A Note on Vector Fields up to Bordism

Toshio Yoshida
(Received August 20, 1977)

§ 1. Introduction

For a (differentiable) closed m-manifold M^{m}, let Span M^{m} denote the maximum number of linearly independent (tangent) vector fields on M^{m}, and $w_{i} M^{m}$ the i-th Stiefel-Whitney class of M^{m}. Then by [2, p. 39], we have the following:
(1.1) If $\operatorname{Span} M^{m} \geqq k$, then $w_{i} M^{m}=0 \quad(i \geqq m-k+1)$.

The converse of (1.1) is not true. The purpose of this note is to prove the following

Theorem. Let M^{m} be a closed m-manifold for which all Stiefel-Whitney numbers divisible by w_{m}, \cdots, w_{m-k+1} are zero. If $k \leqq 6$, then there exists a closed m-manifold N^{m} such that N^{m} is unorientedly bordant to M^{m} and $\operatorname{Span} N^{m}$ $\geqq k$.

By R. E. Stong [3, p. 440], the following conjecture is proved for $k=1,2,4$: Under the assumption of the theorem, M^{m} is unorientedly bordant to a manifold N^{m} which is fibered over the product $\left(S^{1}\right)^{k}$ of k-copies of the circle S^{1}. It is clear that the theorem holds if this conjecture is true.

The author wishes to express his hearty thanks to Professors M. Sugawara and T. Kobayashi for their valuable suggestions and discussions.

§2. Some manifolds having many vector fields

For a real (differentiable) n-plane bundle $\zeta \rightarrow V$ over a closed m-manifold V, we denote by $p: R P(\zeta) \rightarrow V$ the associated projective space bundle with fiber $R P(n-1)$ (the real projective $(n-1)$-space). Then $R P(\zeta)$ is a closed $(m+n-1)$ manifold and
(2.1) the cohomology with Z_{2} coefficients of $\operatorname{RP}(\zeta)$ is the free module over the cohomology of V on $1, c, \cdots, c^{n-1}$, with the relation

$$
c^{n}=\sum_{i=1}^{n} p^{*}\left(w_{i} \zeta\right) c^{n-i}
$$

where c is the first Stiefel-Whitney class of the canonical line bundle over $R P(\zeta)$ and $w_{i} \zeta$ is the i-th Stiefel-Whitney class of ζ.

Lemma 2.2 [1, (23.3)]. The total Stiefel-Whitney class of $R P(\zeta)$ is equal to

$$
\left(\sum_{i=0}^{m} p^{*}\left(w_{i} V\right)\right)\left(\sum_{i=0}^{n}(1+c)^{n-i} p^{*}\left(w_{i} \zeta\right)\right) .
$$

Now, let $\mathfrak{N}_{*}=\sum_{m} \mathfrak{N}_{m}$ be the unoriented bordism ring and let $[M] \in \mathfrak{N}_{*}$ denote the bordism class of a closed manifold M.

Lemma 2.3 [3, Lemma 3.4]. For any non-negative integers n_{1}, \cdots, n_{k} ($n_{1}>0, k \geqq 2$), consider the projective space bundle

$$
X=R P\left(p_{1}^{*} \xi_{n_{1}} \oplus \cdots \oplus p_{k}^{*} \xi_{n_{k}}\right) \longrightarrow R P\left(n_{1}\right) \times \cdots \times R P\left(n_{k}\right)
$$

where ξ_{n} is the canonical line bundle over the projective n-space $R P(n)$, and $p_{i}: R P\left(n_{1}\right) \times \cdots \times R P\left(n_{k}\right) \rightarrow R P\left(n_{i}\right)$ is the projection onto the i-th factor. Then the class [X] of the closed $m\left(=n_{1}+\cdots+n_{k}+k-1\right)$-manifold X in \mathfrak{N}_{*} is indecomposable if and only if

$$
\binom{m-1}{n_{1}}+\cdots+\binom{m-1}{n_{k}} \equiv 1 \bmod 2 .
$$

Lemma 2.4 (cf. [3, Prop. 2.4]). By using the canonical line bundle λ over the projective space bundle $R P\left(\xi_{n_{1}-1} \oplus 1\right)$ instead of $\xi_{n_{1}}$ in the above lemma, consider the projective space bundle

$$
Y=R P\left(q_{1}^{*} \lambda \oplus q_{2}^{*} \xi_{n_{2}} \oplus \cdots \oplus q_{k}^{*} \xi_{n_{k}}\right) \longrightarrow R P\left(\xi_{n_{1}-1} \oplus 1\right) \times R P\left(n_{2}\right) \times \cdots \times R P\left(n_{k}\right)
$$

where q_{i} is the projection of $R P\left(\xi_{n_{1}-1} \oplus 1\right) \times R P\left(n_{2}\right) \times \cdots \times R P\left(n_{k}\right)$ onto the i-th factor. Then the class [Y] of the closed m-manifold Y in \mathfrak{N}_{*} is indecomposable if and only if $[X]$ is so, where X is the one in the above lemma.

Proof. Let ξ^{\prime} be the orthocomplement of $\xi_{n_{1}-1}$ in the trivial bundle $R P\left(n_{1}\right.$ $-1) \times R^{n_{1}} \rightarrow R P\left(n_{1}-1\right)$, and consider the composition

$$
\begin{aligned}
& \varphi=\pi i: R P\left(\xi_{n_{1}-1} \oplus 1\right) \xrightarrow{i} R P\left(\xi_{n_{1}-1} \oplus \xi^{\prime} \oplus 1\right) \\
&=R P\left(n_{1}-1\right) \times R P\left(n_{1}\right) \xrightarrow{\pi} R P\left(n_{1}\right)
\end{aligned}
$$

of the inclusion i and the projection π.
Since $\varphi^{*} \xi_{n_{1}}=\lambda$ by [3, p. 433], we have the commutative diagram

where p and q are the bundle projections and Φ is the bundle map defined naturally.

By Lemma 2.2, we see easily that the total Stiefel-Whitney classes of X and Y are given by
(2.5.1) $\quad w(X)=\left(\prod_{i=1}^{k} p^{*} p_{i}^{*}\left(1+\alpha_{i}\right)^{n_{i}+1}\right)\left(\prod_{i=1}^{k}\left(1+x+p^{*} p_{i}^{*} \alpha_{i}\right)\right)$,

$$
\begin{align*}
w(Y)= & \left(q^{*} q_{1}^{*} r^{*}(1+\alpha)^{n_{1}}\right)\left(q^{*} q_{1}^{*}\left(1+c+r^{*} \alpha\right)\right)\left(q^{*} q_{1}^{*}(1+c)\right) \tag{2.5.2}\\
& \cdot\left(\prod_{i=2}^{k} q^{*} q_{i}^{*}\left(1+\alpha_{i}\right)^{n_{i}+1}\right)\left(1+y+q^{*} q_{1}^{*} c\right)\left(\prod_{i=2}^{k}\left(1+y+q^{*} q_{i}^{*} \alpha_{i}\right)\right),
\end{align*}
$$

where x and y are the first Stiefel-Whitney classes of the canonical line bundles over X and Y, respectively, $c=w_{1} \lambda, \alpha_{i} \in H^{1}\left(R P\left(n_{i}\right) ; Z_{2}\right)$ and $\alpha \in H^{1}\left(R P\left(n_{1}-1\right)\right.$; Z_{2}) are the generators, and $r: R P\left(\xi_{n_{1}-1} \oplus 1\right) \rightarrow R P\left(n_{1}-1\right)$ is the bundle projection.

Therefore, the s-class $s_{m}(X)$ of X is given by

$$
s_{m}(X)=\sum_{i=1}^{k}\left(n_{i}+1\right)\left(p^{*} p_{i}^{*} \alpha_{i}\right)^{m}+\sum_{i=1}^{k}\left(x+p^{*} p_{i}^{*} \alpha_{i}\right)^{m} .
$$

Thus we have the following equality since $k \geqq 2$:

$$
s_{m}(X)=\sum_{i=1}^{k}\left(x+p^{*} p_{i}^{*} \alpha_{i}\right)^{m} .
$$

Similarly, the s-class $s_{m}(Y)$ of Y is equal to

$$
s_{m}(Y)=\left(y+q^{*} q_{1}^{*} c\right)^{m}+\sum_{i=2}^{k}\left(y+q^{*} q_{i}^{*} \alpha_{i}\right)^{m} .
$$

As the canonical line bundle over Y is the induced bundle of that over X by Φ, we see that

$$
\Phi^{*} x=y
$$

Also, we see that

$$
\Phi^{*} p^{*} p_{1}^{*} \alpha_{1}=q^{*} q_{i}^{*} c, \quad \Phi^{*} p^{*} p_{i}^{*} \alpha_{i}=q^{*} q_{i}^{*} \alpha_{i} \quad(2 \leqq i \leqq k),
$$

and hence $\Phi^{*} s_{m}(X)=s_{m}(Y)$ by the above equalities.
By [4, p. 97], it is sufficient to show that $s_{m}(X) \neq 0$ if and only if $s_{m}(Y) \neq 0$. If $s_{m}(X)=0$, then $s_{m}(Y)=\Phi^{*} s_{m}(X)=0$. Conversely if $s_{m}(X) \neq 0$, then $s_{m}(X)$ $=\left(p^{*} p_{1}^{*} \alpha_{1}^{n_{1}}\right) \cdots\left(p^{*} p_{k}^{*} \alpha_{k}^{n_{k}}\right) x^{k-1}$ and we see that

$$
s_{m}(Y)=\Phi^{*} s_{m}(X)=\left(q^{*} q_{1}^{*} c^{n_{1}}\right)\left(q^{*} q_{2}^{*} \alpha_{2}^{n_{2}}\right) \cdots\left(q^{*} q_{k}^{*} \alpha_{k}^{n_{k}}\right) y^{k-1}
$$

by the above results. Since $c^{2}=\left(r^{*} \alpha\right) c$ by (2.1), this implies

$$
s_{m}(Y)=\left(q^{*} q_{1}^{*}\left(\left(r^{*} \alpha\right)^{n_{1}-1} c\right)\right)\left(q^{*} q_{2}^{*} \alpha_{2}^{n_{2}}\right) \cdots\left(q^{*} q_{k}^{*} \alpha_{k}^{n_{k}}\right) y^{k-1},
$$

which is non-zero.
By using the closed $m\left(=n_{1}+\cdots+n_{k}+k-1\right)$-manifolds

$$
\begin{align*}
& R P\left(n_{1}, n_{2}, \cdots, n_{k}\right)=R P\left(p_{1}^{*} \xi_{n_{1}} \oplus p_{2}^{*} \xi_{n_{2}} \oplus \cdots \oplus p_{k}^{*} \xi_{n_{k}}\right), \\
& R P^{\prime}\left(n_{1}, n_{2}, \cdots, n_{k}\right)=R P\left(q_{1}^{*} \lambda \oplus q_{2}^{*} \xi_{n_{2}} \oplus \cdots \oplus q_{k}^{*} \xi_{n_{k}}\right) \tag{2.6}
\end{align*}
$$

in the above lemmas, define the m-manifold Q_{m} for any m which is not equal to $2^{a}-1$, as follows:

$$
\begin{equation*}
Q_{m}=R P^{\prime}\left(2^{p}, 7, \cdots, 7,3,1,0\right), \tag{2.7.1}
\end{equation*}
$$

where $m=2^{p}(2 q+1)-1, l=2^{p-2} q-1, p \geqq 2$ and $q \geqq 1$;

$$
\begin{align*}
& Q_{8 l+9}=R P^{\prime}(4,7, \cdots, 7,3,0), \quad Q_{8 l+5}=R P^{\prime}(2, \overbrace{7}^{l}, \cdots, 7,1,0), \\
& Q_{2}=R P(2), \quad Q_{8 l+10}^{l}=R P(\overbrace{7, \cdots, 7}^{l+1}, 0,0,0), \\
& Q_{8 l+4}=R P(\overbrace{7, \cdots, 7}^{l}, 1,1,0), \quad Q_{8 l+6}=R P(7, \cdots, 7,3,0,0,0), \tag{2.7.2}\\
& Q_{16 l+16}=R P(\overbrace{7, \cdots, 7}^{2 l+2}, 0), \quad Q_{16 l+8}=R P(\overbrace{7, \cdots, 7}^{l}, 3,3,0),
\end{align*}
$$

where $l \geqq 0$.
Then, we see that the class $\left[Q_{m}\right]$ is indecomposable by Lemmas 2.3 and 2.4. Therefore, by the theorem of R. Thom (cf. [4, p. 96]), we have

$$
\begin{equation*}
\mathfrak{N}_{*}=Z_{2}\left[\left[Q_{2}\right],\left[Q_{4}\right],\left[Q_{5}\right], \cdots\right] \tag{2.8}
\end{equation*}
$$

Lemma 2.9. (i) Span $Q_{m} \geqq 7\left(2^{p-2} q\right)-3+\operatorname{Span} R P\left(2^{p}-1\right)$, where $m=2^{p}(2 q$ $+1)-1, p \geqq 2$ and $q \geqq 1$.
(ii) $\quad \operatorname{Span} Q_{8 l+9} \geqq 7 l+6, \quad \operatorname{Span} Q_{8 l+5} \geqq 7 l+2, \quad \operatorname{Span} Q_{2}=0, \quad \operatorname{Span} Q_{8 l+10} \geqq$ $7 l+7$, Span $Q_{8 l+4} \geqq 7 l+2$, Span $Q_{8 l+6} \geqq 7 l+3$, Span $Q_{16 l+16} \geqq 14(l+1)$, Span $Q_{16 l+8} \geqq 14 l+6$, where $l \geqq 0$.

Proof. It is well known that $\operatorname{Span} R P(n)=n$ if $n=1,3$ or 7 , and the spans of X and Y are not smaller than those of the base spaces in Lemmas 2.3 and 2.4. Thus we see the lemma.

By this lemma, we obtain the following
Lemma 2.10. A manifold which is a product of some manifolds in (2.7.1-2) and whose span may be smaller than 6 is one of the following manifolds:
(A) $Q_{2}^{j}, Q_{2}^{j-2} Q_{4}, Q_{2}^{j-3} Q_{6}, Q_{2}^{j-4} Q_{4}^{2}, Q_{2}^{j-5} Q_{5}^{2}, Q_{2}^{j-5} Q_{4} Q_{6}$ ($2 j$-manifolds),
(B) $Q_{2}^{j-2} Q_{5}, Q_{2}^{j-4} Q_{4} Q_{5}, Q_{2}^{j-5} Q_{5} Q_{6}((2 j+1)$-manifolds $)$.

The straightforward calculations by using (2.1) and Lemma 2.2 show the following tables on the Stiefel-Whitney numbers of manifolds in (A) and (B):
(2.11.1)

	Q_{2}^{j}	$Q_{2}^{j-2} Q_{4}$	$Q_{2}^{j-3} Q_{6}$	$Q_{2}^{j-4} Q_{4}^{2}$	$Q_{2}^{j-5} Q_{5}^{2}$	$Q_{2}^{j-5} Q_{4} Q_{6}$
$w_{2 j}$	1	0	0	0	0	0
$w_{2 j-2} w_{2}$		1	0	0	0	0
$w_{2 j-3} w_{3}$			1	0	0	0
$w_{2 j-4} w_{4}$				1	1	0
$w_{2 j-5} w_{5}$				$j-4$	$j-5$	1

	$Q_{2}^{j-2} Q_{5}$	$Q_{2}^{j-4} Q_{4} Q_{5}$	$Q_{2}^{j-5} Q_{5} Q_{6}$
$w_{2 j-1} w_{2}$	1	0	0
$w_{2 j-3} w_{4}$		1	0
$w_{2 j-4} w_{5}$			1

For example, the equality

$$
w_{2 j-5}\left(M_{1} M_{2}\right) w_{5}\left(M_{1} M_{2}\right)=(j-5) \mu, \quad \text { for } \quad M_{1}=Q_{2}^{j-5}, M_{2}=Q_{5}^{2},
$$

is shown as follows, where $\mu \in H^{2 j}\left(M_{1} M_{2} ; Z_{2}\right)$ is the $\bmod 2$ fundamental cohomology class of $M_{1} M_{2}$.

Since $Q_{5}=R P^{\prime}(2,1,0)$ by (2.7.2), we see that

$$
w\left(Q_{5}\right)=(1+c+\alpha)(1+c)(1+y+c)\left(1+y+\alpha_{2}\right)(1+y)
$$

by (2.5.2) where we use the notations c, α and α_{2} instead of $q^{*} q_{1}^{*} c, q^{*} q_{1}^{*} r^{*} \alpha$ and $q^{*} q_{2}^{*} \alpha_{2}$, respectively, for the simplicity. According to (2.1), we have the two relations

$$
c^{2}=\alpha c, \quad y^{3}=\left(\alpha_{2}+c\right) y^{2}+\alpha_{2} c y .
$$

Therefore, we see that $w\left(Q_{5}\right)=\sum_{i} w_{i} Q_{5}$ is given by
(*)

$$
w_{0} Q_{5}=1, w_{1} Q_{5}=\alpha+\alpha_{2}+c+y, w_{2} Q_{5}=\alpha c+\alpha \alpha_{2}+\alpha_{2} c+\alpha y+y^{2},
$$

$$
w_{3} Q_{5}=\alpha \alpha_{2} c+\alpha y^{2}, w_{i} Q_{5}=0 \quad(i \geqq 4) .
$$

Thus we have $w_{i} M_{2}=0(i \geqq 7)$ and $\left(w_{6} M_{2}\right)\left(w_{5} M_{2}\right)=0$ for the 10 -manifold $M_{2}=Q_{5}^{2}$. Also $Q_{2}=R P(2)$ by (2.7.2) and hence $M_{1}=Q_{2}^{j-5}$ is a (2j-10)-manifold. Therefore,

$$
w_{2 j-5}\left(M_{1} M_{2}\right) w_{5}\left(M_{1} M_{2}\right)
$$

$$
\begin{aligned}
& =\left(\sum_{i=0}^{1} w_{2 j-10-i} M_{1} \times w_{5+i} M_{2}\right)\left(\sum_{k=0}^{5} w_{5-k} M_{1} \times w_{k} M_{2}\right) \\
& =w_{2 j-10} M_{1} \times\left(w_{5} M_{2}\right)^{2}+\left(w_{2 j-11} M_{1}\right)\left(w_{1} M_{1}\right) \times\left(w_{6} M_{2}\right)\left(w_{4} M_{2}\right)
\end{aligned}
$$

Here, since $\operatorname{dim} Q_{5}=5$, we have the following by (*):

$$
\begin{gathered}
\left(w_{5} M_{2}\right)^{2}=\left(w_{3} \times w_{2}+w_{2} \times w_{3}\right)^{2}=0 \\
\left(w_{6} M_{2}\right)\left(w_{4} M_{2}\right)=\left(w_{3} \times w_{3}\right)\left(w_{3} \times w_{1}+w_{2} \times w_{2}+w_{1} \times w_{3}\right) \\
= \\
w_{3} w_{2} \times w_{3} w_{2}=\left(\alpha \alpha_{2} c y^{2}\right) \times\left(\alpha \alpha_{2} c y^{2}\right) \neq 0, \quad\left(w_{i}=w_{i} Q_{5}\right)
\end{gathered}
$$

Also, it is easy to see that

$$
\left(w_{2 j-11} M_{1}\right)\left(w_{1} M_{1}\right)=(j-5) w_{2} Q_{2} \times \cdots \times w_{2} Q_{2}
$$

Thus, we see that $w_{2 j-5}\left(M_{1} M_{2}\right) w_{5}\left(M_{1} M_{2}\right)=(j-5) \mu$ as desired.
Also, we use the following
Lemma 2.12. Consider the closed 10 -manifold $T_{10}=R P^{\prime}(4,3,1)$ in (2.6). Then [T_{10}] is indecomposable, Span $T_{10} \geqq 7$ and

$$
\left[T_{10}\right]=\left[Q_{2} Q_{4}^{2}\right]+\left[Q_{5}^{2}\right]+\left[Q_{4} Q_{6}\right]+\left[Q_{10}\right]
$$

Proof. The first is a consequence of Lemmas 2.3 and 2.4. The second is clear. By (2.8), we have

$$
\begin{aligned}
{\left[T_{10}\right]=} & a_{1}\left[Q_{2}^{5}\right]+a_{2}\left[Q_{2}^{3} Q_{4}\right]+a_{3}\left[Q_{2}^{2} Q_{6}\right]+a_{4}\left[Q_{2} Q_{4}^{2}\right] \\
& +a_{5}\left[Q_{5}^{2}\right]+a_{6}\left[Q_{4} Q_{6}\right]+a_{7}\left[Q_{2} Q_{8}\right]+a_{8}\left[Q_{10}\right]
\end{aligned}
$$

for some $a_{i}(=0$ or 1$)$. Span $T_{10} \geqq 7$ implies $w_{i} T_{10}=0$ for $i \geqq 4$. Therefore we see that $a_{1}=a_{2}=a_{3}=0$ and $a_{4}=a_{5}=a_{6}$ by (2.11.1). Also we see that $a_{8}=1$ since $\left[T_{10}\right]$ is indecomposable. Thus

$$
\left[T_{10}\right]=a_{4}\left[Q_{2} Q_{4}^{2}\right]+a_{4}\left[Q_{5}^{2}\right]+a_{4}\left[Q_{4} Q_{6}\right]+a_{7}\left[Q_{2} Q_{8}\right]+\left[Q_{10}\right]
$$

By the similar calculations to show (2.11.1-2), we have

$$
\begin{aligned}
& w_{1}^{10}\left(T_{10}\right)=0, \quad w_{1}^{10}\left(Q_{2} Q_{4}^{2}\right)=0, \quad w_{1}^{10}\left(Q_{5}^{2}\right)=0, \\
& w_{1}^{10}\left(Q_{4} Q_{6}\right)=0, \quad w_{1}^{10}\left(Q_{2} Q_{8}\right) \neq 0, \quad w_{1}^{10}\left(Q_{10}\right)=0
\end{aligned}
$$

These imply that $a_{7}=0$. Also, we have

$$
\begin{gathered}
w_{2}^{4}\left(T_{10}\right) w_{1}^{2}\left(T_{10}\right)=0, \quad w_{2}^{4}\left(Q_{2} Q_{4}^{2}\right) w_{1}^{2}\left(Q_{2} Q_{4}^{2}\right) \neq 0, \\
w_{2}^{4}\left(Q_{5}^{2}\right) w_{1}^{2}\left(Q_{5}^{2}\right)=0, \quad w_{2}^{4}\left(Q_{4} Q_{6}\right) w_{1}^{2}\left(Q_{4} Q_{6}\right)=0, \quad w_{2}^{4}\left(Q_{10}\right) w_{1}^{2}\left(Q_{10}\right) \neq 0 .
\end{gathered}
$$

These imply that $a_{4}=1$. Thus we have the lemma.
q.e.d.

§ 3. Proof of the theorem in § 1

We prove the theorem for $k=6$, and the proof for the case $k \leqq 5$ is similar. By (2.8) and Lemma 2.10, $\left[M^{2 j+1}\right]$ can be expressed as

$$
\left[M^{2 j+1}\right]=a\left[Q_{2}^{j-2} Q_{5}\right]+b\left[Q_{2}^{j-4} Q_{4} Q_{5}\right]+c\left[Q_{2}^{j-5} Q_{5} Q_{6}\right]+\left[N^{2 j+1}\right]
$$

where a, b, c are 0 or 1 , and $N^{2 j+1}$ is a sum of products of some manifolds in (2.7.1-2) such that $\operatorname{Span} N^{2 j+1} \geqq 6$. By (2.11.2) and the assumption of the theorem, we have $a=b=c=0$.

Similarly, by (2.8), Lemma 2.10 and (2.11.1), we see that

$$
\left[M^{2 j}\right]=a\left(\left[Q_{2}^{j-4} Q_{4}^{2}\right]+\left[Q_{2}^{j-5} Q_{5}^{2}\right]+\left[Q_{2}^{j-5} Q_{4} Q_{6}\right]\right)+\left[N^{2 j}\right]
$$

where a is 0 or 1 , and $\operatorname{Span} N^{2 j} \geqq 6$. Therefore, by Lemma 2.12,

$$
\left[M^{2 j}\right]=a\left(\left[Q_{2}^{j-5} T_{10}\right]+\left[Q_{2}^{j-5} Q_{10}\right]\right)+\left[N^{2 j}\right]
$$

where $\operatorname{Span} T_{10} \geqq 7$ and $\operatorname{Span} Q_{10} \geqq 7$.
q.e.d.

References

[1] P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Erg. d. Math. 33, SpringerVerlag, 1964.
[2] J. Milnor and J. Stasheff, Characteristic Classes, Ann. of Math. Studies 76, Princeton Univ. Press, 1974.
[3] R. E. Stong, On fibering of cobordism classes, Trans. Amer. Math. Soc. 178 (1973), 431-447.
[4] -, Notes on Cobordism Theory, Math. Notes, Princeton Univ. Press, 1968.

The Faculty of Integrated Arts and Sciences, Hiroshima University

