On the Existence of Non-tangential Limits of Polyharmonic Functions

Yoshihiro Mizuta and Bui Huy Qui
(Received January 20, 1978)

1. Introduction and statement of results

Let $R^{n}(n \geqq 2)$ be the n-dimensional Euclidean space. A point x of R^{n} will be written also as $\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1}$. We denote by R_{+}^{n} the set of all points $x=\left(x^{\prime}, x_{n}\right) \in R^{n}$ such that $x_{n}>0$, and by R_{0}^{n} its boundary ∂R_{+}^{n}. For a function $u \in C^{\infty}\left(R_{+}^{n}\right)$, we define the gradient of order k by

$$
\nabla^{k} u(x)=\left(D^{\gamma} u(x)\right)_{|v|=k}, \quad x \in R_{+}^{n},
$$

where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is a multi-index with length $|\gamma|=\sum_{i=1}^{n} \gamma_{i}$ and $D^{\gamma}=\left(\partial / \partial x_{1}\right)^{\gamma_{1}}$ $\cdots\left(\partial / \partial x_{n}\right)^{\gamma_{n}}$. A function $u \in C^{\infty}\left(R_{+}^{n}\right)$ is said to be polyharmonic of order m in R_{+}^{n} if $\Delta^{m} u=0$ on R_{+}^{n}, and to have a non-tangential limit at $\xi \in R_{0}^{n}$ if

$$
\lim _{\substack{x \rightarrow \xi \\ x \in \Gamma(\xi ; a)}} u(x)
$$

exists and is finite for all $a>0$, where Δ^{m} is the Laplace operator iterated m times and

$$
\Gamma(\xi ; a)=\left\{x=\left(x^{\prime}, x_{n}\right) \in R_{+}^{n} ;\left|\left(x^{\prime}, 0\right)-\xi\right|<a x_{n},|x-\xi| \leqq 1\right\} .
$$

Our first aim is to show the following theorem:
Theorem 1. Let k and m be positive integers such that $k \geqq m, 1<p<\infty$ and $-\infty<\alpha<k p$. If u is a function polyharmonic of order m in R_{+}^{n} which satisfies

$$
\iint_{G}\left|\nabla^{k} u\left(x^{\prime}, x_{n}\right)\right|^{p} x_{n}^{\alpha} d x^{\prime} d x_{n}<\infty \quad \text { for any bounded open set } G \subset R_{+}^{n},
$$

then there exists a Borel set $E \subset R_{0}^{n}$ such that $B_{k-\alpha / p, p}(E)=0$ and u has a nontangential limit at each point of $R_{0}^{n}-E$.

Here $B_{\beta, p}(\beta>0)$ is the Bessel capacity of index (β, p) (cf. [2]). Theorem 1 is a generalization of a result of the first author [3; Theorem 1] $(k=m=1)$. In case $-1<\alpha<k p-1$, Theorem 1 is the best possible as to the size of the exceptional set in the following sense:

Theorem 2. Let $1<p<\infty, k$ be a positive integer and $-1<\alpha<k p-1$. Let E be a subset of R_{0}^{n} with $B_{k-\alpha / p, p}(E)=0$. Then there is a harmonic function u in R_{+}^{n} such that $\int_{R_{+}^{n}}\left|\nabla^{k} u(x)\right|^{p} x_{n}^{\alpha} d x<\infty$ and $\lim _{x \rightarrow \xi, x \in R_{+}^{n}} u(x)=\infty$ for any $\xi \in E$.

2. Proof of Theorem 1

To prove Theorem 1, we need the following lemmas.
Lemma 1. Let $\beta>0$ and f be a non-negative function in $L^{p}\left(R^{n}\right), 1<p<$ ∞, with compact support. Then

$$
\int|x-y|^{\beta-n} f(y) d y=\infty \quad \text { if and only if } \quad \int g_{\beta}(x-y) f(y) d y=\infty
$$

for $x \in R^{n}$, where g_{β} denotes the Bessel kernel of order β (cf. [2]).
Proof. If $0<\beta<n$, then for any compact set K in R^{n}, there exists a constant $c_{1}>0$ such that

$$
c_{1}^{-1}|x|^{\beta-n} \leqq g_{\beta}(x) \leqq c_{1}|x|^{\beta-n} \quad \text { whenever } \quad x \in K
$$

so that the lemma easily follows in this case. If $\beta \geqq n$, then $g_{\beta} \in L^{p^{\prime}}\left(R^{n}\right)$ for any $p^{\prime}>1$, and hence

$$
\int|x-y|^{\beta-n} f(y) d y<\infty \quad \text { and } \int g_{\beta}(x-y) f(y) d y<\infty
$$

for all $x \in R^{n}$. For the properties of Bessel kernels, see e.g. [2].
In what follows, c_{2}, c_{3}, \ldots, are positive constants.
Lemma 2. Let $b>0$, i be a positive integer and $u \in C^{\infty}\left(R_{+}^{\eta}\right)$.

Proof. Let γ be a multi-index with $|\gamma|=i$. Then

$$
D^{y} u(y)=-\int_{r}^{1}(\partial / \partial s)\left[D^{\gamma} u(\xi+s \sigma)\right] d s+D^{\gamma} u(\xi+\sigma)
$$

where $r=|\xi-y|$ and $\sigma=(y-\xi) / r$. Hence it follows that

$$
\left|\nabla^{i} u(y)\right| \leqq c_{2}\left\{\int_{r}^{1}\left|\nabla^{i+1} u(\xi+s \sigma)\right| d s+\left|\nabla^{i} u(\xi+\sigma)\right|\right\}
$$

Therefore,

$$
\begin{aligned}
& \int_{\Gamma(\xi ; b)}|\xi-y|^{i-n}\left|\nabla^{i} u(y)\right| d y \\
& \leqq c_{2} \int_{S(b)}\left\{\int_{0}^{1} r^{i-n} r^{n-1} d r\right\}\left|\nabla^{i} u(\xi+\sigma)\right| d S(\sigma) \\
& +c_{2} \int_{S(b)}\left[\int_{0}^{1}\left\{\int_{r}^{1}\left|\nabla^{i+1} u(\xi+s \sigma)\right| d s\right\} r^{i-n} r^{n-1} d r\right] d S(\sigma) \\
& \leqq c_{3}\left[A_{u}+\int_{S(b)}\left\{\int_{0}^{1} s^{i}\left|\nabla^{i+1} u(\xi+s \sigma)\right| d s\right\} d S(\sigma)\right] \\
& =c_{3}\left[A_{u}+\int_{\Gamma(\xi ; b)}|\xi-y|^{i+1-n}\left|\nabla^{i+1} u(y)\right| d y\right] \text {, }
\end{aligned}
$$

where $S(b)=\{x \in \Gamma(O ; b) ;|x|=1\}$ and $A_{u}=\int_{S(b)}\left|\nabla^{i} u(\xi+\sigma)\right| d S(\sigma)<\infty$. The proof of our lemma is thus complete.

Proof of Theorem 1. Let k, m, p, α, u be as in Theorem 1. Given $N>1$, let us consider the existence of non-tangential limits of u at points of $B_{N}=$ $\left\{\xi \in R_{0}^{n} ;|\xi|<N\right\}$. Set

$$
f(x)= \begin{cases}\left|\nabla^{k} u(x)\right| x_{n}^{\alpha / p}, & \text { if } x=\left(x^{\prime}, x_{n}\right) \in R_{+}^{n} \text { and }|x|<2 N \\ 0, & \text { otherwise } .\end{cases}
$$

Then $f \in L^{p}\left(R^{n}\right)$ by our assumption. If we set

$$
E=\left\{x \in R^{n} ; \int|x-y|^{k-\alpha / p-n} f(y) d y=\infty\right\}
$$

then $B_{k-\alpha / p, p}(E)=0$ on account of Lemma 1. Let $\xi \in B_{N}-E$ and $a>0$ be fixed. Since there is a constant $c_{4}>0$ such that $x_{n} \leqq|\xi-x|<c_{4} x_{n}$ for $x=\left(x^{\prime}, x_{n}\right) \in \Gamma(\xi$; b), $b>0$,

$$
\int_{\Gamma(\xi ; b)}|\xi-y|^{k-n}\left|\nabla^{k} u(y)\right| d y \leqq c_{4}^{|\alpha| / p} \int_{\Gamma(\xi ; b)}|\xi-y|^{k-\alpha / p-n} f(y) d y<\infty .
$$

Hence Lemma 2 gives

$$
\begin{equation*}
\sum_{i=1}^{k} \int_{\Gamma(\xi ; b)}|\xi-y|^{i-n}\left|\nabla^{i} u(y)\right| d y<\infty \tag{1}
\end{equation*}
$$

for any $b>0$. By (1), we have

$$
\int_{S(a)}\left\{\int_{0}^{1}|\nabla u(\xi+r \sigma)| d r\right\} d S(\sigma)=\int_{\Gamma(\xi ; a)}|\xi-y|^{1-n|\nabla u(y)| d y<\infty, ~}
$$

so that there is $\sigma^{*} \in S(a)$ with $A_{\sigma^{*}}=\int_{0}^{1}\left|\nabla u\left(\xi+r \sigma^{*}\right)\right| d r<\infty$. Since $\int_{0}^{1} \mid(\partial / \partial r) u(\xi+$ $\left.r \sigma^{*}\right) \mid d r \leqq A_{\sigma^{*}}, \lim _{r \downarrow 0} u\left(\xi+r \sigma^{*}\right)$ exists and is finite.

We shall show that $x_{n}|\nabla u(x)| \rightarrow 0$ as $x \rightarrow \xi, x \in \Gamma(\xi ; a)$. In view of $[1 ;(15)]$,

$$
\begin{equation*}
v(x)=\sum_{i=1}^{m-1} \frac{(-1)^{i}}{i!} \rho^{2 i} \frac{1}{\omega_{n}} \int_{S}\left(\frac{\partial}{\partial \rho^{2}}\right)^{i} v(x+\rho \sigma) d S(\sigma) \tag{2}
\end{equation*}
$$

for any v polyharmonic of order m in R_{+}^{n}, where $B(x, \rho)=\left\{y \in R^{n} ;|x-y| \leqq \rho\right\}$ $\subset R_{+}^{n}, S=\partial B(0,1)$ and ω_{n} is the area of S. Since $\rho^{2 i}\left(\partial / \partial \rho^{2}\right)^{i}$ is of the form $\sum_{j=0}^{i} a_{j} \rho^{j}(\partial / \partial \rho)^{j}, a_{j}$ being constants depending only on i and j, (2) can be written as

$$
v(x)=\sum_{i=0}^{m-1} a_{i}^{\prime} \rho^{i} \int_{S}\left(\frac{\partial}{\partial \rho}\right)^{i} v(x+\rho \sigma) d S(\sigma)
$$

with constants a_{i}^{\prime} depending only on m and n. Multiplying both sides by ρ^{n-1} and integrating them with respect to ρ over the interval $\left(0, x_{n} / 2\right)$ then yield

$$
\begin{equation*}
v(x)=\sum_{i=0}^{m-1} a_{i}^{\prime \prime} x_{n}^{-n} \int_{|x-y|<x_{n} / 2}\left(\frac{\partial}{\partial \rho}\right)^{i} v(y)|x-y|^{i} d y \tag{3}
\end{equation*}
$$

where $x=\left(x^{\prime}, x_{n}\right) \in R_{+}^{n}$ and $a_{i}^{\prime \prime}$ are constants depending only on m and n. Applying (3) with $v=\partial u / \partial x_{j}, j=1, \ldots, n$, we obtain

$$
\begin{aligned}
x_{n}|\nabla u(x)| & \leqq c_{5} \sum_{i=1}^{m} x_{n}^{i-n} \int_{|x-y|<x_{n} / 2}\left|\nabla^{i} u(y)\right| d y \\
& \leqq c_{6} \sum_{i=1}^{m} \int_{|x-y|<x_{n} / 2}|\xi-y|^{i-n\left|\nabla^{i} u(y)\right| d y} \\
& \longrightarrow 0 \text { as } x \longrightarrow \xi, x=\left(x^{\prime}, x_{n}\right) \in \Gamma(\xi ; a)
\end{aligned}
$$

on account of (1), because we can find $b>0$ such that $B\left(x, x_{n} / 2\right) \subset \Gamma(\xi ; b)$ whenever $x \in \Gamma(\xi ; a)$.

For $x=\left(x^{\prime}, x_{n}\right) \in \Gamma(\xi ; a)$, denote by $x_{\sigma^{*}}$ the point on the half line $\left\{\xi+r \sigma^{*}\right.$; $r>0\}$ whose n-th coordinate is equal to x_{n}, and by $\ell(x)$ the line segment between x and $x_{\sigma^{*}}$. It follows that

$$
\left|u(x)-u\left(x_{\sigma^{*}}\right)\right| \leqq\left|x-x_{\sigma^{*}}\right| \sup _{\ell(x)}|\nabla u| \leqq 2 a x_{n} \sup _{\ell(x)}|\nabla u|
$$

tends to zero as $x \rightarrow \xi, x=\left(x^{\prime}, x_{n}\right) \in \Gamma(\xi ; a)$. Therefore $\lim _{x \rightarrow \xi, x \in \Gamma(\xi ; a)} u(x)$ exists and is finite. This implies that u has a non-tangential limit at $\xi \in B_{N}-E$. Since N is arbitrary, our theorem is proved.

3. Proof of Theorem 2

By our assumption that $B_{k-\alpha / p, p}(E)=0$, there is a non-negative function $f \in L^{p}\left(R^{n}\right)$ such that $\int_{g_{k-\alpha / p}}(\xi-y) f(y) d y=\infty$ for every $\xi \in E$. We denote by F the restriction of $\int_{g_{k-\alpha / p}}(x-y) f(y) d y$ to R^{n-1}, i.e.,

$$
F\left(x^{\prime}\right)=\int_{g_{k-\alpha / p}}\left(\left(x^{\prime}, 0\right)-y\right) f(y) d y, \quad x^{\prime} \in R^{n-1}
$$

We note that the function F belongs to the Lipschitz space $\Lambda_{\beta}^{p, p}\left(R^{n-1}\right)$ with $\beta=k-(\alpha+1) / p>0$ (cf. [5; Chap. VI, §4.3]). Let u be the Poisson integral of F with respect to R_{+}^{n}. By the fact in [5; p. 152] we have

$$
\int_{0}^{\infty}\left[x_{n}^{k_{0}-\beta}\left\{\int_{R^{n-1}}\left|\left(\frac{\partial}{\partial x_{n}}\right)^{k_{0}} u\left(x^{\prime}, x_{n}\right)\right|^{p} d x^{\prime}\right\}^{1 / p}\right]^{p} x_{n}^{-1} d x_{n}<\infty,
$$

k_{0} being the smallest integer greater than β. This implies

$$
\int_{0}^{\infty}\left[x_{n}^{k^{\prime}-\beta}\left\{\int_{R^{n-1}}\left|\left(\frac{\partial}{\partial x_{n}}\right)^{k^{\prime}} u\left(x^{\prime}, x_{n}\right)\right|^{p} d x^{\prime}\right\}^{1 / p}\right]^{p} x_{n}^{-1} d x_{n}<\infty
$$

for any positive integer k^{\prime} greater than β, which is equivalent to

$$
\int_{R_{+}^{n}}\left|\nabla^{k^{\prime}} u(x)\right|^{p} x_{n}^{p}\left(k^{\prime}-\beta\right)-1 ~ d x<\infty
$$

by the observation given after Lemma 4^{\prime} in [5; Chap. V]. In particular, taking $k^{\prime}=k(>\beta)$, we obtain

$$
\int_{R_{+}^{n}}\left|\nabla^{k} u(x)\right|^{p} x_{n}^{\alpha} d x<\infty
$$

Moreover we see from the property of the Poisson integral and the lower semicontinuity of F that $\lim _{x \rightarrow \xi, x \in R_{+}^{n}} u(x)=\infty$ for every $\xi \in E$. Thus u satisfies all the conditions in the theorem.

4. Remark

In this section, we shall write a point $x \in R^{n}$ as

$$
x=\left(x^{\prime}, x^{\prime \prime}\right) \in R^{n^{\prime}} \times R^{n^{\prime \prime}},
$$

where n^{\prime} and $n^{\prime \prime}$ are positive integers such that $n^{\prime \prime} \geqq 2$ and $n=n^{\prime}+n^{\prime \prime}$. We shall consider functions u polyharmonic of order m in $R^{n}-R^{n^{\prime}} \times\{O\}$ satisfying the condition of the form:

$$
\begin{equation*}
\iint_{G}\left|\nabla^{k} u\right|^{p}\left|x^{\prime \prime}\right|^{a} d x^{\prime} d x^{\prime \prime}<\infty \tag{4}
\end{equation*}
$$

for any bounded open set $G \subset R^{n}-R^{n^{\prime}} \times\{O\}$.
The following theorem can be proved in the same way as Theorem 1:
Theorem 1'. Let k, m, p and α be as in Theorem 1. Let u be a function polyharmonic of order m in $R^{n}-R^{n^{\prime}} \times\{O\}$ which satisfies (4). Then we can find a Borel set $E \subset R^{n^{\prime}} \times\{O\}$ such that $B_{k-\alpha / p, p}(E)=0$ and if $\xi \in R^{n^{\prime}} \times\{O\}-E$, then

$$
\lim _{\substack{x^{\prime \prime} \rightarrow 0 \\\left(x^{\prime}, x^{\prime \prime}\right) \in \Gamma^{*}(\xi ; a)}} u\left(x^{\prime}, x^{\prime \prime}\right)
$$

exists and is finite for any $a>0$, where

$$
\Gamma^{*}(\xi ; a)=\left\{x=\left(x^{\prime}, x^{\prime \prime}\right) \in R^{n} ;\left|\left(x^{\prime}, O\right)-\xi\right|<a\left|x^{\prime \prime}\right|,|x-\xi| \leqq 1\right\} .
$$

In case $k p-\alpha \leqq n^{\prime \prime}$, our theorem does not give any new information since $B_{k-\alpha / p, p}\left(R^{n^{\prime}} \times\{O\}\right)=0$; however, under the additional assumption that $\alpha=0$ and $(2 m-k) p /(p-1) \leqq n^{\prime \prime}$, any function polyharmonic of order m in $R^{n}-R^{n^{\prime}} \times\{O\}$ and satisfying (4) can be extended to a function polyharmonic of order m in R^{n} (cf. [4]).

In case $k p-\alpha>n^{\prime \prime}$, we do not know whether Theorem 1^{\prime} is the best possible as to the size of the exceptional set or not.

References

[1] J. Edenhofer, Integraldarstellung einer m-polyharmonischen Funktion, deren Funktionswerte und erste $m-1$ Normalableitungen auf einer Hypersphäre gegeben sind, Math. Nachr. 68 (1975), 105-113.
[2] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[3] Y. Mizuta, On the existence of non-tangential limits of harmonic functions, Hiroshima Math. J. 7 (1977), 161-164.
[4] Y. Mizuta, On removable singularities for polyharmonic distributions, Hiroshima Math. J. 7 (1977), 827-832.
[5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

Department of Mathematics, Faculty of Science, Hiroshima University

