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§1. Introduction

For a (differentiable) closed m-manifold M™, let Span M™ denote the maxi-
mum number of linearly independent (tangent) vector fields on M™, and w,M™
the i-th Stiefel-Whitney class of M™. Then by [2, p. 39], we have the following:

(1.1) If SpanM™ = k, then wM™ =0 (izm—k +1).

The converse of (1.1) is not true. The purpose of this note is to prove the
following

THEOREM. Let M™ be a closed m-manifold for which all Stiefel-Whitney
numbers divisible by w,,--+, W,_.+, are zero. If k=<6, then there exists a

closed m-manifold N™ such that N™ is unorientedly bordant to M™ and Span N™
k.

By R. E. Stong [3, p. 440], the following conjecture is proved for k=1, 2, 4:
Under the assumption of the theorem, M™ is unorientedly bordant to a manifold
N™ which is fibered over the product (S*)* of k-copies of the circle S'. It is clear
that the theorem holds if this conjecture is true.

The author wishes to express his hearty thanks to Professors M. Sugawara
and T. Kobayashi for their valuable suggestions and discussions.

§2. Some manifolds having many vector fields

For a real (differentiable) n-plane bundle {—V over a closed m-manifold V,
we denote by p: RP({)—V the associated projective space bundle with fiber
RP(n—1) (the real projective (n—1)-space). Then RP({) is a closed (m+n—1)-
manifold and

(2.1) the cohomology with Z, coefficients of RP({) is the free module over
the cohomology of V on 1, c,--+, ¢*~1, with the relation

e = Sty P

where c is the first Stiefel-Whitney class of the canonical line bundle over RP(()
and w is the i-th Stiefel-Whitney class of .
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LemmA 2.2 [1, (23.3)]. The total Stiefel-Whitney class of RP({) is equal
to

(ZTop* WiV ) (Xi=o(1 + )" 'p*(Wid)).

Now, let RN, =Y, N, be the unoriented bordism ring and let [M] € N, denote
the bordism class of a closed manifold M.

Lemma 2.3 [3, Lemma 3.4]. For any non-negative integers ny,---, h,
(n,>0, k=2), consider the projective space bundle

X = RP(p{é,, @+ @ pitén) — RP(ny) x--- x RP(ny),

where &, is the canonical line bundle over the projective n-space RP(n), and
pi: RP(n,) % --- x RP(n,)—>RP(n;) is the projection onto the i-th factor. Then
the class [ X] of the closed m (=ny++--+n,+ k—1)-manifold X in N, is indecom-
posable if and only if

(m;ll )+...+<m;k1 )El mod 2.

LemMA 2.4 (cf. [3, Prop. 2.4]). By using the canonical line bundle A
over the projective space bundle RP(,, —@®1) instead of £,, in the above lemma,
consider the projective space bundle

Y =RP(q1A @ 93, @@ qi8s) — RP(S,,-1 © 1) X RP(n;) X -+ X RP(ny),

where q; is the projection of RP(¢,,_,@®1)x RP(n,)x --- x RP(ny) onto the i-th
factor. Then the class [Y] of the closed m-manifold Y in N, isindecomposable
if and only if [X] is so, where X is the one in the above lemma.

Proor. Let &' be the orthocomplement of £, _, in the trivial bundle RP(n,
—1)x Rm—-RP(n,; —1), and consider the composition

¢ =mi: RP(,,-1 @ 1) > RP(,, -1 D)
= RP(n; — 1) x RP(n;) = RP(n,)

of the inclusion i and the projection 7.
Since ¢*&, =21 by [3, p. 433], we have the commutative diagram

Y—9, RP(, _, @ 1) x RP(n,) x -+ x RP(n,)

o [oxia

X P RP(n,) x RP(n;) x --- x RP(n,)

where p and q are the bundle projections and @ is the bundle map defined natural-
ly.
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By Lemma 2.2, we see easily that the total Stiefel-Whitney classes of X and
Y are given by

(2.5.1) wX) = (T p*pX1 + o))" ITe (1 + x + p*play),
(2.5.2) w(Y) = (g*qfr*(1 + 0)")(g*qT(1 + ¢ + r*a))(g*qT(1 + ¢))
“(ITke2g*qr(1 + )" ) (1 + y + g*qfe) ([Th=2(1 + y + g*qTw)),

where x and y are the first Stiefel-Whitney classes of the canonical line bundles

over X and Y, respectively, c=w;4, ;€ H(RP(n;); Z,) and ae H'(RP(n,—1);

Z,) are the generators, and r: RP(¢, _,@®1)—RP(n; —1) is the bundle projection.
Therefore, the s-class s,(X) of X is given by

sn(X) = Xhaa(n + D(p*pfoa)™ + Zioi(x + p*pfa)™.
Thus we have the following equality since k=2:
sm(X) = Zi=i(x + p*pla)™.
Similarly, the s-class s,(Y) of Yis equal to
s(Y) = (y + g*qto)" + Zioa(y + g*qfo)™.

As the canonical line bundle over Y is the induced bundle of that over X by &,
we see that

d*x =y,
Also, we see that
P*p*pta; = q*qfc, P*p*pfo; = q*qfy; 2=i=<k),

and hence ®*s,(X)=s,(Y) by the above equalities.

By [4, p. 97], it is sufficient to show that s,(X)=0 if and only if s5,(Y)=0.
If s5,(X)=0, then s,(Y)=®%s,(X)=0. Conversely if s,(X)%x0, then s,(X)
=(p*p¥ajr)---(p*pFape)x*~1 and we see that

sm(Y) = ®*s,,(X) = (g*qTc™) (¢*q305)--(q*giop)y*~!
by the above results. Since ¢?=(r*a)c by (2.1), this implies

$(Y) = (g*qF((r*a)™~1c)) (q*q352)---(g*qFapx)y*

which is non-zero. q.e.d.

By using the closed m(=n, + -+ n,+ k—1)-manifolds
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RP(ny, ny,-+, m) = RP(p¥E,, @ p3,, @@ pidnl)
(2.6)
RP,("I’ Na,s:: nk) = RP(q j’ @ q2 fnz @ @ qdx ém‘)

in the above lemmas, define the m-manifold Q,, for any m which is not equal to

2a—1, as follows:
l

(2.7.1) 0, = RP'(2?, 7,, 7, 3, 1, 0),

where m=2r2q+1)—1, |=2P"2g—1, p=2 and g=1;
i i
siso = RP'(4, 75, 7,3,0), Qg5 = RP(2, T 1,1, 0),
I+1

Q2 = RP(2), Q81+10 = RP(7,, 7: 09 0’ 0)9

(2.7.2) o o
Qsivs = RP(T-7,1,1,0), Qgys = RP(7,--,7,3,0,0,0),
2142 2
Qie1+16 = RP(1,-+-,7,0), Qi6148 = RP(7 7,3,3,0),
where 1=0.

Then, we see that the class [Q,,] is indecomposable by Lemmas 2.3 and 2.4.
Therefore, by the theorem of R. Thom (cf. [4, p. 96]), we have

(2.83) Ny = Z,[[0,], [Q.], [O5],--].

LemMma 29. (i) Span Q,,=7(27~2q)—3+ Span RP(2P—1), where m=2P(2q
+1)—1, p=2and q=1.

(i) SpanQg;,o271+6, SpanQg,s=7I+2, SpanQ,=0, SpanQg 02
71+7, Span Qg4+4271+2, Span Qgv6 =71+ 3, Span Qyg416 2 141 + 1),
Span Q6,4+ 5= 141+6, where 1=0.

Proor. It is well known that Span RP(n)=n if n=1, 3 or 7, and the spans
of X and Y are not smaller than those of the base spaces in Lemmas 2.3 and 2.4.
Thus we see the lemma. g.e.d.

By this lemma, we obtain the following

LeMMmA 2.10. A manifold which is a product of some manifolds in (2.7.1-2)
and whose span may be smaller than 6 is one of the following manifolds:
(&) 0L 04720, 0420,, Q4~*03, 04203, 01~30.Q, (2j-manifolds),
(B) 017205, 04740405, 04750506 (2 + 1)-manifolds).

The straightforward calculations by using (2.1) and Lemma 2.2 show the
following tables on the Stiefel-Whitney numbers of manifolds in (A) and (B):
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04 17204 | 047306 | 047403 | 047°0% | 0470406
W I 0 0 0 0 0
sz-sz 1 0 0 0 0
(2.11.1)
sz_3W3 1 0 0 0
sz_4W4 1 1 O
Waj-5Ws j—4 j=3 1
17205 | 05740405 | 0373006
Waj-1W2 1 0 0
(2.11.2)
W21_3W4 1 0
sz_4W5 1

For example, the equality
Waj—s(M My)ws(M, M) = (j — S)u, for M, =045 M, =0%,

is shown as follows, where ye H2/(M,M,; Z,) is the mod 2 fundamental coho-
mology class of M, M,.
Since Qs=RP'(2, 1, 0) by (2.7.2), we see that

wis)=1+c+a) QA+ +y+)(+y+a)(1+y)

by (2.5.2) where we use the notations ¢, « and «, instead of g*q¥c, g*q¥r*a and
q*q¥a,, respectively, for the simplicity. According to (2.1), we have the two
relations

c2=oac, y>= (0, + O)y*+ a,cy.
Therefore, we see that w(Qs)= Y ,w;Qs is given by

weQs =1, w,Qs=a+a, +c+y, w0s=o0c+au, + ayc+ay+ y2,
(%)
wiQs = aaye + ay?, wiQs =0 (i 24).

Thus we have w;M,=0(i27) and (wgM,)(wsM,)=0 for the 10-manifold
M,=02% Also Q,=RP(2) by (2.7.2) and hence M, = i-5 is a (2j —10)-mani-
fold. Therefore,

Waj—s(M Mp)ws(M M)
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= (ZleoWzj-10-iM1 X Ws ;M) (Ei=oWs- M x wM,)
= Wyj—10My X (WsM3)? + (Wp;— 11 M) (W M) X (weM3)(WeM3).
Here, since dim Q5 =5, we have the following by (¥):
(WsM3)? = (W3 X wy + wy X w3)?> =0,
(WeM2)(WaM) = (w3 X w3)(W3 X Wy + Wy X Wy + Wy X W3)
= W3W, X W3w, = (a0,cp?) x (aoycy?) 0, (w; = w,Qs).
Also, it is easy to see that
(W2j- 11 M) (W My) = (j — 5)W,Q;5 X - X w0,
Thus, we see that w,;_s(M M)ws(M;M,)=(j—5)u as desired.
Also, we use the following

LemMA 2.12.  Consider the closed 10-manifold T,,=RP’(4, 3, 1) in (2.6).
Then [T,,] is indecomposable, Span T,,=7 and

[Tio] = [Q,07] + [Q3] + [Q4Q6] + [Q10].

Proor. The first is a consequence of Lemmas 2.3 and 2.4. The second
is clear. By (2.8), we have

[Ti0] = a,[Q3] + a,[Q3Q41 + a3[Q30Q6] + a,[0,03]
+ as[Q3] + ag[Q4Q6] + a7[Q,0s] + as[Q10],

for some a,(=0 or 1). SpanT,,=7 implies w;T;,=0 for i=4. Therefore we
see that a,=a,=a3;=0 and a,=as=a¢ by (2.11.1). Also we see that ag=1
since [T;,] is indecomposable. Thus

[Tio]l = as[Q,0%] + a,[Q3] + a4[Q4Q6] + a5[Q,Q6] + [Q10]-
By the similar calculations to show (2.11.1-2), we have
wil(To) = 0, wi%Q,0%) =0, wi%Q) =0,
wi%Q4Q6) =0, wi%Q,Q0¢) 0, Wi%Q10) =0.
These imply that a;=0. Also, we have
wi(T10)wi(T10) =0, w3(Q.09)Wi(Q.Q2) = O,
wi@HWi(QD) =0, wi(Q4Q6)wi(Q4Q6) =0, Wi(Q10)Wi(Q10) % 0.

These imply that a,=1. Thus we have the lemma. q.e.d.
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§3. Proof of the theorem in §1

We prove the theorem for k=6, and the proof for the case k<5 is similar.
By (2.8) and Lemma 2.10, [M2/*1] can be expressed as

[M27*1] = a[Q]72Q,] + b[Q]™*Q,05] + c[Q17°QsQ6] + [NZ/*1],

where a, b, c are 0 or 1, and N2/*1 is a sum of products of some manifolds in
(2.7.1-2) such that Span N2/*1>6. By (2.11.2) and the assumption of the theo-
rem, we have a=b=c=0.

Similarly, by (2.8), Lemma 2.10 and (2.11.1), we see that

[M27] = a([Q4~40%] + [Q47°0%] + [Q47°Q406)) + [N*],

where a is 0 or 1, and Span N2/ >6. Therefore, by Lemma 2.12,

[M?] = a([Q}~°T1o] + [Q475Q;0]) + [N?1],
where Span T,,=7 and SpanQ,,=7. q.e.d.
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