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1. Introduction

Let r{ 0 = 0, 1,..., ή) be positive continuous functions on the interval [f0, oo).

For a real-valued function h on [T, oo), T ^ ί 0 , and any μ = 0, 1,..., n we define

the μ-th r-derivative of h by the formula

Then we obviously have

D(

r

0)h = ro/i and D^h = r ^ " 1 ^ ) ' (i = 1, 2,...,

Moreover, if D(

r

n)h is defined on the interval [T, oo), then the function h is said

to be n-times r-differentiable and if, in addition, D(

r

n)h is continuous, h is said

to be n-times continuously r-differentiable. If r f = l (i = 0, 1,..., n), this notion

specializes to the one of the usual differentiability.

Now, we consider the n-th order (n > 1) differential equation with deviating

arguments of the form

(E, δ) (D(^x) (0 + δF(t x < g(t) > ) = b(t),

where rn = 1, δ = ± 1 and

X<g(t)> = OC[0!(O], *[02(O]> "> X[0m(θ]), 0 = (01, 02> . > 0m)

The continuity of the real-valued functions F on [ί0, oo)xRm and g{ (i = l, 2,...,

m), h on [ί0, oo) as well as sufficient smoothness for the existence of solutions of

(E, δ) on an infinite subinterval of [ί0, oo) will be assumed without mention. In

what follows the term "solution" is always used only for such solutions x(t) of

(E, δ) which are defined for all large t. The oscillatory character is considered

in the usual sense, i. e. a continuous real-valued function which is defined on an

interval of the form [T, oo) is called oscillatory if it has no last zero, and otherwise

*) This paper is a part of the author's Doctoral Thesis submitted to the School of Physics and

Mathematics of the University of Ioannina.
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it is called nonoscillatory.

Furthermore the conditions (i) and (ii) below are assumed to hold through-

out the paper:

(i) For every i = l, 2,..., m

lirn^O) = oo .
ί->00

(ii) For every t^t0,

F(ί;0,0,. . . ,0) = 0

and, moreover, F(t; y) is increasing with respect to y in Rm.

Note. The order in Rm is considered in the usual sense, i. e.

2. Main results

In order to obtain our first result (Theorem 1) we shall apply the fixed point

technique, by using the following Schauder's theorem (Schauder [3]).

THE SCHAUDER THEOREM. Let E be a Banach space and X any nonempty

convex and closed subset ofE. If S is a continuous mapping of X into itself and

SX is relatively compact, then the mapping S has at least one fixed point (i. e.

there exists an xeX with x = Sx).

This method patterns after that of Staikos [4].

A set IF of real-valued functions defined on the interval [Γo, oo) is said to be

equiconvergent at oo if all functions in & are convergent in R at the point oo

and, moreover, for every ε > 0 there exists a TQ^T0 such that, for all functions

/ i n β?9

Let now BT([TO, oo)), T^T0, be the Banach space of all continuous and

bounded real-valued functions on the interval [To, oo) which are constant on

[To, T], endowed with the usual sup-norm || ||. We need the following com-

pactness criterion for subsets of Bτ{[TOi oo)), which is a corollary of the Arzela-

Ascoli theorem. For a proof of this criterion we refer to Staikos [4].

COMPACTNESS CRITERION. Let IF be an equicontinuous and uniformly

bounded subset of the Banach space BT([_TO, oo)). // & is equiconvergent at

oo, it is also relatively compact.

THEOREM 1. Consider the differential equation (E, δ) subject to the con-
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ditions (i), (ii) and:

(CJ There exists an n-times continuously r-differentiable function w

on [ί0, oo) with D{

r

n)w = b and such that

A = limsup|(Dί0 )w)(ί)| < oo .

t-*ao

(C2) For some constant c with \c\>2A,

f00 1 f00 1

) >*iθi) J*I r2(s2) ' "
f °° 1 Γ0 0 / 1 \ I

# " \ "r—Γ*—ϊ\ F[s'>c < 0 θ ) >)\dsdsn-i—ds2dsi < oo .
Jsn-2 rn-l\sn-l) Jsn-ι \ rO / '

I clThen for every real number L with Lc>0 and ̂ - <\L\<\c\— A there exists

a (nonoscillatory) solution x of the equation (£, δ) with

lim[(Dίo )x)(0 - (Z)ί0)w)(03 = L
t-+ao

and

lim[(D^xXO - (/>ίy)w)(O] = 0 (j = 1, 2,..., n - 1).

I c\

PROOF. Let L be a real number with Lc>0 and±γ~<\L\<\c\ — A. With-

out loss of generality, we suppose that c is positive, since the substitution z = — x

transforms (E, δ) into an equation of the same form satisfying the assumptions

of the theorem with — c in place of c. Moreover, we assume that

~<L<c- B,

where

for some Γ 0 ^ ί 0 . Furthermore, by conditions (i) and (C 2 ) , we choose

so that

T0 for every t^T (i = 1, 2,..., m)

and

Γ r (s )Γ
dsdsn-ί' 'ds2dsί <* c — L — B.
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Let now the Banach space E = {h: rohe BΓ([T0, oo))}, endowed with the norm

Moreover, let the subset X of E consisting of all functions x in E with

ί 0 ) x) ( 0 - L| ̂  c - L for every t^T0.

The set X is obviously nonempty and as it is easy to see, it is convex and closed.

If x G X, by the definition of the set X, we obviously have

0<x(ί)Sc—]-y for every / ̂  To
rQ\f)

and consequently, in view of (ii), we obtain

(2) 0^F(t;x< g(t) > ) g F(V9 C-±- < g(ί)

for all t ̂  T. Thus, because of condition (C2), for any xeX and every t^

Γ00 1 Γ00 1

••• \ j-—r Γ F(s; x < g(s) >)dsdsn-1 -ds2dsί < oo
Jsn-2 rn-\\sn-\) Jsn-ι

and hence the formula

(Sx)(t) =

δ( - * Γ 0 0 1 Γ 0 0 1
/•oW KJ z oW

- Γ h ΐ Γ Ws;x< 9(s) >)dsdsn-.ί-ds2dsί, if / ̂  T
Jsn-2 rn-ASn-l) Jsn-ι

Γ oo i Γ<x>

defines a mapping S: X-+E, which satisfies the assumptions of the Schauder

theorem. Namely, it satisfies the following:

α) SX c X.

In fact, taking into account (2) and (1), we obtain that for any xeX and

every t^T0
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- L\

n-2 r n -n-\\sn-\
F(s;x<g(s)>)dsdsa-ι-ds2dsι

S
00 1 Γ 00 1

1 \ ι . . .

T /*l(^l) Jsi /*2(^2)
Γ0 0 1 Γ0 0 / 1 \

••• \ -—ri—x \ Fl s\c-— < g{s) >)dsdsΛ-ι-ds2dsι
Jsn-2 rn-\\Sn-\) Jsn-i \ 0̂ /

β) SX is relatively compact.

Let

, if / ̂  Γ_ J w ( ί ) f

"" ) (D(

r

0)w)(T) if

Then, for any x e X, the function/=Dίo )(Sx)-Z>ίo )w* is continuous on [To, oo)

and constant on [To, T]. Moreover, since SX^X, by the definition of the

set X, for every t ̂  To we obtain

-I- IΦ<o)w*)(0l ^c + B,

namely || /1| g c + B. Therefore the set

& = {D(

r°\Sx) - Dί0)w*: xeX}

is an uniformly bounded subset of the Banach space BT([TO, oo)). Furthermore,

for any feIF and every ί ^ T w e have

(3) 1/(0 - L\

< Γ00 1 Γ00 1
= )t ^l(^l) JSI /*2(̂ 2)

- Γ / Γ F(ί;c-L-<
Jsn-2 ^Π-lW/l-lJ Jsn-i \ 0̂

Indeed, i f/= Dίo )(Sx)-Dί 0 )w*, x e l , for every t^
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| / ( 0 - L| = |[(2>ίo)(Sx))(f) - (D<0)w)(f)] - L|

= Γ00 i f00 l

•• \ i-—rί°° F(s;x < g(s)>)dsdsn-ί>-ds2dsι
Jsn-2 rn-l\Λn-l) Jsn-ι

and hence, by virtue of (2), (3) follows immediately. Thus, from (3) and con-

dition (C2) we conclude that the set & is equiconvergent at 00. Now, in view of

(2), for any/in ^",

/ = D(

r°\Sx) - D<0)w*, xeX,

and every tl9 t2 with T^tί^t2 we get

[t2^7Ύ[ΛF(s;x<g(s)>)dsdslt if n = 2
Jti rΛsl) Jsi

'* 1 Γ 0 0 1

) i r2(s2)

Γ 7
sn-2 ' n -

1

F{s\x<g{s)>)dsdsn.v-ds2dsly if 77 > 2

W if 11 = 2

('* 1 Γ00 1

/•oo 1 z oo / 1 \

... \ , r I FίΛ c <g(s)>)dsdsH-1

if « > 2

From this it follows that & is equicontinuous. Finally, by the given com-

pactness criterion, we conclude that the set & is relatively compact in £ Γ ([T 0 ,

00)). This, by the definition of the norm || | | r o in E and because of the bounded-

ness of the function D(

r

0)w*, implies that SX is relatively compact.

γ) The mapping S is continuous.

Let xeX and (xv) be an arbitrary sequence in X with

II | | r o - l i m x v = x .

By (2), for all v and every t ̂  T

F(t; xv < g(ί) > ) ̂  F(t; c^- < g(t)
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and hence, because of condition (C2), we can apply the Lebesgue dominated

convergence theorem to obtain

lim\ — * \ —±-τ-
J ^sO JSί r2(s2)
\
Jt

Γ—, \ F(s;xv < g(s) >)dsdsn-ι - ds2dsι
Sn-2 rn-l\Sn-l) Jsn-i

_ f00 1 f°° 1

Jt / Ί ( J I ) Jai ^2(^2)

i ( ° ° F(s; x < g(s) >)dsdsn_1 -ds2dsί
sn-2 rn-\\Sn-l)

for all t ̂  T. So, for every t ̂  Γo we have the pointwise convergence

lim(Sxv)(f) = (Sx)(ί).
V

It remains to prove that the above convergence is also r0-uniform, i. e.

(4) II | | r o - l i m S x v = Sx.

To this end, we consider any subsequence (uμ) of (Sxv). Because of the relative

compactness of SX, there exist a subsequence (vλ) of (uμ) and y e E so that

Since || ||ro-convergence implies the pointwise one to the same limit function,

we must always have y = Sx9 which proves (4).

Finally, by the Schauder theorem, there exists an xeX with x = Sx, i.e.

for every t^T

(Dί >x)(0 = L

F(s;x < g(s) >)dsdsn-ι -ds2dsί•• \ 1—ΓΓ
JSn-2 rn-l\sn-l) Jsn-ι

and consequently, by virtue of condition (C^),

(D^x)(t) = (D(

r

n)w)(t) - δF{t\ x<g(t)>) = b(t) - δF(t;

Thus, the fixed point x of the mapping S is a solution on [T, 00) of the equation

(£, <5) and moreover the required one, since
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= C0 0 * ί 0 0 ι

Jt z iOi) iai r2{s2) '"
r oo i Γαo

••• \ γ r\ F(s; x < g(s) >)dsdsn-ί ~ds2ds1 -> 0 as t 00

and for7 = 1, 2,..., n —

x < g(s) > )ds, if j = n- I

1

g{s)>)dsdsn-ί -dsj+u
n-2 rιt-l\sn-l)

if j <n- \

tends to 0 as /->oo .

REMARK 1. The TychonofΓs fixed point theorem (see Tychonoff [6])

can also be used to prove Theorem 1, but the proof is then somewhat longer.

TychonofΓs theorem has been used in numerous papers for obtaining related

results concerning differential equations with deviating arguments or functional

differential equations. We choose to refer to [1], [2] and [5].

COROLLARY I. Consider the differential equation (E, δ) subject to the

conditions (i), (ii) and:

(Ci) There exists an n-times continuously r-differentiable function w

on [ί0, oo) with D{

r

n)w = b and such that

lim(Z)ίo)w)(r) = 0.
ί-+GO

(Ci) For some nonzero constant c,

Γ 0 0 1 Γ 0 0 1

) Ί O I ) JSI r2(s2) '"

- Γ -—i-—r Γ F(S; c-j- < g(s) >) I

Then for every real number L with Lc>0 and^- <\L\<\c\ there exists a

(nonoscillatory) solution x of the equation (£, δ) with
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PROOF. It follows immediately from Theorem 1 for Λ = 0.

In particular, for b — 0 and w = 0 from Theorem 1 we immediately obtain

the following result concerning the differential equation

(EOi δ) (D(

r

n)x)(t) + δF(f9 x<g(t)>) = 0.

COROLLARY II. Consider the differential equation (£ 0 , δ) subject to the

conditions (i), (ii) and (C'2). Then for every real number L with Lc>0 and
I c I

J -y i <|L |< |c | there exists a (nonoscillatory) solution x of the equation (£0, δ)
with

and

\\m(D(

r

J)x)(t) = 0 0 = 1, 2,..., n - 1).

Now, in order to obtain our second result (Theorem 2) it is convenient to

give the following two lemmas.

LEMMA 1. Let h be an n-times r-differentiable function on [T, 00), T

}zt0, such that D(

r

n)h is of constant sign on [Γ, 00). Moreover, let λ, O^λ

^ n —2, be an integer so that

r dt
3 rλ+1(t) °°

If the lim(DίΛ)/i)(() is finite, then
f->00

\im(D<

r

λ+ι)h)(ή = 0.
t-*oo

PROOF. Since D(

r

n)h is of constant sign on [T, 00), it is easy to see that

the functions D^h ( i = l , 2,..., n — 1) are also eventually of constant sign. So,

for every ι' = 0, 1,..., n — 1, lim(Dί i )/ί)(0 exists in the extended real line R*

= R U { - o o , 00}.

Let now 0L = lim(D(

r

λ+1)h)(t), α e R * . If α>0, then there exist a positive

constant M and a ' 7 ^ ^ T s o that for every t^T

(D(

r

λ+1)h)(t)^ M, i.e. (D(

r

λ)h)'(t) ^ M-
rλ+ι(t) '

Therefore

(D{

r

λ)h)(t) ^ (D(

r

λ)h)(T) + Λf (' y^ϊΛ f o r e v e r y t ^ r
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and hence we have

lim (D(

r

λ)h)(t) = oo,
f-K»

a contradiction. Similarly, if α<0, then we obtain the contradiction

\im(D(

r

λ)h)(t) = - oo.

REMARK 2. Let h be as in Lemma 1 and let v, l g v ^ n —1, be an integer

so that

f00 dt

3 rt(t)
oo (/ = 1,2,..., v).

If lim(D<v)fe)(ί)#0, then, applying consecutively Lemma 1 for λ = v— 1,..., 0,
f-*00

we conclude that lim(D*o)Λ)(0 is infinite.
ί-κχ>

LEMMA 2. Suppose that:

(C3) For every i=l, 2,..., n — 1

f00 Λ

3 W = °°
Lei h be a positive and n-times r-differentiable function on an interval [Γ, oo),

Γ ^ ί 0 , SMC/I that D(

r

0)h is bounded on [Γ, oo) and

δ(D(

r

n)h)(t) ^ 0 for every t ^ Γ.

δ ( - l ) » + 1 + - ' ( D ί / ) A ) ( 0 ^ 0 f o r every t ^ T 0 = 1 , 2 , . . . , n - 1 )

, provided that D(

r

n)h is continuous on [Γ, oo),

Γ 0 0 1 Γ 0 0 1

2(s2)

sn-2 rn-l\sn-l)

PROOF. If έ(Dί / |-1 )/i)(τ)<0 for some τ ^ T , then, since the function

δD{

r

n~x)h is decreasing on [Γ, oo), we have lim(Z)ί' l"1)ft)(ί)#O and so, taking
f-»oo

into account Remark 2, we conclude that lim (D(

r

0)h)(t) is infinite. This is a
ί-κx>

contradiction, because of the positivity and the boundedness of the function

D(

r

0)h. Therefore,
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δ(D(

r

n-ι)h)(t) ^ 0 for every t ^ T.

Let, now, μ be the smallest integer with 1 rgμ^n — 1 and

<5(- l)n+ί+J(D(

r

j)h)(t) ^ 0 for every t ^ T (j = μ, μ + 1,..., n - 1).

Suppose that μ > l . Obviously, (5(~l)M + ' i(Dί' i-1 )/ί)(τ /)<0 for some τ ' ^ Γ .

Moreover, the function < 5 ( — l ) " " ^ ^ " 1 ^ is decreasing on [T, oo). So,

l im(D^- 1 } ft)(ί)#0 and hence, by Remark 2, the contradiction \im(D(

r

0)h)(t)
ί-*oo ί-*oo

= ±oo can again be derived. Thus, we must always have μ = l. This, by the

definition of μ, proves the first part of the conclusion of the lemma.

Next, we assume that D\.n)h is continuous on [T, oo). Then

(5) δ( - l)''+1+;(Z>^ )/0(/) ^ δ( - 1)»+J Γ l-ΓΎ(D{

r

J+ί)h)(s)d

for 7 = 1, 2,..., n— 1 and every ί^Γ. Indeed, for every u ^ ί w e have

δ(- l ) n + 1 + J ( D (

r

J ) h ) ( ί ) = δ(- l ) n + ί + J ( D (

r

J ) h ) ( u )

from which (5) follows immediately. Furthermore,

δ( - l)"l(D™h)(t) - (Z>ί0)A)(Γ)] = δ( - 1)«

for all t^T. So, since lim(D(

r

0)h)(t) is finite, we obtain
f->00

(6) ί ί - O J - ^ (/>i°A)(j)^< ex).

Finally, using (5) and (6), we can easily derive

1f00 1 f00

JT rasj Jsi

-2 rn-l\sn-l)

which completes the proof of the lemma.

THEOREM 2. Consider the differential equation (£ 0 , δ) subject to the con-

ditions (i), (ii), (C3) and:
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(C4) For every nonzero constant c there exists an integer k, 0 ^ / c ^ n - l ,

such that

if
r

F(t;c—<g(t)>)\A=ao, if A: =/i - 1

1

Γ00 1 f°° / 1 M
\ „ rc τ\ ^ l ^ ' C V ~ < ^W > )
Jsn-2 rn-l\Sn-l) Jsn-ι \ r0 / '

if k<n-l.

Then every solution x of the equation (Eo, +1) [respectively, (£ 0 , —1)]

with x(t) = O(\lr0(t)) as ί->oo /or n even [resp. odd'] is oscillatory, while for n

odd [resp. even] is either oscillatory or such that

\im(D(

r

j)x)(t) = 0 monotonically (j = 0, 1,..., n - 1).
t-*oo

PROOF. Let x be a nonoscillatory solution on an interval [Γo, oo), Γ 0 ^ ί 0 ,

of the equation (£ 0 , δ) with x(ί) = O(l/ro(0) as t-*oo. Without loss of gener-

ality, we suppose that x(t)^0 for every t^T0. Furthermore, we can assume that

x is positive, since the substitution z = — x transforms (£ 0 , δ) into an equation

of the same form satisfying the assumptions of the theorem.

Next, by (i), we choose a Γ ^ Γ 0 s o that

To for every t^T (i = 1, 2,..., m).

Then, in view of (ii), from equation (Eo, δ) we obtain

- δ(D^x)(t) = F(t; x<g(t)>) ^ F(t; 0, 0,..., 0) = 0

for all t ̂  T. Namely,

δ(D(

r

n)x)(t) ^ 0 for every t ^ T.

So, by applying Lemma 2, we have

(7) <5(- l)»+1+J(D(

r

jΊx)(t) ^ 0 for every t ^ T (j = 1, 2,..., n - 1)

and

Jsn-2 ^n-lW/i-lJ 5̂#t-i
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Now,

(9)

Indeed, in the opposite case there exists a positive constant c such that for every

(Di0)x)(t) ^ c, i.e. χ ( , ) ^ c 5
ro\t)

and consequently, taking into account (ii), we get

I (/><">*)(/) I = -δ{D^x)(t)

= F(t; x < g(t) » ^ f(t;c-j-< g{t) > ) = 0

for all t^T. By this, (8) gives

1Γ 0 0 1 f00

Jr 1̂(̂ 1) ) s ι r2(s2)

-" \ 77—Λ\ F\S^G-V-< βW >)dsdsn-ί-ds2dsί < 00,
Jsn-2 rn-ΛSn-l) Jsn-ι \ r0 /

which contradicts (C4).

Finally, by (7) and (9), we conclude that <5(— l ) π = — 1, namely n is odd

(resp. even) for δ= -f 1 (resp. δ= — 1). Moreover, because of (9), from Lemma

1 it follows that

l im(D^x)(0 = 0 0 = 0, l , . . . , n - l ) .
ί-*oo

COROLLARY III. Consider the differential equation (Eo, δ) subject to the

conditions (i), (ii) and (C3). Then the condition (C'2) is a necessary and suffi-

cient condition in order that the equation (£ 0 , δ) have at least one (nonoscil-

latory) solution x so that the \im(D(

r

0)x)(t) exists in R-{0}.
t-*co

PROOF. The necessity of the condition ( Q ) follows immediately from

Theorem 2, while its sufficiency is contained in Corollary II.

3. Applications

We shall apply now the results of section 2 in the particular case where for

some integer JV, i^N^n — 1, we have
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r = 1 (i = 0, 1,..., n — 1; i Φ n — N) and rn_N = r.

More precisely, we shall derive some interesting corollaries concerning the differ-

ential equation

(£, δ) [r(0x<"-">(0](ΛO + δF{t\ x<g(t)>) = b(t).

All corollaries are new.

COROLLARY 1. Consider the differential equation (£, δ) subject to the

conditions (i), (ϋ) and:

( C J There exists a bounded function weC' r J V ([/ 0 , oo)) with rw^n~N^

t09 oo)) and lrw^~NψN^ = b.

(C2) For some constant c with \c\>2 limsup|w(ί)|,

c, c,...,c)\dsdt<co.

\c\
Then for every real number L with Lc>0 and^-~-<\L\<\c\ — limsup \w(t)\

L t-*oo

there exists a (bounded nonoscillatory) solution x of the equation (£, δ) with

lim-IXO - w(0] = L
ί-+oo

and

limCx^O) - wί'>(ί)] = 0 (Ϊ = 1, 2,..., n - N - 1), if N < n - 1
ί->00

lim([r(ήχ(»-N>(ήγJ) - [r(0w<"-w>(0]W)) = 0 (j = 0, 1,..., Λf - 1).
r-»oo

COROLLARY 2. Consider the differential equation (£,δ) subject to the

conditions (i), (ii) and:

(Ci) There exists a function weCn-N([t0, oo)) wiί/i rw^"^ e CN([ί0, oo)),

limw(ί) = 0.

(C2) For some nonzero constant c,

Then for every real number L with Lc>0 and ±ψ- <\L\<\c\ there exists a

(bounded nonoscillatory) solution x of the equation (£, δ) with

lim x(t) = L.
ί-»oo
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COROLLARY 3. Consider the differential equation (£0, δ),

0 , δ) [K0x ("-N )(0] ( J V ) + δF(t; x<g(t)>) = 0,

subject to the conditions (i), (ii) and (Cf

2) Then for every real number L with

LoO and J|i<|L|<|c|

the equation (£0, δ) with

\c\LoO and -L—*-<|L|<|c| there exists a (bounded nonoscillatory) solution x of

lim x(t) = L
ί-*QO

and

, limχί'>(0 = 0 (ί = 1, 2,..., n - N - 1), if N < n - 1
t-*ao

\ lim[K0x(il""N)(0](</) = 0 O' = 0, 1,..., N - 1).
ί-*GO

COROLLARY 4. Consider the differential equation (£ 0 , ̂ ) subject to the

conditions (i), (ii) and:

(C4) For every nonzero constant c either

foo tn-l-N roo

3 ' W " J ί ^ - / ) N

or

77ιen et erj; bounded solution x of the equation (£ 0 , +1) [resp. (£0, —1)]

/or n even {resp. odd] is oscillatory, while for n odd [resp. even] is either oscil-

latory or such that

, lim*<'>(*) = 0 monotonically (i = 0, 1,..., n - N - 1)
I f-*oo

1 = 0 monotonically (j = 0, 1 JV - 1).

COROLLARY 5. Consider the differential equation (£0, δ) subject to the

conditions (i), (ii) and (C3). Then the condition (C'2) is a necessary and suffi-

cient condition in order that the equation ( £ 0 , δ) have at least one (bounded

nonoscillatory) solution x so that the limx(t) exists in R — {0}.
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In the considered case the conditions (Cj) and ( Q ) follow from (Cx) and

(C[) respectively. Also, the condition (C3) becomes (C3). Moreover, we have

the formula

Γ (s -
Jυ

p(s)dsdv = (°° (s " " ^ p(s)ds ,
Ju μ ~r I

where p is a continuous nonnegative function on [w, oo) and μ is a nonnegative

integer. By this formula, it is a matter of elementary calculus to see that in the

considered case the conditions (C2), (C2) and (C4) follow respectively from (C2),

(C2) and (C4). So, Corollaries 1, 2, 3, 4 and 5 follow from Theorem 1, Corol-

lary I, Corollary II, Theorem 2 and Corollary III respectively.

Now, we restrict ourselves in the usual case where r o = r1 = = rM_1 = ί.

In this case the equation (£, δ) takes the form

(£, δ) x<»>(ί) + δF(t; x<g(t)>) = b(t).

We shall formulate the results of section 2 for the differential equation (E, δ).

For this purpose, we observe that this equation is obtained from equation (£, <5)

by setting r = l . So, from Corollaries 1, 2, 3, 4 and 5 we can respectively derive

the following ones concerning the equation (E9 δ).

COROLLARY Γ. Consider the differential equation (E, δ) subject to the

conditions (i), (ii) and:

(Cx) There exists a bounded and n-times continuously differentiable

function w on [ί0, oo) with w(/l) = fc.

(C2) For some constant c with \c\>2 limsup|w(ί)|,
ί-κx>

', c9 c,...9c)\dt< oo.

I c\
Then for every real number L with Lc>0 and^-<\L\<\c\— limsup \w(t)\

there exists a (bounded nonoscillatory) solution x of the equation (E9 δ) with

l im[x(0-w( ί ) ] = L

and

lim[x"Kύ - wU>(ί)] = 0 (j = 1, 2,..., n - 1).

COROLLARY 2'. Consider the differential equation (E9 δ) subject to the

conditions (i), (ii) and:



Differential Equations with Deviating Arguments 47

(Ci) There exists an n-times continuously differentiable function w on

[ί0, oo) with w(w) = 6 and limw(ί) = 0.

(C'2) For some nonzero constant c,

<\^t»-ι\F(t;c9c,...,c)\dt< oo.

I c I
Then for every real number L with Lc>0 and±-^-<\L\<\c\ there exists a

(bounded nonoscillatory) solution x of the equation (E, δ) with

limx(ί) = L.
t-χχ)

COROLLARY 3'. Consider the differential equation (Eo, δ),

(Eo, δ) χ(-)(ί) + δF(t; x<g(t)>) = 0,

subject to the conditions (i), (ii) and (C'2). Then for every real number L with

LoO and J - ^ < | L | < | c | there exists a (bounded nonoscillatory) solution x of

the equation (Eθ9 δ) with

limx(ί) = L and limx^>(ί) = 0 (j = 1, 2,..., n - 1).

COROLLARY 4'. Consider the differential equation (Eo, δ) subject to the

conditions (i), (ii) and:

(C4) For every nonzero constant c,

= o o .

Then for n even [resp. odd"] all bounded solutions of the equation (Eo, +1)

\resp. (Eo, —1)] are oscillatory, while for n odd Ires p. even] all bounded

solutions of the equation (Eo, -hi) [resp. (Eo, —1)] are either oscillatory or

tending monotonically to zero as f->oo together with their first n—\ derivatives.

COROLLARY 5'. Consider the differential equation (Eo, δ) subject to the

conditions (i) and (ii). Then the condition (C'2) is a necessary and sufficient

condition in order that the equation (Eθ9 δ) have at least one (bounded non-

oscillatory) solution x so that the limx(t) exists in R —{0}.
ί-»oo
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