
HIROSHIMA MATH. J.
8 (1978), 63-69

A Note on Vector Fields up to Bordίsm

Toshio YOSHIDA

(Received August 20, 1977)

§1. Introduction

For a (differentiable) closed m-manifold Mm, let SpanMm denote the maxi-

mum number of linearly independent (tangent) vector fields on Mm, and WiMm

the i-th Stiefel-Whitney class of Mm. Then by [2, p. 39], we have the following:

(1.1) // SpanM"1 ^ fc, then wtM
m = 0 (i :> m - k + 1).

The converse of (1.1) is not true. The purpose of this note is to prove the

following

THEOREM. Let Mm be a closed m-manifold for which all Stiefel-Whitney

numbers divisible by wm, , wm_fc+1 are zero. If /c^6, then there exists a

closed m-manifold Nm such that Nm is unorientedly bordant to Mm and SpaniVm

£k.

By R. E. Stong [3, p. 440], the following conjecture is proved for fc=l, 2, 4:

Under the assumption of the theorem, Mm is unorientedly bordant to a manifold

Nm which is fibered over the product (51)k of fc-copies of the circle S1. It is clear

that the theorem holds if this conjecture is true.

The author wishes to express his hearty thanks to Professors M. Sugawara

and T. Kobayashi for their valuable suggestions and discussions.

§ 2. Some manifolds having many vector fields

For a real (differentiable) n-plane bundle ζ->Kover a closed m-manifold V9

we denote by p: RP(ζ)->V the associated projective space bundle with fiber

RP(n — 1) (the real projective (n — l)-space). Then RP(ζ) is a closed (m + n — 1)-

manifold and

(2.1) the cohomology with Z2 coefficients of RP(ζ) is the free module over

the cohomology of V on 1, c, , c""1, with the relation

where c is the first Stiefel-Whitney class of the canonical line bundle over RP(ζ)

and Wiζ is the i-th Stiefel-Whitney class of ζ.
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LEMMA 2.2 [1, (23.3)]. The total Stiefel-Whitney class of RP(ζ) is equal

to

Now, let 91* = ΣnrRm be the unoriented bordism ring and let [M] e 91* denote

the bordism class of a closed manifold M.

LEMMA 2.3 [3, Lemma 3.4]. For any non-negative integers n l 5 , nk

(nί>09 k^.2), consider the projective space bundle

X = RP(pfξnι Θ Θ pfξnk) — > RP(nt) x — x RP(nk),

where ξn is the canonical line bundle over the projective n-space RP(ή), and

Pi'. RP(nί)x~-xRP(nk)-+RP(ni) is the projection onto the i-th factor. Then

the class [X~\ of the closed m ( = π1H \- nk-\- k— X)-manifold X in 91* is indecom-

posable if and only if

m - M , , /Ίw - 1 \ s j m o d 2 >

LEMMA 2.4 (cf. [3, Prop. 2.4]). By using the canonical line bundle λ

over the projective space bundle RP(ξnι.1®l) instead of ξnι in the above lemma,

consider the projective space bundle

Y = RP(qU Θ qίξn2 Θ Θ qtξj — RP(ξni-i θ 1) x RP(n2) x - x RP(nk),

where q x is the projection of RP(ξnι-1®ί)xRP(n2)x --xRP(nk) onto the i-th

factor. Then the class [ 7 ] of the closed m-manifold Y in 91* is indecomposable

if and only if[X] is so, where X is the one in the above lemma.

PROOF. Let ξ' be the orthocomplement of ξnι-γ in the trivial bundle RP(n1

— l)xRtli-*RP(n1 — l), and consider the composition

φ = πi: RP{ξni-, θ 1) - U RP(ξnι-i © ξ' ® 1)

= RP(n1 - 1) x flP(ni) ~

of the inclusion i and the projection π.

Since φ*ξni=λ by [3, p. 433], we have the commutative diagram

γ _ J U RP(ξHι-x © 1) x RP(n2) x - x ,RP(nfc)

\φ Lxid

^ - x RP(nk)

where p and # are the bundle projections and Φ is the bundle map defined natural-

ly.
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By Lemma 2.2, we see easily that the total Stiefel-Whitney classes of X and

Y are given by

(2.5.1) w(X) = (Π*=i P*P*(1 + α,)"'

(2.5.2) w(Y) = (q*q*r*(\ + α)"0fa*<tf(l + c + r α))(« βf(l + c»

where x and y are the first Stiefel-Whitney classes of the canonical line bundles

over X and 7, respectively, c = w1/l, αjeHH^PCn,); Z 2) and αeHK-RPίni- l ) ;

Z 2) are the generators, and r: ΛP(ξΛl_!©!)->ΛPίWi — 1) is the bundle projection.

Therefore, the s-class sm(X) of X is given by

Thus we have the following equality since k ̂  2

Similarly, the s-class sm(Y) of Y is equal to

As the canonical line bundle over Y is the induced bundle of that over X by Φ,

we see that

Φ*x = y.

Also, we see that

Φ*p*p1[ac1 = q*q\c, Φ*p*pf<Xi = q*qT<Xi (2 <; i <; fe),

and hence Φ*sm(X) = sw(7) by the above equalities.

By [4, p. 97], it is sufficient to show that sm(X)*0 if and only if sJY)±rQ.

If sm(X) = 0, then sw(7) = Φ*smp0 = 0. Conversely if sm(X)*09 then sM(X)
= (P*P*αϊ ι) (P*P*αίίk)χ f c~1 a n c * we see that

s^y) = Φ*sm(X) =

by the above results. Since c2 = (r*α)c by (2.1), this implies

which is non-zero. q.e.d.

By using the closed m( = w x + + nk + k- l)-manifolds
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RP(ni, n2,-, nk) = RPipUn, Θ P$ξ.2 Θ Θ Pt
(2.6)

'CBL «2,. , nk) = ΛPίίJA Θ <?!£„, Θ Θ

in the above lemmas, define the m-manifold Qm for any m which is not equal to

2β —1, as follows:

(2.7.1) β . = ΛP'(2 ' ,7,-,7,3, 1,0),

where m=2"(2^ +1) — 1, l=2'~2q-l, p ^ 2 and q^\;

Q 8 / + 9 = RP'(4, 7, , 7, 3, 0), ρ 8 ί + 5 = «P'(2, 7,- , 7, 1, 0),

β 2 = RP(2), Q 8 ί + 1 0 = W(7, , 7, 0, 0, 0),

(2.7.2) _ U ^ U
β 8 ( + 4 = ΛPC7, , 7, 1, 1, 0), ρ 8 ( + 6 = ΛP(7, , 7, 3,0,0,0),

2Z+2 2/

Gi6i+i6 = RP(7,-, 7, 0), Q 1 6 / + 8 = ΛP(7,..., 7, 3, 3, 0),

where Z^0.

Then, we see that the class [Qm] is indecomposable by Lemmas 2.3 and 2.4.

Therefore, by the theorem of R. Thorn (cf. [4, p. 96]), we have

(2.8) » = Z 2 [ [ β 2 ] , [ ρ 4 ] , [ Q 5 ] , . ] .

LEMMA 2.9. (i) Span Qm ;> Ί(2p-2q) - 3 + Span #P(2* -1), w/iere m =

+ 1)-1, p^land q^l.

(ii) Spanβ 8 ί + 9 ^7/ + 6, SpanQ 8 ί + 5^7/ + 2, SpanQ2 = 0,

7/+ 7, Span β 8 Z + 4 ^ 7/+ 2, Span β 8 Z + 6 ^ 7 / + 3, Span Qί6l+ί6 ^ 14(1 + 1),

Spanβ 1 6 ί + 8 ^14/ + 6, where /^0.

PROOF. It is well known that Span RP(ή) = n if n = 1, 3 or 7, and the spans

of X and 7 are not smaller than those of the base spaces in Lemmas 2.3 and 2.4.

Thus we see the lemma. q. e. d.

By this lemma, we obtain the following

LEMMA 2.10. A manifold which is a product of some manifolds in (2.7.1-2)

and whose span may be smaller than 6 is one of the following manifolds:

(A) Qi QJ

2-
2Q4, Qί~3Q6, Qi~*Ql Qi~5Qh Qi~sQAQ6 (Ij-manifolds),

(B) Qi~2Q5, Qί-4Q4Q5, Qί-sQ5Q6(.(2j + ί)-manifolds).

The straightforward calculations by using (2.1) and Lemma 2.2 show the
following tables on the Stiefel-Whitney numbers of manifolds in (A) and (B):
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(2.11.1)

w2j

W2j-2W2

W2J-3W3

W2j-4W4

W2j-5W5

Qi

1

Qi~2Q,

0

1

Qi~3Qβ

0

0

1

Qi~4Qϊ

0

0

0

1

7 - 4

Qi-5Ql

0

0

0

1

7 - 5

Qi-SQ&β

0

0

0

0

1

(2.11.2)

W2J-1W2

W2j-3W4

W2y-4W5

Qί-2Q5

1

Q{-*QAQS

0

1

Qi-5QsQβ

0

0

1

For example, the equality

for Mx = QJ

2~\ M2 = Q\ ,

is shown as follows, where μeH2J(M1M2; Z 2) is the mod2 fundamental coho-

mology class of MίM2.

Since Q5 = RP'(2, 1, 0) by (2.7.2), we see that

w(Q5) = (1 -4 c 4 α)(l 4- c)(l 4- y 4- c)(l 4- y 4 α 2 )(l 4- y)

by (2.5.2) where we use the notations c, α and α2 instead of q*q*c9 q*qfr*oc and

<?*4*α2> respectively, for the simplicity. According to (2.1), we have the two

relations

c2 = oίc, y3 = (α 2 4 c)y2 4- <x2cy.

Therefore, we see that w(Q5)=ΣiwiQ5 is given by

w0Q5 = 1, WiQs = 0L 4 α2 4- c 4 y, w2Q5 = αc 4- αα2 + α2c + αy + y 2 ,

w3Q5 = αα2c 4- αy2, WiQs = 0 (ί ̂  4).

Thus we have w iM2 = 0 ( ϊ ^ 7 ) and (w 6M 2)(w 5M 2) = 0 for the 10-manifold

M2 = Ql. Also Q2 = .RP(2) by (2.7.2) and hence M1 = QJ

2~
5 is a ( 2 / - 10)-mani-

fold. Therefore,
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j-10-tMi x w5+iM2)(Σ5

k=o^5-k^ι x w*M2)

= w 2 J _ 1 0 M 1 x (w5M2)
2 + ( ^ - π M J ί w ^ ! ) x (w6M2)(w4M2).

Here, since dimg5 = 5, we have the following by (*):

(wsM2)
2 = (w3 x w2 + w2 x w3)

2 = 0,

(w6M2)(w4M2) = (w3 x w3)(w3 x wί + w2 x w2 + wί x w3)

= w3w2 x w3w2 = (uoc2cy2) x (ccct2cy2) * 0, (wf = wfQ5).

Also, it is easy to see that

( W ^ - H M J H H Ί M ! ) = (7 - 5)w2β2 x ••• x w 2 β 2 .

Thus, we see that w2j _5(M1M2)w5(M1M2) = (j--5)μ as desired.

Also, we use the following

LEMMA 2.12. Consider the closed 10-manifold T10 = RP'(4, 3, 1) in (2.6).

Then [T 1 0 ] is indecomposable, SpanT1 0^7 and

[ r 1 0 ] = 1Q2QΏ + [β§] + [ β 4 e 6 ] •+ [Qio] :

PROOF. The first is a consequence of Lemmas 2.3 and 2.4. The second
is clear. By (2.8), we have

β β [ β 1 0 ] ,

for some ^ ( = 0 or 1). SpanΓ1 0^7 implies wtT10=0 for i^4. Therefore we

see that α1 = α2 = α 3 = 0 and α 4 = α 5 = α6 by (2.11.1). Also we see that α8 = l

since [Γ 1 0 ] is indecomposable. Thus

+ [βio]

By the similar calculations to show (2.11.1-2), we have

wί°(Γ10) = 0, w\°(Q2QΪ) = 0, w}°(QI) = 0,

These imply that α 7 = 0 . Also, we have

wKΓ10)wKΓ10) = 0, wi(Q2QΪ)wl(Q2Ql) * 0,

*4(β§)wί(ρ§) = o, w5(β4ρ6)w?(β4ρ6) = o, wf(β lo)wϊ(ρ lo) % o.

These imply that aA = 1. Thus we have the lemma. q. e. d.
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§ 3. Proof of the theorem in § 1

We prove the theorem for fc = 6, and the proof for the case k^5 is similar.

By (2.8) and Lemma 2.10, [M2J+ί] can be expressed as

where α, b9 c are 0 or 1, and N2j+1 is a sum of products of some manifolds in

(2.7.1-2) such that S p a n N 2 ^ + 1 ^ 6 . By (2.11.2) and the assumption of the theo-

rem, we have a = b = c = 0.

Similarly, by (2.8), Lemma 2.10 and (2.11.1), we see that

Qu + LQJ2~5QΏ + cer 5 Q 4 e 6 ] )

where a is 0 or 1, and Span JV2-7'Ξ̂  6. Therefore, by Lemma 2.12,

where SpanΓ 1 0^7 and Spanβ l o ^7. q.e.d.
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