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1. Introduction

Consider the equation

( I ) x<»> + H(t, x) = Q(ί, x), n even,

where H, Q are real continuous functions defined on [0, oo)x(—oo, oo). The

following theorem was given by the author in [4]:

THEOREM A. Let H(t,u) be increasing in u, uH(t9u)>0 for w#0 and

such that all bounded solutions of

( I I ) *<"> + #(ί , x) = 0

oscillate. Moreover, let \Q(t, x)\<Q0(t)\x\r, where r > l , Qo: [0, oo)->[0, oo),

continuous and such that

Γ^βoίOΛ < + oo .
Jo

Then every bounded solution of (I) oscillates.

As it was shown in [4], this theorem does not necessarily hold for r < l ,

or for functions Qo with

Γ = + oo ,

or for all solutions of (I), provided of course that all solutions of (I) oscillate.

In this paper we provide conditions under which an nth order functional differ-

ential equation of the form

(HI) * ( w ) + H(t9 x(gt(t))) = Q(t, x(g2(t)))

has all of its bounded solutions oscillatory. In the particular case ^ 1(ί) = ί) g2(t)

= ί, this result does not necessarily demand that the perturbation Q be super-

linear or small as in Theorem A. Next, we provide some results under which

all solutions of (III) with g1(t) = g2(t) = g(t) either oscillate, or are such that the
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function H(t, x(g(t)))-Q(t, x(g(t))) oscillates. This last property might imply

desirable properties for the solution and implies oscillation under conditions of

"smallness" of Q(t, x) with respect to H(t, x). For other results related to oscil-

lation of perturbed or forced oscillations, the reader is referred to the paper [4]

of the author, which contains an almost complete bibliography on the subject,

as well as the papers [ l]-[3], [7].

In what follows, R = (— oo, oo), R+ = [0, oo), and the functions gί9 g2 in (III)

will be assumed defined and continuous o n Λ + with

= +oo.

A function/(ί), te\_a, oo), a>0 is said to be "oscillatory" if it has an un-

bounded set of zeros on [α, oo). By a solution of an equation of the form (III)

we shall mean any function which is defined for all large t and satisfies (III) on an

infinite subinterval of [0, oo).

2. Oscillation of bounded solutions

In the following theorem conditions are given on H, Q so that all bounded

solutions of (III) oscillate.

THEOREM 1. Let H: R+xR-+R, Q: R+xR-+R be continuous and such

that

( i ) H(t, ύ) is increasing in u, uH(t, u)>0for u # 0 ;

(ii) for every α>0 there exists a function Qa: R + -+R+ such that \Q(t, u)\

<QΛ(t)for every ueR with |w|<α;

(iii) for every /c>0, α>0,

, ± k) + QΛ(t)Vt = ± oo .

Then if x(t) is a bounded eventually positive (negative) nonoscillatory

solution 0/(111), there exists a sequence {tn}, n — 1, 2,..., such that l imί π =+oo,

and H(tn, x(gi(tn)))<Q(tn, x(g2(tn)))(H(tn, x(gi(tn)))>Q(tn, ^(IM* NOW, in

addition to the above assume that gι(ή = g2(t) and that the inequality

H(tn9 xn)<Q(tn, xn) (H(tn> *„) > βft , *„))

for a sequence {tn} with limίΛ= H-oo and a sequence {xn} which is positive (nega-
w-+oo

tive) and bounded, is impossible', then every bounded solution of (III) is oscil-

latory.

PROOF. Let x(t) be a bounded nonoscillatory solution of (III). Then there
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exists a tx>0 such that x(t)¥Ό for t>tx. Assume x(t)>0 for t>tv Now
let t2 be such that gx(t)>tu 02(O>*i for every ί>ί 2 . It follows that x(g1(t))>0
and x(g2(t))>0 for ί>ί 2 . Since χ(t) is bounded, there exists a number α>0
such that |x(OI<α for every ί ^ . Thus, \Q(t, x(g2(t)))\<Qa(t)9 t>t2. Now
assume that

H(t, x(gι(t))) - Q(t, x(g2(t))) > 0, t > Γ,

where T>t2 is a fixed number. Then from (III) we obtain x<π>(0<0, ί>T.
This implies that all the derivatives xiJ)(t), j = 0, 1,..., n —1 are of fixed sign for
all large t (say for t > Tx > T), and no two consecutive derivatives are of the same
sign, because this would imply limx(ί)=±oo, a contradiction to the bounded-

t-+ao

ness of x(t). Now, we may assume that 7\ is sufficiently large so that we also

have

(1) ( - iYχM(gίt)) > 0, μ = l , 2 , . . . , n - l , / = 1, 2

for every t>Tγ. By differentiation of the function F{t)^tn'ιx^n'ι\t\ t>Tx

we have

(2) F\t) = (n - \)t«-W-*\t) - ί-^Cflίί, χ(g1(t))) - ρ(ί,

^ (n - l)ί»-*χ( -i>(ί) - ί-

for every ί^Γ^ where x(g1(t))>x(gϊ(T1)) = λ>0, t>Tv This follows from
the fact that x'(gl(t))>0 for ί> Tx. Now, integrating (2) we get

(3) ί"-^^-1^) - (n -

< F(TX) - Γ s - - ^ ^ , A)- ρα(5)]ds.

Since the integral in the right-hand side of (3) tends to + oo as f-+ + oo and

x(«-D(ί)>0, ί> Tu it follows that

(4) lim \ sn~2x(n ί)(s)ds = + oo .
ί->αθ JTx

From this point on we can follow the proof of Kartsatos [1, Corollary],
to obtain the contradiction limx(ί)= + oo. Consequently, there is at least

/-•oo

one number lλ > Tsuch that

H(h, x(βi(h))) - Qϋtu Aθiih))) < 0

Since Twas arbitrary, it follows that there exists a sequence {?„}, n = l, 2,...,
such that tn > t2 and
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(5) H(tn, x(gi(ϊn))) - Q(tn, x(g2(tn))) < 0, n = 1, 2,....

A similar proof holds in the case of an eventually negative solution x(ί), and this

concludes the first part of the theorem. As far as the second part is concerned,

it is obvious from (5) with g1(tn)=g2(tn) and the corresponding inequality for a

negative x(ί). This concludes the proof of the theorem.

EXAMPLES. An equation that satisfies all the hypotheses of the first part

of the above theorem is the following:

(6) x<6> 4- Γ5x3(yft) = r< 5 + ε>|x(ί 3- 2 ε) | 1 / 2sgnx + 7 2 0 r 7 ,

where 0 < β < l . Here gt(t)= y/F, g2(t) = t3~2% \Q(t9 M) |<α 1 / 2 r( 5 + δ ) + 720r 7 .

The last term in (6) can be written as 720(ί 3- 2 ε)~ 7 / ( 3" 2 ε ) . Of course, H, Q

are defined here for t>0 but this does not affect the above theorem since solutions

are defined for all large t. In (6) we have the solution x(0 = ί~\ t>l, which is

nonoscillatory. An equation satisfying the assumptions of the second part of

Theorem 1 is the following:

(7) x" + (1 + r ε s i n 3 t)x = r ε (s in 2 t)x2, 0 < ε < 1.

Here gί(t) = g2(t) = t, Qa(t)=oί2rε. Now assume that

with xn > 0 , bounded, and /„-• + oo as «-• oo.

Then we have

(8) 1 < ί-(sin2tn)xj(l + rn*sin3 tn).

Since the right-hand side tends to zero as n-»oo, we obtain a contradiction.

An analogous argument applies to the case x π <0. Thus, all bounded solutions of

(7) oscillate. One such solution is x(ί) = sinί, ί > l . This example suggests

an interesting corollary which we now state.

COROLLARY 1. Assume that (i)-(iii) of Theorem 1 are satisfied. More-

over', let gi(t)=g2(t) and, for every fc>0,

Urn sup \Q{U u)IH(t, u)\ < 1.

Then every bounded solution o/(ΠI) oscillates.

It suffices to observe that the first conclusion of Theorem 1 is now impossible.

Thus, there are no bounded nonoscillatory solutions.

A large class of equations satisfying the assumptions of this corollary is the

following:

x(n) _|_ r π | x | α s g n x = r(n + ε>|x|^sgnx, n even, t > 1, β > α > 0, ε > 0.
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3. General oscillation results

Before we state the next theorem we state a lemma given by the author in

[4, Theorem 2].

LEMMA 1. For the equation (I) assume the following:

( i ) H: R+x R-+R, Q: R+x R-*R are continuous, H(t, ύ) is increasing in

u,uH(t,u)>0foruΦ0;

(ii) \Q(t, u)\<Q0(t, \u\), (t, u)eR+ xR, where Q0(t, s) is continuous and

increasing in s;

(iii) the homogeneous equation has all of its solutions oscillatory.

Then if x(t) is a positive solution of (I), there exist L > 0 and to>0 such that
x(0<.y(0> te[tθ9 oo), where y(t) = y(t, L) is any positive solution of the equa-

tion j ( M ) (0 = βo(^ y(t)) with y(to) = L and yO\to) = 0, j=\, 2,,.., n - 1 .

Actually this lemma was proven in [4] for a more special case of a function

Q, but the proof there carries over to the present case without any actual modifi-

cations. In the following theorems we shall assume, without further mention,

that H(t, — w) — β(ί, — u)= —H(t, w) + Q(ί, ύ) in order to ease the exposition be-

cause in this case — x(t) is a solution if x(t) is one. We also set C(ί0? L) = {ue

C[t0, oo); 0<u(t)<y(t9 L), ί e [ ί 0 , oo)}, where ί o >0, L > 0 and y(t9 L) is as in

the Lemma.

THEOREM 2. For the equation (I) assume the following:

( i ) the hypotheses (i)—(iii) of Lemma 1 are satisfied;

(ii) there exists a function h: R-+R such that h is continuous, increasing,

h{ — u)= —h(u), uh(u)>0for every uφO, and for every ε>0,

Γ < + oo

(iii) for anyto>0,L>0,ueC(t0, L),

t, u(t)) - Q(t, u(tmih(u(t))-]dt = + oo .
fo

Then

a) if x(t) is an eventually positive (negative) solution of (I), there exists a

sequence {tn} such that limίπ= +oo and, for n = l, 2,...,
n-+oo

H(tn, x(Q) < Q(tn, x(tn)) (H(ίn, x(tn)) > Q(tn, x{Q).

b) //, moreover,
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lim[Q(i, u(ή)/H(t, u(ί))] = 0
ί-»oo

for every f o >0, L > 0 and w e C(f0, L), then every solution 0/(I) is oscillatory.

PROOF. Let x(t) be a nonoscillatory solution of (I). Assume that x(t) is

bounded and positive for all t>ϊ>0. Let ί0, L, to>t be such that the con-

clusion of Lemma 1 holds and, moreover, H{U x(t))>Q(t, x(t))9 (-l) yx^>(ί)

< 0 , ; = l, 2,..., n - 1 , ί > ί o Then 0<ft(x(0)</*(X) for *>'o> where jφ)<-K

for ί > ί o The integral condition in (iii) in conjunction with Lemma 1 show that

the conditions of Theorem 1 are now satisfied for x(t), t>t0. In fact,

> Γ

9 x(t0)) - Qκ(t)-]dt
*o

, χ(t)) - Q(U χ(0)]/ft(*(0)]Λ = + oo,

where Qκ(t) = Q0(t, K). Thus, the first conclusion of the theorem is true for x(t)

bounded. Now assume that x(t) is eventually positive and unbounded. Further-

more, assume that H(t, x(t))-β(ί, x(t))>0 for all large t. Then x<<n\t)<0

for all large t. Thus, there exist numbers to>0, L > 0 such that the conclusion

of the Lemma holds, and, moreover,

, x(t)) - Q(ί, JC(O) > 0,

it) > 0, x'(t) > 0

for all t>t0. Now consider the function F(0 = *ll~1x(#I~1)(0/Λ(*(0λ i^*o-
Then we have

F(t) < F(t0) - Γ s-^Ci/ίs, x(5)) - ρ(5,
Jfo

with the last integral considered in the Riemann-Stieltjes sense. Since l/h(x(t))

is decreasing (x'(t)>0), the above inequality implies

lim ΠF(O - Γ ^"-^("-^(sVΛWsMdsΊ = - oo .
f-* + ooL J f o J

The proof now can continue as in Theorem 3 of Kartsatos [1], and we omit

the rest of it which contradicts the assumption H — Q > 0 as t > t0. Thus, the first

conclusion of the theorem is true, and the second holds as in Corollary 1.
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Before we provide an example illustrating the above theorem, we should

mention that the equation y(n) = Q0(t, y) was used in Theorem 2 for an appraisal

of any positive solution of (III). However, we could have used instead of C(ί0,

L) any other class of functions to which a particular positive solution (assumed to

exist in the proof) belongs.

Now consider the following equation:

(9) x<"> + p(t) \x\" sgn x = q(t) \x\* sgn x, n even,

where p, q are continuous and positive for f >0, <x>β> 1, and

^°tn-γq{t)dt < + oo, ί°° f-ipiήdt = + oo, lim[<2(0/p(0] = 0 .
Jί J l ί->oo

Then every bounded solution of (9) oscillates, and every unbounded non-

oscillatory solution x(ί) satisfies liminf |x(0l=0. In fact, the bounded solutions
f-»-00

of (9) oscillate by Theorem A because all solutions of the homogeneous equation

oscillate (cf., for example, Kartsatos [1, Corollary]). Now let x(t) be positive

and unbounded for all large ί, and assume that p(t)xa(t) — q(t)xβ(t)>0 for all large

t. Then there exists ί j > l such that x(ί)>0, x '(0>0, x ( π " 1 ) ( ί )>0 for all t>tu

Since x ( 0 > x ( Ί ) , taking h(t) = x*(t), we obtain

O - q(t)χβ(t)]lh(ty]dt

> ( V 1 ^ ) - lx{hW-*q(ii\dt= + oo .

Continuing as in the proof of Theorem 2, we get a contradiction. Thus,

for some sequence {tn} with l imί n = -foo, p(tn)xΛ(tn)<q(tn)xβ(tn), which im-
«-*oo

plies,

0 = limxα-^M) < lim
n-*oo n-»oo

Thus, liminfx(ί) = O. Since for any solution x(0, — x(0 is also a solution,
ί-*oo

the assertion is true.

The above theorem corresponds to the case of a "superlinear" homogeneous

equation because l/h(t) is integrable on (ε, oo). We establish below a theorem

which covers the sublinear case.

THEOREM 3. Assume that H, Q satisfy (i)-(m) of Lemma 1. Moreover,

assume that for every L>0, to>0 and every u e C(ί0, L),

(10) J ί«<»-i>[[H(f, iι(0) - Q(U u{tmiu«(ty]dt = + oo ,
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where cc is a fixed constant with 0 < α < l .

Then the conclusion a) of Theorem 2 holds. If moreover,

for every to^0, L>0 and ueC(t0, L), then every solution of (I) oscillates.

PROOF. Let x(t) be a positive solution of (I). Then since the homogeneous

equation oscillates, it follows that there exists to>0 and L > 0 such that 0<x(i)

<y(t), te[t0, oo), where y(t) is any (but fixed) solution of y{n\t) = Q(t, y(t))

with y(to) = L and y(J\t0) = OJ=l, 2,..., n - 1 . Now assume that H(t9 x(t))

>Q(t, x(t)), te[tί9 oo), tί>t0. Then Equation (I) can be written as follows:

(11) x<"> + P(t)x" = 0,

where

(12) P(t) EE H(t9 x(t)) - Q(t, x(t))lx"(t) > 0

for every t>tt. Since, however,

(13) (°°ίβ<»-1>P(0Λ= + oo,
Jti

it follows from Theorem 1 in Licko and Svec [6] that (11) cannot have eventually

positive solutions, a contradiction. Thus,

(14) H(tn9x(tn))<Q(tn,x(tn)),

where {tn} is some sequence with l imί n = + oo. The rest of the proof follows as

in Theorem 2 and is omitted.

The above theorem has an interesting corollary for second order equations

which we now state:

COROLLARY 2. Consider the equation

(15) x" + p(ί)|x|αsgnx = ^(OWsgnx, t ^ 0,

where p, q are positive and continuous for ί>0, O<α</?<1; furthermore,

(16) Γ t*lp(t) - q(t)uf-"(t)-]dt = 4- oo ,
Jto

lira ίq{t)u»-'{t)lp(ty]dt = 0
f-κχ>

for every ί o >0, L>0, w/zere u(ί) is any function with
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0 < iι(0 < iV-P + (1 - M ' {t - s)q(s)ds^β, t > t 0 .
Jto

Then every solution of (15) oscillates.

Let us first remark that all solutions of the problem y" = q(t)\y\β

9 y(to) = L

>0, /(ίo) = 0, are extendable on [ί0, oo). Now let y(t) be a solution of this prob-

lem for which y(t)>0, t>t0. Then we have

(17) [

which, by double integration from ί0 to t>t0, gives

(18)
J ί o

From this follows the conclusion of the corollary as in Theorem 3. If we

take α=l/5, jS=l/3, p(0 = ( ί + l ) " 1 , ^(0 = ( ί + l ) " 3 , then w ( 0 < ^ 1 / 2 and the

second of (16) becomes

(17) [ tιί5[(t + I)"1 - λ(t + \YW\dt = + oo
Jίo

which is true for any λ>0, to>0.

4. Discussion

We first note that the function Q(t, ύ) in all the above results can be replaced

by a function Q(t, w, u',..., M ^ " 1 ^ , which is bounded above by Q0(t, |M|). We

also note that in all the above results it was assumed that the equation x(/l)

+ if(ί, x) = 0 has all of its solutions, or its bounded solutions, oscillatory. If

such assumptions are not made we need stronger conditions on H — Q which would

guarantee oscillation. We are planning to examine such cases in a forthcoming

paper. Theorems 2, 3 were given for the ordinary case gi(t) = g2(t) = t. How-

ever, results can obviously be formulated without this assumption at the expense

of extra calculations. In view of the importance of the class C(t0, L), the author

thinks that it would be very interesting to establish the extendability of the solu-

tions of

x ( π ) = Qo(t, x), x(t0) = L, * ω ( ί 0 ) = 0, j = 1, 2,..., n - 1

on [ί0, oo) in the case of a superlinear Q0(t, ύ) for any t0 sufficiently large, any

L > 0, and any even n > 2. Instead of ua(t) in (10) one could consider more general

functions like, for example, a function f(u(t)), where / is as in Theorem 4 of

Kusano and Onose [5].
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