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1. Introduction

Let r; (i=0, 1,..., n) be positive continuous functions on the interval [t,, o).
For a real-valued function h on [T, ), T=t,, and any pu=0, 1,..., n we define
the p-th r-derivative of h by the formula

D = 1, (ry— 1 (o (ry(roh)) )Y .
Then we obviously have
D%h = roh and Dh = r(DS Vhy  (i=1,2,..,n).

Moreover, if Dﬁ"’h is defined on the interval [T, o0), then the function h is said
to be n-times r-differentiable and if, in addition, D{"h is continuous, h is said
to be n-times continuously r-differentiable. If r;=1(i=0, 1,..., n), this notion
specializes to the one of the usual differentiability.

Now, we consider the n-th order (n>1) differential equation with deviating
arguments of the form

(E, ) (DI”x) (1) + 6F(t; x < g(t) >) = b(D),
where r,=1, 6=+1 and

x<g(t)> = (x[gl(t)]’ x[gz(t)]’“" x[g,,,(t)]), g= (gl9 g2s-ees gm)

The continuity of the real-valued functions F on [t,, o) xR™ and ¢; (i=1, 2,...,
m), b on [t,, o0) as well as sufficient smoothness for the existence of solutions of
(E, 4) on an infinite subinterval of [t,, c0) will be assumed without mention. In
what follows the term ‘‘solution” is always used only for such solutions x(t) of
(E, 6) which are defined for all large t. The oscillatory character is considered
in the usual sense, i.e. a continuous real-valued function which is defined on an
interval of the form [T, o) is called oscillatory if it has no last zero, and otherwise

x) This paper is a part of the author’s Doctoral Thesis submitted to the School of Physics and
Mathematics of the University of Ioannina.
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it is called nonoscillatory.

Furthermore the conditions (i) and (ii) below are assumed to hold through-
out the paper:

(i) Foreveryi=1,2,....,m

limgy(f) = .
t—0

(ii) For every t=t,,
F(t;0,0,...,00=0

and, moreover, F(t; y) is increasing with respect to y in R™.
Note. The order in R™ is considered in the usual sense, i.e.

yLze=Vi=1,2,.,my; < z.

2. Main results

In order to obtain our first result (Theorem 1) we shall apply the fixed point
technique, by using the following Schauder’s theorem (Schauder [3]).

THE SCHAUDER THEOREM. Let E be a Banach space and X any nonempty
convex and closed subset of E. If S is a continuous mapping of X into itself and
SX is relatively compact, then the mapping S has at least one fixed point (i.e.
there exists an x € X with x=Sx).

This method patterns after that of Staikos [4].

A set & of real-valued functions defined on the interval [T;, o0) is said to be
equiconvergent at oo if all functions in & are convergent in R at the point co
and, moreover, for every ¢>0 there exists a Tj=T, such that, for all functions
fin &#,

tz To == 1) — limf(s)l <e.

Let now B([T,, o)), T=T,, be the Banach space of all continuous and
bounded real-valued functions on the interval [T,, co) which are constant on
[Ty, T], endowed with the usual sup-norm | [|. We need the following com-
pactness criterion for subsets of By([T,, 00)), which is a corollary of the Arzela-
Ascoli theorem. For a proof of this criterion we refer to Staikos [4].

CoMPACTNESS CRITERION. Let & be an equicontinuous and uniformly
bounded subset of the Banach space Br([T,, ©)). If & is equiconvergent at
0, it is also relatively compact.

THEOREM 1. Consider the differential equation (E, 6) subject to the con-
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ditions (i), (ii) and:
(Cy) There exists an n-times continuously r-differentiable function w
on [t,, ) with D{"w=>b and such that

A = limsup [(DPw)(1)] < o .
t— 00

(C,) For some constant ¢ with |c|>2A,

Sw "1(131) S: ’2(152)

Ssn—Z rn—l(sn—l) Sn=-1

Then for every real number L with Lc>0 and |_§'| <|L|<|c|— A there exists

(s c—— I <g(s)>>’dsds,, yoords,ds; < .

a (nonoscillatory) solution x of the equation (E, 8) with
lim [(D{”x) (1) — (D{®w) ()] = L
t—®

and

lim [(DPx) () — DPwW)(H]1=0 (=1,2,..,n—1).

Proor. Let L be a real number with Lc>0 and% <|L|<]|e|—A. With-

out loss of generality, we suppose that ¢ is positive, since the substitution z= —x
transforms (E, &) into an equation of the same form satisfying the assumptions
of the theorem with —c¢ in place of c. Moreover, we assume that

where
= sup |(D{®w) (1)|
t=To

for some T,=t,. Furthermore, by conditions (i) and (C,), we choose a T=T,
so that
g(H =T, forevery t=T (i=1,2,.,m)

and

© 1 © 1
M ST ri(sy) Ssx ra(s,)

st S F( )
.. SR E— F| s; c-— <g(s) >
gsn 2 Fp- l(sn l) Sn-1 g( )
dsds,_,---ds,ds; <c—L — B.
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Let now the Banach space E={h: roh € B{([ Ty, ©))}, endowed with the norm
I Mlros
Ik, = llrohll .

Moreover, let the subset X of E consisting of all functions x in E with
(DOx)(t) — L| Sc—L forevery t=T,.

The set X is obviously nonempty and as it is easy to see, it is convex and closed.
If x € X, by the definition of the set X, we obviously have

1
0<x(t) £c—F~ forevery 12T,
( ) = ro(t) y =40
and consequently, in view of (ii), we obtain

) OgF(t;x<g(t)>)§F(t;C»l—<g(t)>>
ro

for all t=T. Thus, because of condition (C,), for any x € X and every t=T

Sjo "1(}’1) S: "2(1-5’2)

S:-z T(lsn-ﬁ S:-l F(s; x < g(s)>)dsds,_i+-ds,ds, < o
and hence the formula
(Sx)(®) =
L o( — 1)t S"" 1 S“’ 1
+ w(t) +
X O BN ) W € ) B
. Sw ———1——wa F(s;x<g(s) >)dsds,_,-ds,ds,,ift =T
Sn-2 rn—l(sn—l) Sn-1

={ L, (DOwXT) , 8(=Dmt(® 1 (= 1
PO BT () BN () Srrl(s,)gnrz(sz)

0 l )
N e Vo, TSP X < 006) s,y dsyds,

if To<t<T

defines a mapping S: X—E, which satisfies the assumptions of the Schauder
theorem. Namely, it satisfies the following:

o) SX cX.

In fact, taking into account (2) and (1), we obtain that for any xe X and
every t2T,
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I(DF(Sx)) (1) — L|

© L (®_1 .
§§2]1?|(Dr w)(@)| + ST ri(s,) Ssn rZ(SZ)

o l @
. S mg F(s; x < g(s) >)dsds,_,-ds,ds,

® 1 @ 1
SB+S g
- T ri(sy) Js, ra(sy)

o 1 @ 1
. gs"_z —_rn_l(S"_l)S F<s; c— < g(s) >)dsds,,_1~~-ds2ds,

Sn-t To
<B+(c—L-B)y=c- L.
B) SX is relatively compact.

Let

I w(t), if t=2T

W = | 2oaT) | if ToSesT.

ro(t)

Then, for any x € X, the function f=D{®)(Sx)— D{®w* is continuous on [T,, o0)
and constant on [T, T]. Moreover, since SX<X, by the definition of the
set X, for every t= T, we obtain

Lf@] £ (DS (D] + I(DPw*) ()] < ¢ + B,
namely | f||<c+B. Therefore the set
F = {D9(Sx) — DOw*: xe X}

is an uniformly bounded subset of the Banach space B;([T,, ©0)). Furthermore,
for any fe # and every t =T we have

(3) If( — L

= S:D "1(15'1) S: "2(15'2)

. Sw _L_“Sw F(s; c’_L < g(s) >>dsds,,_1---ds2ds,.
0

snez Pa1(Sn=1) Jsn-y

Indeed, if f=D{?(Sx)—DPw*, x € X, for every t=T
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1f(8) = L] = [I(D;P(Sx)) (1) — (DiPw) ()] — L|

- S"" 1 S‘” L.
v ry(sy) Js ra(sz)
. Sm ;gw F(s; x < g(s) >)dsds,_,---ds,ds,

Sn-2 rn—l(sn—l) Sn-1

and hence, by virtue of (2), (3) follows immediately. Thus, from (3) and con-
dition (C,) we conclude that the set # is equiconvergent at co. Now, in view of
(2), for any fin £,

f=D(Sx) — DOw*  xeX,
and every t,, t, with T<t, <1, we get

1f(t2) = St

ta2 1 0 .
Sn WSs,F(S;x<g(s)>)des1, if n=2

B S: "1(131) S: "2(}5'2)

gw -————1-—Sw F(s; x<g(s)>)dsds,_,---ds,ds,, if n>2
JSpn=-2 rn—l(Sn—l) Sn-1

t2 1 @ . 1 . ~
S't ri(sy) Ss1F<s’CTO—<g(S) >>deSh if n=2

Vo o o7t

o r1(81) Jsi ra(s2)

..gm . Yo F(s;c_rl—<g(s) >)dsds,,_,---ds2ds1,
-1 0

Sn-2 rn—l(sn—l) Sn

IIA

if n>2

From this it follows that &% is equicontinuous. Finally, by the given com-
pactness criterion, we conclude that the set & is relatively compact in By([T,,
)). This, by the definition of the norm | |, in E and because of the bounded-
ness of the function D{®w*, implies that SX is relatively compact.

y) The mapping S is continuous.

Let x € X and (x,) be an arbitrary sequence in X with

” "ro - limxv =X.

By (2), for all v and every t=T

F(t;x,<g@®)>)=F(t;c 1 <g(t)>>

To
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and hence, because of condition (C,), we can apply the Lebesgue dominated
convergence theorem to obtain

limgw L Sw 1 _..
v Jo ri(sy) Js ra(s3)

S“’ _L_S“ F(s; x, < g(s) >)dsds,_-ds,ds,

Sn-2 rn—l(snvl)

- S:D "1(151) S: "2(1-5'2)

; S
Fui(Sue §;x < g(s)>)dsds,_---ds,ds
Ss,._z A | s.._tl( x <g(s)>) " ,ds,

for all t=T. So, for every t=T, we have the pointwise convergence
lim (Sx,) () = (Sx)(?).

It remains to prove that the above convergence is also ro-uniform, i.e.
4) I I, — limSx, = Sx.

To this end, we consider any subsequence (u,) of (Sx,). Because of the relative
compactness of SX, there exist a subsequence (v ;) of (u,) and y € E so that

I sy — limu, = p.

Since | |,,-convergence implies the pointwise one to the same limit function,
we must always have y=_Sx, which proves (4).

Finally, by the Schauder theorem, there exists an xe X with x=Sx, i.e.
for every t=T

PPN = L+@Ow @) +6(- n {7 LT

Sw ———L*-Sw F(s; x < g(s) >)dsds,_y--ds,ds,

sn-2 Pn=1(8p-1)
and consequently, by virtue of condition (C,),
(D{"x) (1) = (D{w) () — OF(t; x<g()>) = b(t) — SF(t; x<g(t)>).

Thus, the fixed point x of the mapping S is a solution on [T, o) of the equation
(E, 8) and moreover the required one, since

IL(Dx) () — (D;°w) ()] — L
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=S°° L g‘” L.
¢ ri(sq) Js, ra(s2)
--Sw ——I—Sw F(s; x < g(s) >)dsds,_,-ds,ds;, >0 as t— o©
Sn-2 rn—l(sn—l) Sn-1

and for j=1, 2,..., n—1
I(Dx) (1) — (D w) (1)

SmF(s;x < g(s)>)ds, if j=n—1
t

© 1
— St "j+1(5j+1)

@© 1 o
- Sstl—z rn—l(sn-—l) S F(s’ x< g(S)>)des"_1”.de+1,

Sn~1

if j<n-—1
tendsto 0 as t—o0 .

ReMARK 1. The Tychonoff’s fixed point theorem (see Tychonoff [6])
can also be used to prove Theorem 1, but the proof is then somewhat longer.
Tychonoff’s theorem has been used in numerous papers for obtaining related
results concerning differential equations with deviating arguments or functional
differential equations. We choose to refer to [1], [2] and [5].

CoroOLLARY 1. Consider the differential equation (E, 6) subject to the
conditions (i), (ii) and:

(C}) There exists an n-times continuously r-differentiable function w
on [to, 00) with D"w=>b and such that

lim (D®w)(t) = 0.
t— 0

(C3) For some nonzero constant c,

Sw "1(15'1) S: "2(152)

. Sw S S Sw )F(s; c~rl— < g(s) >> la’sds,,_l---dszdsl<oo .
0

sn-2 Tn=1(Sp=1) Jsnoy

Then for every real number L with Lc>0 and'—gl <|L|<]|c| there exists a

(nonoscillatory) solution x of the equation (E, 8) with

lim (D) (¢) = L.
t—=©
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Proor. It follows immediately from Theorem 1 for A=0.

In particular, for b=0 and w=0 from Theorem 1 we immediately obtain
the following result concerning the differential equation

(Eo, 9) (Dimx) (1) + OF(t; x<g()>) =0

CoRrOLLARY II. Consider the differential equation (E,, 6) subject to the

conditions (i), (ii) and (C3). Then for every real number L with Lc>0 and

lel <|L|<|c| there exists a (nonoscillatory) solution x of the equation (E,, 6)

2
with
lim (D{®x)(f) = L
t— 0
and

lim(DYx)() =0 (j=1,2,....,n—1).
t—0o0

Now, in order to obtain our second result (Theorem 2) it is convenient to
give the following two lemmas.

LeEMMA 1. Let h be an n-times r-differentiable function on [T, ), T
=to, such that D\h is of constant sign on [T, c©0). Moreover, let A, 0<A
<n-2, be an integer so that

’

Sw_di_ -
7i+1(2)

If the lim (DY h) (1) is finite, then
=

lim (D**Vh)(f) = 0.
t—

Proor. Since D{"h is of constant sign on [T, o), it is easy to see that
the functions D{Ph (i=1, 2,..., n—1) are also eventually of constant sign. So,
for every i=0, 1,...,n—1, lim(D{’h)(f) exists in the extended real line R*
=R U {— o0, 0}. o

Let now oc—llm(D‘“”h)(t) aeR*. If «a>0, then there exist a positive
constant M and a T’> T so that for every t=T’

(D*Vp)(t) 2 M, ie. (DPh)'(t) 2 M (t)
Therefore

ds
4+1(S)

(DPh)(t) = (DIPRNT') + MS forevery t2 T
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and hence we have
lim (DY h)(t) = o0,
t— o0
a contradiction. Similarly, if <0, then we obtain the contradiction

lim(DPh)(t) = — 0.
t—©

REMARK 2. Let h be as in Lemma 1 and let v, 1Sv<n-—1, be an integer
so that

S‘” dt

= G=1,2,...,v).

If lim(D{Vh)(t)#0, then, applying consecutively Lemma | for A=v—1,...,0,
t—0

we conclude that lim (D{®h)(¢) is infinite.
=0

LEMMA 2. Suppose that:
(C;3) Foreveryi=1,2,...,n—1

70

= 00 .

Let h be a positive and n-times r-differentiable function on an interval [T, ),
T = t,, such that D{®h is bounded on [T, o) and

S(D"h)(H) <0  forevery t=T.
Then
8(— D+ 1+i(DPh)() =0  forevery t=ZT (j=1,2,...,n—1)

and, provided that D{"h is continuous on [T, o),

X: "1(131) S: "2(1-92)

N Sw ; Sw I(Dgn)h)(s)ldesn—l"'dszdsl <

Sn-2 rn—l(sn—l)
Proor. If 8(D{"Vh)(t)<0 for some t=T, then, since the function
8D{"~Vh is decreasing on [T, o0), we have lim(D{""Ph)(t)#0 and so, taking
t—00
into account Remark 2, we conclude that lim(D{®h)(¢) is infinite. This is a
t—0

contradiction, because of the positivity and the boundedness of the function
D{®h. Therefore,
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S(DmVh) () = 0 forevery t=T.
Let, now, u be the smallest integer with 1<u<n-—1 and
8(— Dr1+i(DDRY () =0 forevery t=T (j=ppu+1,.,n-1).

Suppose that pu>1. Obviously, &(—1)"*#*(D®* Vh)(1)<0 for some ' =T.
Moreover, the function 8(—1)"*#D*~Dh is decreasing on [T, ). So,
lim (D=1 h)(t)#0 and hence, by Remark 2, the contradiction lim(D{?h) ()
r=D?ioo can again be derived. Thus, we must always have pu=1. tTaﬁis, by the
definition of u, proves the first part of the conclusion of the lemma.

Next, we assume that D{"h is continuous on [T, o). Then

* 1 pu+p
) (D*Vh)(s)ds

(5)  8(— DmHI(DDR) () 2 6 — 1)"+f§

for j=1,2,...,n—1 and every t=T. Indeed, for every u=t we have

o(— D)mH(DPR)(e) = o( — D™ (DD h)(u)

R e R R TORE

.

(j+1)
o) DER)s,

2 3(— 1 |
from which (5) follows immediately. Furthermore,

8( — D"I(Dh)() — (DIPh)(T)] = &( - 1)"S L (DR (s)ds

T r4(5)

for all t=T. So, since lim (D{?h)(¢) is finite, we obtain
t—>»00

© 1
r (s (D{Vh)(s)ds < .

Finally, using (5) and (6), we can easily derive

) s(-1r|

g: "1(131) g: ’2(152)

..g‘” _I_S“’ [ =8 (D™h)(s)]dsds,,-dsyds, < o,

Sn-2 rn—-l(sn—l)
which completes the proof of the lemma.

THEOREM 2. Consider the differential equation (E,, 8) subject to the con-
ditions (i), (ii), (C3) and:
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(C,) For every nonzero constant c there exists an integer k,0<k=<n—1,
such that

Sw‘F<t;671~<g(t)>)’dt=oo, if k=n-1

0

® 1
S Pes1(Sgs1)

. SOO __]'.—Sw ‘F(S,C—riv<g(s) >>‘d.§'ds"_1'”dsk+1 = 0,
0

Sn-2 rn—l(sn—l) Sn=-1

if k<n-—1.

Then every solution x of the equation (Ey, +1) [respectively, (E,, —1)]
with x(£)=0(1/ry(t)) as t—o0 for n even [resp. odd] is oscillatory, while for n
odd [resp. even] is either oscillatory or such that

lim(Dx)(t) = 0 monotonically (j=0,1,...,n—1).
t— 0

Proor. Let x be a nonoscillatory solution on an interval [T, o), Ty =t,,
of the equation (E,, 6) with x(£)=0(1/ry(t)) as t—oo0. Without loss of gener-
ality, we suppose that x(t)#0 for every t=T,. Furthermore, we can assume that
X is positive, since the substitution z= —x transforms (E,, d) into an equation
of the same form satisfying the assumptions of the theorem.

Next, by (i), we choose a T =T, so that

g(H =T, forevery t=T (i=1,2,.,m).
Then, in view of (ii), from equation (E,, 0) we obtain
—(DMx)(t) = F(t; x<g()>) = F(¢;0,0,...,0) = 0
for all t=T. Namely,
8(DWx)(t) <0  forevery t=T.
So, by applying Lemma 2, we have
(7)) 8(—= D1+i(DPx)(t) =0  forevery t=T (j=1,2,...,n-1)

and

© 1 © 1
®) ST r(sy) Ssn ra(s2)

.. Sw - Sm [(D{Wx)(s)|dsds,_,-ds,ds, < 0.

Sn-2 rn—l(sn—l)
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Now,

9) lim(D@x)(f) = 0.

Indeed, in the opposite case there exists a positive constant ¢ such that for every

. 1
(DOx)(t) = ¢, ie x(t)= €7@

and consequently, taking into account (ii), we get

[(Dimx) ()] = — 8(Df"x)(2)

—Flt;x<gt)>) 2 F(t;c—rl—< g9(0) >)go
0

for all t=T. By this, (8) gives

SOTO "1(151) S: "2(132)

@ 1 @ 1
. Ss,.-z TG gsn-. F<s; CTO < g(s) >>dsds,,_,---dszals1 < 0,
which contradicts (C,).

Finally, by (7) and (9), we conclude that §(—1)"= —1, namely n is odd
(resp. even) for 6= +1 (resp. 6= —1). Moreover, because of (9), from Lemma
1 it follows that

Im(DPx) @) =0 (j=0,1,..,n—1).
t— 0

CoroLLARY III. Consider the differential equation (E,, 0) subject to the
conditions (i), (ii) and (C;). Then the condition (C53) is a necessary and suffi-
cient condition in order that the equation (E,, 6) have at least one (nonoscil-
latory) solution x so that the lim (D{?x)(t) exists in R—{0}.

t—

Proor. The necessity of the condition (C3) follows immediately from
Theorem 2, while its sufficiency is contained in Corollary II.

3. Applications

We shall apply now the results of section 2 in the particular case where for
some integer N, ISN=<n—1, we have
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=1 (i=0,1,..,n—1;i#¥n—-N) and r,_y=r.

More precisely, we shall derive some interesting corollaries concerning the differ-
ential equation

(E, 5) [r(Ox=M()]™ + 6F(t; x<g(f)>) = b(1).
All corollaries are new.

COROLLARY 1. Consider the differential equation (E, 5) subject to the
conditions (i), (i) and:

(él) There exists a bounded function we CN([t,, ©)) with rw(®=N
€ C¥([ty, ) and [rwn=N]M =p,

(C;) For some constant ¢ with |c|>2 limsup [w(t)],
t—>00

®© ¢n~1-N (o0
S t—r(t)—gt (s — )Y F(s;c,c,...,c)|dsdt < ©,

Then for every real number L with Lc>0 andL;:l<|L|<|c|—lim sup |w(1)|
t=>0

there exists a (bounded nonoscillatory) solution x of the equation (E, 8) with

Hm[x(f) — w(t)] = L

and

lim [x(f) — wd(@)] =0 (i=1,2,...n—N—1),if N<n—1
lim ([HOx"=M(H]D — [FEOWEDBH]N) =0 (j =0, 1,..., N = 1).

COROLLARY 2. Consider the differential equation (E,d) subject to the
conditions (i), (ii) and:

(é;) There exists a function we C"N([t,, o0)) with rw»=M e C¥([t,, 0)),
[rw=M]M =p and lim w(t)=0.
=0

(C3) For some nonzero constant c,

[T =R e e oldsdt < 0.

Then for every real number L with Lc>0 and lzil <|L|<]|c| there exists a

(bounded nonoscillatory) solution x of the equation (E, ) with

limx(¢) = L.

=0
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COROLLARY 3. Consider the differential equation (E,, 5),

(Eo, 9) [r(Ox"=M(O]N + 6F(1; x<g()>) =0,

subject to the conditions (i), (ii) and (é'z). Then for every real number L with
Lc>0 and L§l<|L|<Icl there exists a (bounded nonoscillatory) solution x of
the equation (E,, 6) with

limx(?) = L

t—o0

and
{ limx®D) =0 (i=1,2,....,.n—N-1),if N<n-1
t=>00

lim [r(x=M(H]D =0 (j=0, 1,..., N —1).
t—0

COROLLARY 4. Consider the differential equation (E,, 8) subject to the
conditions (i), (ii) and:

Cs) [t = .

(C,) For every nonzero constant c either
e}
S t"-1F(; ¢, c,..., 0)ldt = ©
or

aaX TRIPYRII _
S r(t) t (s t) IF(‘S9 Cy Cyonny C)Idsdt 0 .
Then every bounded solution x of the equation (E,, +1) [resp. (E,, —1)]

for n even [resp. odd] is oscillatory, while for n odd [resp. even] is either oscil-
latory or such that

t—>0

limx®(t) = 0 monotonically (i=0,1,...,n—N-—1)
{ Lim [r()x"~M ()] =0 monotonically (j=0,1,..., N—-1).
t—w

COROLLARY 5. Consider the differential equation (E,, 5) subject to the

conditions (i), (i) and (63). Then the condition (é'z) is a necessary and suffi-
cient condition in order that the equation (E,, 8) have at least one (bounded
nonoscillatory) solution x so that the lim x(¢) exists in R—{0}.

t—o
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In the considered case the conditions (C,) and (C}) follow from (é,) and
(é;) respectively. Also, the condition (C;) becomes (63). Moreover, we have
the formula

® (S — u)n+l

T po)s

gw Sm(s — v)¥ p(s)dsdv =S

where p is a continuous nonnegative function on [u, c0) and p is a nonnegative
integer. By this formula, it is a matter of elementary calculus to see that in the
considered case the conditions (C,), (C3) and (C,) follow respectively from (62),
(é;) and (64). So, Corollaries 1, 2, 3, 4 and 5 follow from Theorem 1, Corol-
lary I, Corollary II, Theorem 2 and Corollary III respectively.

Now, we restrict ourselves in the usual case where ro=r;=---=r,_,=1.
In this case the equation (E, ) takes the form

(E, 5) X((t) + SF(t; x<g(t)>) = b(1).

We shall formulate the results of section 2 for the differential equation (E, §).
For this purpose, we observe that this equation is obtained from equation (E, )
by setting r=1. So, from Corollaries 1, 2, 3, 4 and 5 we can respectively derive
the following ones concerning the equation (E, §).

COROLLARY 1’. Consider the differential equation (E, 8) subject to the
conditions (i), (ii) and:

(C,) There exists a bounded and n-times continuously differentiable
function w on [t,, o) with wm=5.

(C,) For some constant ¢ with |c|>2 ]il;ﬂ..?p lw(®)|,

o0
S =1 F(t; ¢, e,y O)dE < 00 .

Then for every real number L with Lc>0 andl—%I <|L|<|c|— limsup |w(?)]
t— 0

there exists a (bounded nonoscillatory) solution x of the equation (E, &) with
lim[x(f) — w(t)] = L
t—>®©

and

m[xO@) —wd®] =0 (j=1,2...,n—1).
t—0o0

COROLLARY 2'. Consider the differential equation (E, 5) subject to the
conditions (i), (ii) and:
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(C}) There exists an n-times continuously differentiable function w on
[to’ oo) with wW=b and lim W(t):(), v

t—>®

C,) For some nonzero constant c,
2

a0
S "1 F(t; ¢, c,..., ¢)|dt < 0.

Then for every real number L with Lc¢>0 andl—g—‘ <|L|<]|c| there exists a

(bounded nonoscillatory) solution x of the equation (E, 8) with

lim x(f) = L.

t—00
COROLLARY 3. Consider the differential equation (E,, 5),
(E,, 8) x"(t) + 0F(t; x<g(®)>) =0,

subject to the conditions (i), (ii) and (Cy). Then for every real number L with

Lc>0 and I~§—|<|L|<|c| there exists a (bounded nonoscillatory) solution x of

the equation (E,, 8) with

t—>®©

limx(t)=L and limxU)(¢)=0 (J=12,.,n—1).
t—=x©

COROLLARY 4'. Consider the differential equation (E,, 8) subject to the
conditions (1), (ii) and:

(64) For every nonzero constant c,
¢
g t"1F(t; ¢, c,..., 0)|dt = 0.

Then for n even [resp. odd] all bounded solutions of the equation (E,, +1)
[resp. (E,, —1)] are oscillatory, while for n odd [resp. even] all bounded
solutions of the equation (E,, +1) [resp. (E,, —1)] are either oscillatory or
tending monotonically to zero as t— oo together with their first n—1 derivatives.

COROLLARY 5. Consider the differential equation (E,, 8) subject to the

conditions (i) and (ii). Then the condition (C) is a necessary and sufficient
condition in order that the equation (E,, 5) have at least one (bounded non-
oscillatory) solution x so that the lim x(t) exists in R— {0}.

t—®©
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