_{0}\right|^{p-2}\left(\nabla \tilde{u}_{0}, \nabla v\right) d x \\
= & \int_{D}\left|\nabla \tilde{u}_{0}\right|^{p-2}\left(\nabla \tilde{u}_{0}, \nabla\left(\phi_{0} v\right)\right) d x+\int_{D}\left|\nabla \tilde{u}_{0}\right|^{p-2}\left(\nabla \tilde{u}_{0}, \nabla\left(v\left(1-\phi_{0}\right)\right)\right) d x .
\end{aligned}
$$

Using Lemma 2 and the fact $\tilde{u}_{0} \in K D^{p}(D)$ we conclude that

$$
\int_{D}\left|\nabla \tilde{u}_{0}\right|^{p-2}\left(\nabla \tilde{u}_{0}, \nabla v\right) d x=0 .
$$

From Theorem 4 it follows that \tilde{u}_{0} is an extremal function for $M_{p}^{i}(D)$. By Corollary 1, we have that $M_{p}^{i}(D-E)=M_{p}^{i}(D)$ for all $i=1, \ldots, N$. The proof is completed.

Corollary 2. If $p \geqq 2$, then $E \in N_{K^{p}}^{G}$ if and only if $C_{1}^{\infty}(G ; E)$ is dense in $\dot{W}_{1}^{p}(G)$.

Corollary 3. If $p \geqq 2$, then the property $E \in N_{\text {KDp }}^{G}$ does not depend on the choice of G.

By virtue of Corollary 3, in case $p \geqq 2$ we may omit the suffix G in the notation $N_{K D^{p}}^{G}$ and have a notion of $K D^{p}$-null sets. We combine these results with Theorem A and have the following theorem.

Theorem 11. If $p \geqq 2$, then a compact set E is a $K D^{p}$-null set if and only if E is removable for $F D^{q}$, where $q=p /(p-1)$.

Remark. In case $p \geqq 2$, by Corollary 2 any compact subset of a $K D^{p}$-null set is a $K D^{p}$-null set. If E_{1}, \ldots, E_{n} are totally disconnected and $K D^{p}$-null sets, then so is $E_{i} \cap E_{j}$. Hence we see that $\cup_{i=1}^{n} E_{i} \in N_{K D^{p}}$.

§6. The case $\boldsymbol{p}=\mathbf{2}$

Here we shall give a characterization of $K D^{2}$-null sets. Let D be a bounded domain with a finite number of boundary components α_{0}, α_{1} and $\beta_{j}(j=1, \ldots, k)$. Denote by $\mathscr{D}^{\prime}=\mathscr{D}^{\prime}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ the family of all $C^{\infty}(D)$-functions u in D each of which is identically equal to 0 (resp. 1 , a constant $a_{j}, j=1, \ldots, k$) in the intersections with D of some neighborhoods of α_{0} (resp. $\alpha_{1}, \beta_{j}, j=1, \ldots, k$).

Lemma 8. $\quad C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)=\inf _{u \in \mathscr{D}^{\prime}} \int_{D}|\nabla u|^{p} d x$.
Proof. Put $C_{p}^{\prime}=\inf _{u \in \mathcal{Q}^{\prime}} \int_{D}|\nabla u|^{p} d x$ and $C_{p}^{*}=C_{p}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$. Obviously, $C_{p}^{*} \leqq C_{p}^{\prime}$. For any $u \in \mathscr{D}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)$ there is $f \in \mathscr{D}^{\prime}$ such that $(u-f)(\gamma)$ $=0$ for p-a.e. $\gamma \in \Gamma_{D}$. By Lemma 2 we can take $\left\{f_{n}\right\}_{n=1}^{\infty}$ in $C_{o}^{\infty}(D)$ such that $\lim _{n \rightarrow \infty}\left\|\boldsymbol{\nabla}\left(u-f-f_{n}\right)\right\|_{p}=0$. Therefore $\lim _{n \rightarrow \infty}\left\|\nabla\left(f+f_{n}\right)\right\|_{p}=\|\nabla u\|_{p}$. Since $f+f_{n} \in$ $\mathscr{D}^{\prime}, C_{p}^{\prime} \leqq C_{p}^{*}$.

In the same way as Lemma 8, we have
Lemma 9 (cf. [9, Theorems 6.13 and 6.14]).

$$
C_{p}\left(\alpha_{0}, \alpha_{1} ; D\right)=\inf _{u} \int_{D}|\nabla u|^{p} d x
$$

where the infimum is taken over all $C^{\infty}(D)$-functions u each of which is identically equal to 0 and 1 in the intersections with D of some neighborhoods of α_{0} and α_{1} respectively.

Let D be a regular domain, that is a domain for which ∂D consists of a finite number of compact C^{1}-surfaces α_{0}, α_{1} and $\beta_{j}(j=1, \ldots, k)$. We know (cf. [11]) that there exist principal functions $h_{i}(i=0,1)$ with respect to α_{0}, α_{1} and D, which are characterized by the following properties:
(1) h_{i} is harmonic in D and is continuous on \bar{D};
(2) $h_{i}=0$ on α_{0} and $h_{i}=1$ on α_{1};
(3) $\partial h_{0} / \partial v=0$ on each $\beta_{j}, h_{1}=$ const. on each β_{j} and $\int_{\beta_{j}} \partial h_{1} / \partial v d S=0$ for j $=1, \ldots, k$, where $\partial / \partial v$ indicates the normal derivative and $d S$ is the surface element.

In case $p=2$, by Green's formula and Lemmas 8 and 9 , we have
Theorem 12. Let D be a regular domain with $\partial D=\alpha_{0} \cup \alpha_{1} \cup \beta_{1} \cup \cdots \cup \beta_{k}$. Then $C_{2}^{*}\left(\alpha_{0}, \alpha_{1} ; D,\left\{\beta_{j}\right\}\right)=\int_{D}\left|\nabla h_{1}\right|^{2} d x$ and $C_{2}\left(\alpha_{0}, \alpha_{1} ; D\right)=\int_{D}\left|\nabla h_{0}\right|^{2} d x$.

We note by Theorem 11 that the notion of $K D^{2}$-null sets coincides with the notion of $K D$-null sets defined in [12]. The author showed in [12, Theorem 3] a relation between $N_{K D}$ and the span for the canonical partition of E. By this result and Theorem 12, we obtain the following theorem.

Theorem 13. $E \in N_{K D^{2}}$ if and only if $C_{2}\left(\alpha_{0}, \alpha_{1} ; D-E\right)=C_{2}^{* *}\left(\alpha_{0}, \alpha_{1}\right.$; $\left.D-E, \beta_{Q}\right)$ for every unbounded domain D such that $D \supset E$ and ∂D consists of two disjoint compact boundary components α_{0}, α_{1}, where $\beta=\partial E \cup\{\infty\}$.

Proof. Suppose $E \in N_{K D^{2}}$. Let D be an unbounded domain such that $D \supset E$ and ∂D consists of two disjoint compact boundary components α_{0}, α_{1}. Let u_{0} and u^{*} be the extremal functions for $C_{2}\left(\alpha_{0}, \alpha_{1} ; D-E\right)$ and $C_{2}^{* *}\left(\alpha_{0}, \alpha_{1}\right.$; $D-E, \beta_{Q}$) respectively. Take a bounded domain G such that $G \supset E$ and $R^{N}-G$ $\supset \alpha_{0}, \alpha_{1}$. Since $u_{0}, u^{*} \in K D^{2}(G-E ; E)$, there exist 2-precise functions \hat{u}_{0}, \hat{u}^{*} in $K D^{2}(G)$ such that $u_{0}=\hat{u}_{0}$ in $G-E$ and $u^{*}=\hat{u}^{*}$ in $G-E$. Let

$$
\tilde{u}_{0}= \begin{cases}\hat{u}_{0} & \text { in } G \\ u_{0} & \text { in } D-G\end{cases}
$$

and

$$
\tilde{u}^{*}= \begin{cases}\hat{u}^{*} & \text { in } G \\ u^{*} & \text { in } D-G .\end{cases}
$$

We take $\psi_{0} \in C_{0}^{\infty}(G)$ such that $\psi_{0}=1$ on a neighborhood of E. We extend ψ_{0} by 0 to $R^{N}-G$. Let ψ be any function in $C^{\infty}(D)$ such that the support of $|\nabla \psi|$ is bounded and $\psi=0$ on $\alpha_{0} \cup \alpha_{1}$. Then we have

$$
\begin{aligned}
& \int_{D}\left(\nabla \tilde{u}^{*}, \nabla \psi\right) d x \\
= & \int_{D}\left(\nabla \tilde{u}^{*}, \nabla\left(\psi\left(1-\psi_{0}\right)\right)\right) d x+\int_{D}\left(\nabla \tilde{u}^{*}, \nabla\left(\psi \psi_{0}\right)\right) d x \\
= & \int_{D-E}\left(\nabla u^{*}, \nabla\left(\psi\left(1-\psi_{0}\right)\right)\right) d x+\int_{G}\left(\nabla \hat{u}^{*}, \nabla\left(\psi \psi_{0}\right)\right) d x .
\end{aligned}
$$

Since $\psi \psi_{0} \in C_{0}^{\infty}(G)$, the last integral vanishes. Since $\psi\left(1-\psi_{0}\right)$ is a function in $C^{\infty}(D-E)$ such that the support of $\left|\nabla\left(\psi\left(1-\psi_{0}\right)\right)\right|$ is bounded, $\psi\left(1-\psi_{0}\right)=0$ on $\alpha_{0} \cup \alpha_{1}$ and $\psi\left(1-\psi_{0}\right)=0$ on a neighborhood of E, we have $\int_{D-E}\left(\nabla u^{*}, \nabla(\psi(1\right.$ $\left.\left.\left.-\psi_{0}\right)\right)\right) d x=0$. Hence

$$
\int_{D}\left(\nabla \tilde{u}^{*}, \nabla \psi\right) d x=0
$$

Let $\Gamma_{D}(\infty)$ be the family of all locally rectifiable curves in D each of which starts from a point of D and tends to the point at infinity. By [9, Theorem 9.12], $\tilde{u}^{*}-\tilde{u}_{0}$ has a finite constant limit along 2 -a.e. curve in $\Gamma_{D}(\infty)$. By using Lemma 2 and Hölder's inequality, we have

$$
\int_{D}\left(\nabla \tilde{u}^{*}, \nabla\left(\tilde{u}^{*}-\tilde{u}_{0}\right)\right) d x=0 .
$$

From this we see that

$$
\int_{D}\left|\nabla \tilde{u}^{*}\right|^{2} d x \leqq \int_{D}\left|\nabla \tilde{u}_{0}\right|^{2} d x
$$

By Corollary 1 to Theorem 8,

$$
\int_{D-E}\left|\nabla u^{*}\right|^{2} d x \leqq \int_{D-E}\left|\nabla u_{0}\right|^{2} d x
$$

Since the converse inequality is trivial, we conclude that

$$
C_{2}\left(\alpha_{0}, \alpha_{1} ; D-E\right)=C_{2}^{* *}\left(\alpha_{0}, \alpha_{1} ; D-E, \beta_{Q}\right)
$$

Conversely we suppose that $C_{2}\left(\alpha_{0}, \alpha_{1} ; D-E\right)=C_{2}^{* *}\left(\alpha_{0}, \alpha_{1} ; D-E, \beta_{Q}\right)$ for every D as in the theorem. Take distinct two points x^{0}, x^{1} in the domain $R^{N}-E$ ($=E^{c}$) and balls S_{r}^{0}, S_{r}^{1} of radius r, with centers at x^{0}, x^{1} and with disjoint closures in E^{c}. Let $\left\{D_{n}\right\}$ be an exhaustion of E^{c} such that $D_{1} \supset S_{r}^{0}, S_{r}^{1}$. Denote by $\beta_{j}(j=1, \ldots, j(n))$ the boundary components of D_{n}. We know (cf. [11]) that there exist principal functions $P_{i, n}(i=0,1)$ with respect to x^{0}, x^{1} and D_{n}, which are characterized by the following properties:
(1) $P_{i, n}$ is harmonic in $D_{n}-\left(\left\{x^{0}\right\} \cup\left\{x^{1}\right\}\right)$;
(2) $P_{i, n}=\frac{1}{\sigma\left|x-x^{0}\right|^{N-2}}+h_{i, n} \quad$ on $\quad S_{r}^{0}$,

$$
P_{i, n}=\frac{-1}{\sigma\left|x-x^{1}\right|^{N-2}}+f_{i, n} \quad \text { on } \quad S_{r}^{1}
$$

where σ is the surface area of unit sphere in R^{N}, and $h_{i, n}$ and $f_{i, n}$ are harmonic in S_{r}^{0} and S_{r}^{1} respectively and $f_{i, n}\left(x^{1}\right)=0$;
(3) $\partial P_{0, n} / \partial v=0$ on $\partial D_{n}, P_{1, n}=$ const. on each β_{j} and $\int_{\beta_{j}} \partial P_{1, n} / \partial v d S=0$ for $j=1, \ldots, j(n)$.
We see that the limits

$$
h_{i}=\lim _{n \rightarrow \infty} h_{i, n}, \quad f_{i}=\lim _{n \rightarrow \infty} f_{i, n} \quad(i=0,1)
$$

exist and the convergences are uniform on every compact subset of E^{c}. Set

$$
\begin{aligned}
\alpha_{0} & =\partial S_{r}^{0}, \alpha_{1}=\partial S_{r}^{1} ; \\
a_{n} & =\max _{x \in \alpha_{0}} P_{0, n}(x), a_{n}^{\prime}=\min _{x \in \alpha_{0}} P_{0, n}(x), \\
b_{n}^{\prime} & =\max _{x \in \alpha_{1}} P_{0, n}(x), b_{n}=\min _{x \in \alpha_{1}} P_{0, n}(x) ; \\
A_{n} & =\left\{x ; P_{0, n}(x) \geqq a_{n}\right\}, A_{n}^{\prime}=\left\{x ; P_{0, n}(x) \geqq a_{n}^{\prime}\right\}, \\
B_{n}^{\prime} & =\left\{x ; P_{0, n}(x) \leqq b_{n}^{\prime}\right\}, B_{n}=\left\{x ; P_{0, n}(x) \leqq b_{n}\right\}
\end{aligned}
$$

and

$$
\alpha_{0 n}=\partial A_{n}, \alpha_{0 n}^{\prime}=\partial A_{n}^{\prime}, \alpha_{1 n}=\partial B_{n}, \alpha_{1 n}^{\prime}=\partial B_{n}^{\prime}
$$

For sufficiently small r, we easily see that

$$
\begin{aligned}
C_{2}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n}-A_{n}-B_{n}\right) & \leqq C_{2}\left(\alpha_{0}, \alpha_{1} ; D_{n}-\overline{S_{r}^{0}}-\overline{S_{r}^{1}}\right) \\
& \leqq C_{2}\left(\alpha_{0 n}^{\prime}, \alpha_{1 n}^{\prime} ; D_{n}-A_{n}^{\prime}-B_{n}^{\prime}\right)
\end{aligned}
$$

By Theorem 12, $\left(a_{n}-P_{0, n}\right) /\left(a_{n}-b_{n}\right)$ is extremal for $C_{2}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n}-A_{n}-B_{n}\right)$. Therefore we have

$$
C_{2}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n}-A_{n}-B_{n}\right)=\frac{N-2}{a_{n}-b_{n}} .
$$

From this we derive that

$$
\begin{aligned}
\max _{x \in \alpha_{0}} h_{0, n}-\min _{x \in \alpha_{1}} f_{0, n} & =a_{n}-b_{n}-\frac{2}{\sigma r^{N-2}} \\
& =\frac{N-2}{C_{2}\left(\alpha_{0 n}, \alpha_{1 n} ; D_{n}-A_{n}-B_{n}\right)}-\frac{2}{\sigma r^{N-2}} .
\end{aligned}
$$

Similarly,

$$
\min _{x \in \alpha_{0}} h_{0, n}-\max _{x \in \alpha_{1}} f_{0, n}=\frac{N-2}{C_{2}\left(\alpha_{0 n}^{\prime}, \alpha_{1 n}^{\prime} ; D_{n}-A_{n}^{\prime}-B_{n}^{\prime}\right)}-\frac{2}{\sigma r^{N-2}} .
$$

From the above inequalities we see

$$
\begin{aligned}
\max _{x \in \alpha_{0}} h_{0, n}-\min _{x \in \alpha_{1}} f_{0, n} & \geqq \frac{N-2}{C_{2}\left(\alpha_{0}, \alpha_{1} ; D_{n}-\overline{\left.S_{r}^{0}-\overline{S_{r}^{1}}\right)}-\frac{2}{\sigma r^{N-2}}\right.} \begin{aligned}
& \geqq \min _{x \in \alpha_{0}} h_{0, n}-\max _{x \in \alpha_{1}} f_{0, n} .
\end{aligned}
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
\max _{x \in \alpha_{0}} h_{0}-\min _{x \in \alpha_{1}} f_{0} \geqq \frac{N-2}{C_{2}\left(\alpha_{0}, \alpha_{1} ; E^{c}-\overline{S_{r}^{0}}-\overline{S_{r}^{1}}\right)}-\frac{2}{\sigma r^{N-2}} \geqq \min _{x \in \alpha_{0}} h_{0}-\max _{x \in \alpha_{1}} f_{0}
$$

In the same way we have

$$
\max _{x \in \alpha_{0}} h_{1}-\min _{x \in \alpha_{1}} f_{1} \geqq \frac{N-2}{C_{2}^{* *}\left(\alpha_{0}, \alpha_{1} ; E^{c}-\overline{S_{r}^{0}}-\overline{S_{r}^{1}}, \beta_{Q}\right)}-\frac{2}{\sigma r^{N-2}} \geqq \min _{x \in \alpha_{0}} h_{1}-\max _{x \in \alpha_{1}} f_{1}
$$

By assumption the equality

$$
C_{2}\left(\alpha_{0}, \alpha_{1} ; E^{c}-\overline{S_{r}^{0}}-\overline{S_{r}^{1}}\right)=C_{2}^{* *}\left(\alpha_{0}, \alpha_{1} ; E^{c}-\overline{S_{r}^{0}}-\overline{S_{r}^{1}}, \beta_{Q}\right)
$$

holds for every small $r>0$. Hence

$$
\max _{x \in \alpha_{0}} h_{0}-\min _{x \in \alpha_{1}} f_{0} \geqq \min _{x \in \alpha_{0}} h_{1}-\max _{x \in \alpha_{1}} f_{1}
$$

and

$$
\max _{x \in \alpha_{0}} h_{1}-\min _{x \in \alpha_{1}} f_{1} \geqq \min _{x \in \alpha_{0}} h_{0}-\max _{x \in \alpha_{1}} f_{0}
$$

Since $f_{i}\left(x^{1}\right)=0(i=0,1)$, letting $r \rightarrow 0$ we have that $h_{0}\left(x^{0}\right)=h_{1}\left(x^{0}\right)$. This means that the span is equal to zero for all couples (x^{0}, x^{1}) of distinct points in E^{c}, so that by [12, Theorem 3], we conclude that $E \in N_{K D^{2}}$. The proof is completed.

Remark. This theorem is a euclidean space version of Rodin's result on Riemann surfaces in [10].

References

[1] L. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101-129.
[2] J. A. Clarkson: Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[3] B. Fuglede: Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
[4] F. W. Gehring: Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J. 9 (1962), 137-150.
[5] F. W. Gehring: Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393.
[6] L. I. Hedberg: Removable singularities and condenser capacities, Ark. Mat. 12 (1974), 181-201.
[7] A. Marden and B. Rodin: Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings, Acta Math. 115 (1966), 237-269.
[8] C. D. Minda: Extremal length and harmonic functions on Riemann surfaces, Trans. Amer. Math. Soc. 171 (1972), 1-22.
[9] M. Ohtsuka: Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
[10] B. Rodin: Extremal length and removable boundaries of Riemann surfaces, Bull. Amer. Math. Soc. 72 (1966), 274-276.
[11] B. Rodin and L. Sario: Principal functions, D. Van Nostrand, Princeton, 1968.
[12] H. Yamamoto: On KD-null sets in N-dimensional cuclidean space, J. Sci. Hiroshima Univ. Ser. A-1 Math. 34 (1970), 59-68.
[13] W. P. Ziemer: Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43-51.

Department of Mathematics, Faculty of Science, Kôchi University

