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1. Introduction
Consider the boundary value problem

dx _ <t<
(1'1) dt —X(x5 t)’ a=t=b!

(1.2) flx1=0,

and let x,(f) be an approximate solution of this problem, where x and X(x, f)
are real n-vectors, f is an operator from D< C[J] into R" which is continuously
Fréchet differentiable in D, and C[J] is the space of all real n-vector functions
continuous on [a, b].

Constructing an operator equation from (1.1), (1.2) and approximating the
Fréchet derivative of the operator in a neighborhood of x, by a linear operator
independent of x, by means of an iterative method Urabe [7] proved the exist-
ence and local uniqueness of an exact solution and gave an a posteriori error esti-
mate of x, in terms of xy(¢) and its derivative.

The first object of this paper is to obtain the results similar to those in [7]
for continuous x,(f) without assuming its differentiability. This is achieved by
replacing (1.1) with an equivalent system of integral equations. Hence the results
can be applied to discrete numerical solutions by means of interpolation.

The second object of this paper is to treat the case where the linear operator
approximating the Fréchet derivative depends on x. This enables us to construct
various iterative methods.

In Section 3 the results are applied to multipoint boundary value problems
[5, 6]. In Section 4 we consider boundary value problems of the least squares
type [1, 8] which arise often in system identification problems and propose some
iterative methods.

2. Convergence of iterative methods and error estimates

Let R" denote a real n-space with any norm || - || and let C[J] be the space
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of all real n-vector functions continuous on the interval J=[a, b], which is made
into a Banach space with the norm || - ||, defined by

Ixlle = suplIx(t)]  for xe C[J].

For any fixed t, e J let
ColJ] = {xeC[J] | x(to) = 0}.
Then B=C,[J] x R" is a Banach space with the norm | - ||,
Iylly = max(Jull, lel)  for y=(u, e)eB.

Let Q' be a domain of the tx-space intercepted by two hyperplanes t=a and
t=>b such that the cross sections R, and R, at t=a and t=>b make an open set in
each hyperplane, and put Q=R,U Q' UR,. Let

D={xeC[J]| (t, x(t)eQ forall teJ}.

Then D is an open set in C[J].

For two Banach spaces B, and B,, we denote by L(B,, B,) the set of all
bounded linear operators from B, into B,. For G: DcB,—L(B, B,) let G(x)
be the element of L(B,, B,) associated with xe D. When F: DcB,—B, is
Fréchet differentiable at x e D, we denote by F'(x) the Fréchet derivative of F
at x.

The identity operator and the unit matrix are denoted by the same symbol
I. The product FG and the sum F+ G of two operators F and G are defined in
the usual manner.

Let us consider the system of differential equations

dx

ax _ <t<
(2.1 g = Xx0, astsh,

with the boundary condition

(2.2) fIx]1=0,

where x and X(x, t) are n-vectors, X(x, f) is continuous in 2 and continuously
differentiable with respect to x in @, and the operator f: D—R" is continuously
Fréchet differentiable in D. We assume that (2.1) has at least one solution in
D.

Let Q: D—>C,[J] be defined by

(2.3) 0x = x(t) — x(ty) — S: X(x(s), s)ds  for xeD.
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Then Qx =0 if and only if x € D is a solution of (2.1). Hence the boundary value
problem (2.1), (2.2) is equivalent to finding a solution x € D of the equation

(2.4) Fx =0,
where F: D— B is defined by
(2.5) Fx = (Qx, f[x]) for xeD.

Let X, (x, t) be the Jacobian matrix of X(x, t) with respect to x. Then
F'(x)h (x € D) is given by

(2.6) F'(x)h = (Q'(x)h, f'(x)h) for heC[J],
where
2.7) Q'(x)h = h(t) — h(ty) — S:oX {x(5), s)h(s)ds.

In relation to F'(x) we introduce the bounded linear operator L(x) (x € D)
defined by

(2.8) L(x)h = (P(x)h, l(x)h) for heC[J],
where
2.9) P(x)h = h(t) — h(ty) — S: A(x(s), s)h(s)ds,

A(x, t) is an n x n matrix continuous in Q, and I: D—L(C[J], R") is bounded and
continuous in D.

Let @,,(t) be the fundamental matrix of the system

D — Ax@, 0y

satisfying @,,(to)=1 and denote by
(2.10) G(x) = I(x) [P )]

the matrix whose column vectors are I(x)®; (i=1, 2,..., n), where &; is the i-th
column vector of @,). Put

(2.11) S(x) = PyG(x)™1,

if G(x) is nonsingular.
For any x € D let E(x) and H(x) be the elements of L(C[J], C[J]) defined by
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(2.12) E(x)h = S' & o (DBTL(5)h(S)ds,

(2.13) H(x)h = (I — S(x)I(x))E(x)h for heC[J],

and let T(x): D—C[J] be the operator such that

(2.149) T(x)p = X(o(1), 1) — A(X)p(t) -~ for ¢eD,
where
(2.15) A(X)p = A(x(t), Ho(t).

We have the following

LeEMMA . For any xe D L(x) has an inverse operator L(x)"! if and only

if
(2.16) det G(x) # 0.

Suppose (2.16) is satisfied. Then for any y=(u, ¢)€ B
(2.17) L(x)"'y = Hy(x)u + Hy(x)e,
so that
(2.18) ILG) e = 1H ()lle + I1H ()l
where
(2.19) Hy(x) = I + HX)A(x) — SX)I(x),
(2.20) H,y(x) = S(x).

Proof. By (2.8), for any y=(u, e) € B, the equation L(x)h=y is equivalent
to the system

(2.21) P(x)h = u,
(2.22) (x)h = e.

The general solution of (2.21) is given by
(2.23) h(t) = Dy(t)e + u(t) + S: D (OPLN(S)A(X(s), s)u(s)ds,
()

where ¢ is an arbitrary constant n-vector. By (2.10) and (2.12) the substitution
of (2.23) into (2.22) yields
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G(x)c + I(x)(I + E(x)A(X)u = e.

Hence L(x)~! exists and is unique if and only if c is determined uniquely for any
(u, e) € B, that is, det G(x) #0.
If (2.16) holds, then it follows that

¢ = G(x) e — G(x)"1U(x)(I + E(x)A(x))u.

Substituting this into (2.23), by (2.19), (2.20) and the definition of H we have (2.17)
and the inequality

ILG)™'ylle = 1H ] cllulle+ [H2()l el

< (1H,®)lle + 1H)l) 1y llss
which implies (2.18).

CoROLLARY. Under the condition (2.16) let

(2.24) K(x)=1—- L(x)"'F  for xeD.
Then
(2.25) K(x)p = {H(X)T(x) + S(x)(I(x) = f)}¢  for ¢eD.

PrOOF. Substituting u=Q¢ and e=f[¢] into (2.17), we have from (2.20)
H,(x)e = S(x)f[¢]
and from (2.19) by the integration by parts
H,(x)u = {I — H(x)T(x) — S(x)I(x)}¢.
Hence
L(x)"'Fo = {I — Hx)T(x) — S(x)(I(x) = f)}e,
which completes the proof.

If L(x) is independent of x, so also are K(x), P, G(x), etc.. In such a case
we write these operators and matrices simply as L, K, @, G, etc. respectively.

By Lemma 1, its corollary and the contraction mapping theorem [4, pp. 65—
66] we have the following

THEOREM 1. Let xo€D be an approximate solution of (2.4) and suppose
there exist a bounded linear operator L, an operator K, a positive number 6
and nonnegative constants n, k (k<1) such that

(i) detG #0,



106 Hisayoshi SHINTANI and Yuichi HAYASHI

(ii) Ds={xeClJ] | lx — Xoll. = 6} = D,
(iii) |Kx — Kyl s «lx —yl.  forall x,yeD,
(iv) |L7'Fxol. < m,
(v) Z=n/(-x) <o
Then the sequence {x,} defined by
(2.26) X+1 =Kx,  (k=0,1,..)
converges to R € Dy as k—>00. % is the unique solution of (2.4) in D;, and
(2.27) 18 — xill. < k*A (k=0,1,..).
COROLLARY. Suppose there exists a positive constant M such that
1 X(x(1), ) — A < k/M,
If'(x) = I £x/M  forall xeD,,
IH| + ISl = M.
Then the condition (iii) is satisfied.
Proor. For any x, y € D; by Corollary to Lemma 1 we have
Kx — Ky = H[Tx — Ty] + S([x — y] — f[x]1 + f[¥D).

Let h=x—y. Then by the mean value theorem we have
Kx — Ky = HBI{Xx(y(t) + Oh(1), 1) — A(t)}h(t)d()}
(1]

+ sg:){z — f'(y + 6h)}hd6.

Since y+ 0h € D;, from the assumption it follows that
1X(x(®) + 6h(D), 1) — A(D)| < x/M,
It—f'(y+0h) <x/M forall 0€[0, 1],
and so
IKx — Kyll. £ (I1Hll. + IS].) (/M) ||kl
= klx =yl

Now we prove the following
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THEOREM 2. Let xo,€D be an approximate solution of (2.4) and suppose
there exist a bounded linear operator L(x) (x€ D), z,€D,, positive numbers
6, M and nonnegative constants n, u, k (k<1) such that

(i) Dsj={xeClJ]llx — xol. <6} =D,
(i) detG(x)#0 forall xeD,
(iii) [ X(x(0), 1) — A(xo(0), D = k/M,
I f(x) = Uxo)ll < k/M  for all xeD,,
(iv) [H®l. + ISX)I. =M  forall xeD,,
(v) [L(zo)"'Fxollc = m,
(vi) [Ax(), ) — A, Dl < pllx =yl
1(x) = IV < plix — yll.  forall x, yeD,,
(vii) B =Mpr/(1 - k) = 1/4,

(viii) o =n/(l —a) =9,

where
(2.28) a={l+k—(1-xr)(1 —4p)32})2,
(2.29) A=n/(l - k),

D, = {xe C[J]llx — xoll < o}.
Then for any sequence {z,} (z, € D,) the sequence {x,} defined by
(2.30) Xk+1 = K(Zk)xk (k = 0, 1,...)

remains in D, and converges to €D, as k—oo. X is the unique solution of
(2.4) in Dy, and

(2.31) 12— xll. Sake (k=0,1,...).
Proor. Since 0=k <1, by (vii) we have

(2.32) KSa<l,

(2.33) o=K+ Mﬁa.

By (ii) and Lemma 1, L(z) (z € D,) has an inverse operator L(z)~!. Hence K(z)
is defined for any z € D, and, if z, € D, and x,; € D, then we have
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(2.34) K(z)x, = x, — L(z,)"'Fx,.

We show first that, if x;, x,,, € D,, then
(2.35) IXe+2 = Xertlle S allxes s = Xl
Let hy=x,,,—x, (I=k, k+1). Then
(2.36) Mevr = = L(zxs )7 FXpr g

= — LzZi+ )7 [FXp1 — Fx, — L(zhy],

because by (2.34)
(2.37) Fx, = — L(z)h,.

By the mean value theorem we have

(238)  Fxis = Fx = Lighe= (= | (X016, 9 = XGu(s), 9

— A(z(s), h)}ds, fxes1] = f[x] - l(zk)hk)

= - (ulv ek)’
where
u(f) = S: 0 (s)ds,
(2.39) 09 = [0 + (o), 5) = Az, DHhuls)db,
(2.40) e, = S;{l(zk) — ' + Oh)}hedh.

From (iii) and (vi) it follows that
1 X () + Oh(2), 1) — A(xo(1), D] < k/M  forall 0€[0, 1],
[ 4(xo(1), ) — A(zu(1), Dl = Bllxo — 2zl

which yield from (2.39)

(2.41) loelle = (/M + pllxo — 2ille) Il

Similarly from (2.40) we have

(2.42) lexll = (/M + pllxo — zille) [ il
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By (2.36), (2.38) and Lemma 1
(2.43) heey = Hi(zu, + S(zp)e,
and by the integration by parts we have

H,(z})u, = H(z))v,.

Hence (2.43) is expressed as
(2.44) hi+1 = H(Z)v + S(z))e.

By (2.44), (2.41), (2.42) and (iv) we have
(2.45) s alle = (€ + Mpllxo — 2zl [ gl
Since ||xo—z,[. <0, by (2.33)

K+ Mplxo — zill. S ¥ + Muo = a,

and (2.35) follows from this and (2.45).
By (v) and (viii)

X1 = Xolle = 1 L(zo)"'FXoll. £n=(1—a)o S 0,
s0 X, € D, and it follows from (2.35) that
X2 = x4l < on.
It can be shown by induction that
[xes1 = Xille < ok,
Ixe = xolle =1 =)o (k=1,2,..),
so that for any integer p=>0 we have
(2.46) Ixk4p — Xille S d*n(1l — a?)/(1 — &) < o*a.

Hence {x,} is a Cauchy sequence in D, and its limit £ exists in D,, because D,
is a closed set. Since by (2.37) and (vi)

IFxlly = NLZN bl Xk 41 — Xl
< (1L(z0) — L(zo)llp + NL(z)llp) IXk4 1 — Xilles
| L(z;) — L(zo)llp < 2uomax(b — a, 1),

it follows that ||Fx,||,—»0 as k—co0 and F£=0 by the continuity of F. Hence
% is a solution of (2.4), and the estimate (2.31) follows from (2.46).



110 Hisayoshi SHINTANI and Yuichi HAYASHI

Now we consider the iterative method
Xpe1 = K(zg)x (k=0,1,..).
Since by (iii), (vi), (iv) and (2.33)
1 X (x(2), 1) — A(zo(®), Dl = o/M,
' (x) = I(zo)ll £ a/M for all xe Dy,
IH(zo)ll. + 1S(z0)llc = M,
by Corollary to Theorem 1 we have

[K(zo)x — K(zp)yll. < allx — yll,  forall x, yeD,

and by Theorem 1 (2.4) has a unique solution in D;. Hence £ is the unique solu-
tion of (2.4) in D;. This completes the proof.

We note that the choice z,=x, (k=0, 1,...) yields the estimate
(2.47) 1£ = Xoll. = 4
and that the choice z,=x, (k=0, 1,...) is also possible.

COROLLARY 1. Let ¢, =x(t,) (k=0, 1,...). Then under the assumptions
of the theorem x,,, and c,,, can be written as

(2.48) Xg+1 = H(z)T(z)x, + S(z) (W(zx — f[x:D)s
(2.49) cer1 = G(z)7'(z) [x — w] — f[D)s
where

u, = E(z)T(z))%-

Proofr. The formula (2.48) follows from Corollary to Lemma 1. Setting
t=t, in (2.48), we have (2.49) because

H(z)T(z)x, = u — S(z)l(zdup,  wilty) = 0.

COROLLARY 2. Let é=2(t,). Then under the assumptions of the theorem
with zo=x,

(2.50) & = coll < min(4, M,Ax/M + 1,),
where 1, and M, are nonnegative numbers such that

(2.51) IRxo — coll = 115
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(2.52) G(xo)~ 1 (1 + [I(x0)E(xp)|) = My,
and
(2.53) R = G(xo)~{l(xo) — f — Ux0)E(x0)T(x0)} .

PROOF. Set z,=x, (k=0, 1,...) in (2.49). Then
(2.54) ¢+1 = Rx; (k=0,1,..).

Since ¢, —¢ as k— o0, by the continuity of fand X(x, t), from (2.54) it follows that
¢=RZR. Since %, xo € D;, by (iii) and the mean value theorem we have

1i(x0) [£ — xo] — f[X] + fIxolll = (/M) [|X — x|,
IT(x0)% — T(xo)Xoll = (k/M)[|Z — xoll..
Hence
IR% — Rxoll = 1G(xo)™ I (1 + [1(x0)E(xo)Il) (/M) X — Xollc»
and by (2.51) and (2.52)

(2.55) 2 = coll = IR& — Rxol + [[Rxo — ¢l

= M (kM) ||1% = xollc + 11

Since by (2.47)
(2.56) e = coll S 1% = Xollc = 4,

(2.50) follows from (2.55) and (2.56). This completes the proof.

A solution % € D of (2.4) is said to be isolated if the Fréchet derivative F'(%)
of F at £ has an inverse operator. With this terminology we have the following

THEOREM 3. The solution x=3X obtained in Theorem 1 is an isolated
solution.

Proor. Let &(t) be a fundamental matrix of the system

dy _ '
D~ X80, 0.

Then by Lemma 1 F'(%) has an inverse operator if and only if det f'(£) [#]#0.
Suppose £ is not an isolated solution. Then there exists a nonzero e R”
such that

(2.57) fi(®[d1e = 0.
Put h=&&. Then by the definition of & we have
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QWh = ity - hto) — | X%, 9h(os

- {43(:) — &(ty) — S:oxx(x(s), s)éi(s)ds}a =0,

and by (2.57)
f'®[h] = f'(®)[S1e = 0.

Hence F'(£)h=0 and we have h=(I— L"1F'(%))h.
On the other hand, by (2.24)

K'(®) = I — L'F'(%).

Since |K'(R)||,£x by (iii) in Theorem 1, we have ||i|,<«| k|, which implies
h(t)=0 because 0<x<1. Since det $(¢)#0 (t€J), it follows that =0, which is
a contradiction and the proof is complete.

It is well known [7] that an isolated solution £e€ D of the problem (2.1),
(2.2) is locally unique; that is, no other solution exists in a sufficiently small

neighborhood of £. ,
In the following two sections the results in this section are applied to special
boundary value problems.

3. Multipoint boundary value problems

In this section we are concerned with the multipoint boundary condition of
the form:

3.1) SFIx] = g(x(to), x(ty),..., x(ty)) = 0,
where
(3.2) a=t,<t; <<ty <ty=b.

3.1. Case of nonlinear conditions
Let

(3.3) D;={x(t;) | xeD} c R} (i=01,.,N)
and let g: Do x D, x --- x Dy—=R" be continuously Fréchet differentiable. Then
(3.4) ' )h =ZoBx)h(t)  for heC[J],

where
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(35) B = 28 (x(t0), ¥ty X(ty) (=0, 1,0 N),

and u; is the space variable in R?.
Let us choose I(x)=f'(x) in (2.8). Then

(3.6) G(x) = X0 B(x)P(t),
and we have the following

LeEMMA 2. Let I(x)=f'(x). Then
(3.7) H(x)h = S:H(x)(t, Sh(s)ds  for heC[J],
where for t,_; s<t, (k=1,2,..., N)
P(DI — MU(X)P(s) if s<t,

— (DM (X)P)(5) if szt

(3.9) My(x) = G(x)" ' Ty Bi(x)P (1) .

(3.8) He(t, 5) = {

Proor. By (3.4) and (2.13) H(x)h can be written as

Iy

HOO = | 00y (0()ds = @G iy B:)| " Bathe(s)ds,

where v(s) = \(s)h(s). Since

t; t
s B[ Pottods = T T B 1s)ds,
we obtain (3.7).
By Lemma 1 we have the following

CoROLLARY. If det G(x)#0, then L(x) has an inverse operator L(x)~! and
for any y=(u, e)eB

(3.10) L(x)"'y = u(t) + S:H(x)(t, $)A(x(s), s)u(s)ds+ S(x)(t) (e — I(x)u).

From this and Corollary to Lemma 1, it follows that for ¢ € D

(3.11) K(x)¢ = HX)T(x)¢ + S(x)(i(x)e — flo]),

and Theorem 2 can be applied to the iterative method x, ., =K(x)x, (k=0, 1,...)
to assure its convergence and to give the error estimate for x,.
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3.2. Case of linear conditions

Let us consider the case

(3.12) fIx]1=lIl[x]—-d=0,
where
(3.13) I[x] = >XYX,Bx(t),

d is a constant n-vector and B; (i=0, 1,..., N) are constant n x n matrices. Then
(3.14) G(x) = Tio Bt

and by (3.11)

(3.15) K(x)p = H(x)T(x)p + S(x)d for ¢@eD.

Now we are interested in the case A(x, t)=A(f). The operator K is then de-
fined by

(3.16) Ko =HT¢o + Sd for @eD,
where |

(3.17) G=3LoBo(1), S=oG7,

(3.18) Hh = SDH(t, Oh(s)ds  for heC[J],

and for t,_, <s<t, (k=1, 2,..., N)

(I — MYP~(s) if s<it,
(3.19) H(t,s) = [

— (M, D~1(s) if s=t,
(3.20) M, =G YN, Bd(t).

In this case Theorem 1 yields the following

THEOREM 4. ' Let x,€ D be an approximate solution of the problem (2.1),
(3.12) and suppose there exist a matrix A(t) continuous on J, positive numbers
d, M and nonnegative constants 1, k (k<1) such that

(i) D;={xeC[J]|[x = xoll. = 6} = D,

(ii) detG # 0,
(i) [H|, M, |Xx(), 1) — A®|. <x/M  forall xeD,
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(iv) |r+ HAr + S([xo — r] — dll. = n,

(v) 2=n/0-x) =9,
where r=Qx,. Then the sequence {x,} defined by
(3.21) X1 = Kxi k=0,1,..)

remains in Dy and converges to £ € Dy as k—oo. % is the unique solution of the
problem (2.1), (3.12) in D;, and

(3.22) 18 = xlle < kkA (k=0,1,..).

ProoF. For any x, y € D; by (3.16) and the mean value theorem we have

Kx — Ky = H[Tx — Ty] = HU;T’(y + Oh)hde],
where h=x—y and
T'(y + 0h) = X (y(t) + 6h(2), 1) — A(?).
Since
IT'(y + 6h)||, < x/M forall #¢€[o0, 1],
it follows that

IKx — Kyll. = |H|| (/M) |Ix =yl £ klx = yl..

By Corollary to Lemma 2 we have
L~'Fxy =r + HAr + S(I[xq — r] — d)
and the conclusion of the theorem follows from Theorem 1.

In particular we study the cases N=0 and N=1.
In the case N=0, (3.12) is the initial condition x(a)=d, and the condition
(iv) is expressed as follows:

(3.23) lr + HAr + ®(xo(a) — d)||. < 7,
where G=1,

D()P~1(s) if ag<s<tgh,
(3.24) H(t, s) =
if agt<s<b.

The error estimate was obtained first by Fujii [2].
In the case N=1, (3.12) is the two point boundary condition Byx(a)+ B,x(b)
=d, and the condition (iv) becomes
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(3.25) Ir + HAr + S{Boxo(a) + Byxo(b) — d — B,r(b)}|l. = n,
where G=B,+ B, ?(b), M;=G"'B;9P(b),

DI — M)P~1(s) if a<s<tZh,
(3.26) H(t, s) =

— (M, D~(s) if agst<s=<b.
For the periodic boundary condition

(3.27) x(a) = x(b),

the condition (iv) can be written as

(3.28) r+ HAr — SS:X(xo(s), s)ds“c <1,

where G=1—&(b),

S(HDP~(s) if a<s<t=<h,
(3.29) H(t, s) =
S(HP(b)d~1(s) if agt=<s=h.

In the case where X(x, ) and A(t) are periodic in ¢ of period w, suppose the
problem (2.1), (3.27) has an approximate solution x, € D which satisfies the con-
ditions of Theorem 4 with a=0 and b=w. Then £ is the unique periodic solu-
tion of (2.1) with period w in D;.

4. Boundary value problems of the least squares type

In this section let us assume that X(x, t) is continuous in Q and twice con-
tinuously differentiable with respect to x in €, and let g: D—>R™ be twice con-
tinuously Fréchet differentiable in D. We consider the problem of finding a solu-
tion x(#) of (2.1) which minimizes (g[x])*g[x] locally, where the symbol * denotes
the transpose of a matrix. Throughout this section we call this the problem
(S) for simplicity.

4.1. Conditions for a local minimum
Let x(, ¢) be the solution of (2.1) on J such that x(,, ¢)=c, and let
(4.1) 4 = {ceR" | x(t,c)eD}.

Then 4 is an open set in R”.
Let g: A—»R™ and s: 4—R! be defined by

42) alel = gIx(, 9],
4.3) s[e] = (aleD*qlel)2
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respectively and let 4,4 be a convex domain. Then we have the following

LEMMA 3. For any c, c+e€ 4,

(4.4) slc + €] = s[c] + s'(c)e + s"(c)ee/2 + U,
where

(4.5) s'(c)e = (qle])*q'(c)e,

(4.6) s"(c)ee = (¢'(c)e)*q'(c)e + (qlc])*q"(c)ee,
(4.7) Ul = o(llell?).

Proor. It is easily verified that (4.5) and (4.6) hold. Since
(4.8) U= S;(l — 0){s"(c + ) — 5"(c)}eedf,
it follows that
(4.9) U1 = { 5" + 0) = 570 [0l el

and by the continuity of ¢, ¢’ and ¢g” we obtain (4.7).
From this lemma we have

THEOREM 5. Let ¢€ 4y be a solution of s'(c)=0 and suppose there exists
a positive constant o such that

(4.10) s"(C)ee = a|el|>  for all eeR".
Then s[c] attains a local minimum at c=¢.
COROLLARY. Let ¢€ 4, be a solution of s'(c)=0 and suppose

(4.11) min [|q'@)ell? > max (g[¢])*q"(©)ee]

for all ee R" with || ,=1, where | -||, denotes the Euclidean norm. Then
s[é] is a local minimum of s[c].

Since by Schwarz’s inequality

(4.12) I(a[eD*q"(©)eel = liqLedl2llg" @2 Nel3,
(4.11) is satisfied if

(4.13) min |g'@ell2 > ll[]12114"(@)
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for all ee R" with |le||,=1. It seems that (4.13) is not an unreasonable condition
if ||q[€](, is small enough. We note that rank q’(¢)=n if (4.13) is valid.

By Theorem 5 the problem (S) is reduced to finding a solution x(t, ¢) of (2.1)
which satisfies s'(¢)=0 and (4.10).

For all ee R"” we have

(4.14) q'(c)e = g'(x(t, ¢))u,
(4.15) q"(c)ee = g"(x(t, Puu + g'(x(t, c)) [x.(t, c)ee],

where u=x/(t, c)e, and x, and x_, are the first and the second Fréchet derivatives
of x(t, c¢) with respect to ¢ respectively. From the assumption on X(x, f) it fol-
lows that x(, c) is the fundamental matrix of the system

dy _
W - Xx(x(t’ C), t),V

satisfying x (o, ¢)=1 and that x_(t, c) is the solution of the system

%ee = X,(x(t, ¢), t)zee + X, (x(¢, ¢), Y)uu

satisfying x,.(to, ¢)=0, where u=x.t, c)e and X,.(x, t) is the second Fréchet
derivative of X(x, t) with respect to x.
Substituting (4.14) into (4.5), we have

(4.16) s'(c)e = (g[x(t, OD*g'(x(t, ) [x(t, c)]e.

Since s'(c)=0 is equivalent to (s'(c))*=0, ¢ is a solution of the equation
(4.17) (9'(x(t, ) [x(t, OD*g[x(t, ©)] = 0.

Hence let

(4.18) fIx1=(@'x)[6]D*9[x] for xeD.

Then the solution x=x(t, &) of (2.1) and (4.17) satisfies also the equation f[x]=0,
where @,(t) is the fundamental matrix of the system

D x(x(t), )y

with ©,,(to)=1I.
Conversely a solution £ of (2.1) satisfying the condition

(4.19) f[£]=0

is a solution of the problem (S) if it satisfies the condition of Theorem 5. Thus



A Posteriori Error Estimates and Iterative Methods 119

we are led to consider the problem of finding a solution £ € D of (2.1) satisfying the
condition (4.19), which we call the problem (P) for simplicity.

4.2. Iterative methods for solving problem (P)

We propose some iterative methods for solving the problem (P).
Let f be the operator given by (4.18). Then for x, ¢ € D-and he C[J]

(4.20)  f'(0)h = (g’ ) [Ox]*g' ()h + {g"(x) [, h] + g'(x) [¥ h]}*gLx],

(4.21) K(x)p = Uix,g) T S(X)P(x,0)

where

(422) Y10 = [ 0u0OTOX (), IO (5)ds,
(4.23) G(x) = I(x)[D(x], S(x) = P,G(x)7!,

(4.24) Uep) = E(x)T(x)p,

(4~25) P(x,0) = l(x) [(p - u(x,(p)] - f[(p] s

9"(x)[© ), h] denotes the matrix whose column vectors are g"(x)[@;, h] (i=1,
2,..., n), ©; being the i-th column vector of @,,. It has been shown in [1, 8]

that <£@m>h =W, is given by (4.22).

We consider the iterative method
(4.26) Xk+1 = K(Xk)xk (k = 0, 1,...).

Various methods are obtained by the choice of A(x, t) and I(x). Some typical
examples are given below.

Case 1. A(x, t) = X, (x, 1), I(x) =f'(x).
The method (4.26) is nothing but the Newton method.

Case 2. A(x, 1) = X,(x,1), Ux)=(9'(x)[P])*9'(x).
The method in this case is the so-called Gauss-Newton method.

Case 3. A(x, t) = A(®), I(x) = (g'(x) [P *g'(x).
When g is a linear operator, S is computed once for all.

Case 4. A(x, t) = A(1), I(x) = (go[PD*g0,

where g, is an operator approximating g'(x). In practical applications it will
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be convenient usually to choose A(t)=X,(xo(t), t) and go=g'(x,). The advan-
tage of the method in this case lies in computing S only once.

Theorem 2 can be applied to the methods in Cases 1, 2 and 3 to assure their
convergence and to give the error estimates; Theorem | can also be applied to that
in Case 4.

In particular we are concerned with the case

(4.27) glx] = g(x(to), x(t,),..., X(ty)),

where g: DyxD;x---xDy—R™ is twice continuously Fréchet differentiable,
and ¢; and D, (i=0, 1,..., N) are given by (3.2) and (3.3) respectively. All sum-
mations are assumed to be taken from 0 to N. Let

(428)  Cylx) = 508 (x(tg), 5t x(tx) (=0, L,y N,
iU

R(x) = ZiBi(x)¢(x)(ti)’ V(x) = ZiBi(x)@(x)(ti),

where By(x) (i=0, 1,..., N) are given by (3.5). Then for xe D and he C[J] we
have

(4.29) fIx1 = V(x)*g[x],
(4.30)  f'()h = V(x)*Z,; B{x)h(t))
+ {Z0 h(t)*Cii(9)0 (1)) + X Bi(x) [¥ (h] (1)} *g[x].
In Case 2 we have
(4.31) G(x) = R(x)*R(x),
(4.32) Pixe) = RX)* X Bi(x) {@(t) — gz 0(t)} — fLo]-

In Case 3 G(x), u,,) and p,,, are obtained from (4.31), (4.24) and (4.32) respec-
tively with @, replaced by &.
Finally let us consider the case

(4.33) glx] = 3 Bx(t;) — d,

where d is a constant m-vector and B; (i=0, 1,..., N) are constant m x n. matrices.
Then for x e D and h e C[J] we have

(4.34) fIx]= (ZiBi@(x)(ti))*g[x] s
(4.35) J')h = (X; BiO(1)* X Bh(t) + (X; BLY (h1(1))*g[x].

,The iterative method in Case 2 has been given by Banks and Groome [1] and those
in Case 1 and Case 3 have been obtained by Urabe [8].
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