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In his famous account [12], J. Tate stated that the algebraic cycles span all

the (Z-adic) cohomology groups of the hypersurface defined by the equation:

*S + * ϊ+ +x? = 0

in the r-dimensional projective space P r over an algebraically closed field k of

characteristic p, if r is odd and pv = — 1 mod n for some v. The statement can

easily be reduced to the case that n = q + l (q = pv). The crucial point, which

is due to Tate and Thompson, is that the middle-dimensional Z-adic cohomology

group i/ r~1(5, Qz) of the hypersurface S defined by the equation:

x%+1 + * ? + 1 + ~+x?+1 = 0 in P' ,

breaks up into the sum of two irreducible l/r+1(Γ4)-modules, one of which is the

trivial one, where Ur+ί(Fq) is the finite unitary group of rank r + 1 over the finite

field Fq with q elements and H*(S, Qt) has the L/r+1(Fg)-module structure given

by the natural action of Ur+1(Έq) on S.

In this paper, we shall first, in § 1, give the identification of this non-trivial

irreducible piece in Hr~ι(S, Qt) with a certain unipotent representation of

Ur+ί(¥q) classified by Lusztig-Srinivasan [10]. This argument also gives the

proof of the above mentioned Tate-Thompson's statement. Secondly, in §2,

we shall determine the character of this irreducible representation, by a method

similar to that of [9]. Since the arguments in §2 are quite independent of those

in § 1, one can immediately obtain an alternative proof of the irreducibility of the

Tate-Thompson representation.

We understand that some parts of this paper, especially results in § 1, which

are essentially easy exercises of Lusztig's results [8], may be known to experts.

However, since Tate-Thompson's result just stated is Mecca of recent develop-

ments of the use of Z-adic cohomologies in the representation theory of the finite

linear groups, and since the original proof of Tate-Thompson does not seem to be

highly available to many people, we consider it to be of some meaning that we

write up the following account on these subjects. Of course, for various reasons

from a historical point of view, one of our proofs of the irreducibility, given in

§ 1, seems to be different from that of Tate-Thompson.
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us in these subjects.

Added on January 19, 1978: We have been informed that Shioda and

Katsura have obtained a direct geometric proof of Tate's result stated in the top

of the paper without using the representation theory of the unitary groups.

Notations

Fq denotes the finite field with q elements and k denotes an algebraic closure

of Fq. If X is an algebraic variety defined over Fq9 F denotes the Frobenius

endomorphism on X. For an endomorphism σ on X, Xσ denotes the set of fixed

points of σ; thus XF is the set of F€-rational points of X. Hi(X) = Hi(X, Qt)
(resp. Hi

c(X)=Hi
c(X, QJ) denotes the i-th Z-adic cohomology group of X (resp.

with compact supports) with coefficients in the Z-adic sheaf Qt for some fixed
lΦp = charFq. For an endomorphism σ on X, σ* is the action on H*(X) (or

H*(X) if σ is proper) given by that of σ. We simply write

Tr(σ*, H*(X)) = Σi(~ l) fTr(σ*, W{X))9

or

Tr(σ*5 H*(X)) = Σi(~ l) fTr(σ*,

For a set S, \S\ denotes the cardinality of S. A partition A = (λ l 5 λ2,..., λr)

= (1^2 m 2 nw") of degree n means n=λί+λ2 + -~+λr (λ1>λ2> >λr) and that

nii is the number of the parts λj equal to i. The set of all partitions of degree n

will be denoted by Λn.

§ 1. Unipotent representations of the finite unitary groups and the Tate-

Thompson representations

In the classification of the irreducible characters of the finite unitary groups

by Lusztig-Srinivasan [10], the basic step is to complete that of the "unipotent"

characters.

Let G=Un be the unitary group of rank n over Fq and F the Frobenius

endomorphism on G. We regard G as the general linear group GLn(k) over k,

an algebraic closure of ¥q, and F as the map defined by i7((x i j )) = (xj i)~1; thus

GF=Un(¥q). Let To be the F-stable maximal torus consisting of diagonal

matrices (Γo is anisotropic!) and W = NG(T0)IT0 the Weyl group for To. Then

the Frobenius F acts trivially on W. The set f of GF-conjugacy classes of F-

stable maximal tori corresponds bijectively to the set of conjugacy classes of W,

via

xToχ-i i—> x-^Oc) e NG(T0) mod To.
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Since Wis isomorphic to the symmetric group Sn of degree n and since the set of

conjugacy classes of Sn is parametrized naturally by Λn, the set of all partitions of

n, one has the natural correspondence

Λn Bp i — T(p) e <T (T((l»)) = T o).

Let R$> be the Deligne-Lusztig character for Te F ([3]). An irreducible

character is said to be unipotent if it is a constituent of R^ for some Te&~.

Lusztig-Srinivasan's classification [10] of unipotent characters is as follows. Let

χλ be the irreducible character of Sn corresponding to λ e Λn, and χλ

p the value of

χλ at the class corresponding to p e Λn. (The notation is the classical one, the

same as that in [6; § 2]. Hence, for example, χ ( π ) is the trivial character, χί"-1-1)

is the non-trivial constituent in the permutation representation, and χ (1M) is the

sign representation.) Denote by zp the order of the centralizer of the class in Sn

corresponding to ρeΛn; hence n\jzp is the cardinality of the class of type p.

Define the class function φλ on GF (λ e Λn) by

Then the results of [10] say that {φλ}λeΛn is the set of all unipotent characters of

GF (up to sign). Note that the only non-trivial point is that ψλ is a generalized

character. In our later discussion, we shall naturally give a proof of it in a very

special case which we shall encounter.

We are now coming back to the problem stated in the introduction. Let S

be the hypersurface defined by Σ?=i^? + 1 = 0 in the (n — l)-dimensional projective

space P * " 1 over k, for n> 1. The finite unitary group GF acts on S and hence on

the cohomology group H*(S) = H*(S9 Q,).

THEOREM 1. (i) If n is even, then H f(S) = 0/or odd i, and W(S) is the

trivial GF-module for even i unless i = n — 2. The character of the GF-module

Hn~2(S) equals 1— ψ^n~1'ί\ where ψ n = — \j/(n-Li) fs the (proper irreducible)

unipotent character corresponding to the partition (n — 1, ϊ)eΛn.

(ii) If n is odd, then Hi(S) = 0 for odd iφn-2, and H^S) is the trivial
GF-module for even i. The GF-module Hn~2(S) is irreducible, whose character
is ψn = ψθι-ι,i).

PROOF. Let X be the open complement of 5 in P " " 1 . Then X is an

affine variety; hence by [1] or [2; Arcarta, IV, Th. (6.4)], we have the vanishing:

Thus by the long exact sequence, if ί(P l |- 1)^iϊ ί(5) ( i<n-2). By the Poincare
duality, we also have Hi(Pn~1)2iHi(S) for n - 2 < i < 2 n - 4 . Hence Hi

c(X)=0
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for n — l<i<2n — 2. Thus the non-trivial parts can be read off from the exact

sequences:

(i) for even n,

0

(ii) for odd n,

Hn~2(S) > H*-\X) > 0,

0 • Hn~2{S) 0.

By the homotopy theorem [3; Prop. 6.4], the GF-module action on iί*(P n " 1 )

is trivial. In case (i), Jϊn~2(Pn~1) is the trivial module. Thus, in order to prove

the theorem, it suffices to show that the character of H^~\X) equals ψn=

(-ί)n-ψn-ί,i)9 which is irreducible. For this, since H2

c

n-\X)

is trivial, it suffices to show that the Euler character

gives the character

Our claim is that the affine variety X is nothing but a certain variety con-

sidered by Lusztig [8] in much more general situation. Let M be the F-stable

Levi subgroup of the maximal parabolic subgroup

0
: 0

.0

eG geGLu-1(k)\9

that is, M = GL1(/c)xGLπ_1(fe)c:G (diagonally imbedded). Let

"l . "
01 0

00 l

be the unipotent radical of P; hence

Γ10
*1

*b

...0Ί
0

Ί
G G

Lusztig [8] considers the variety:

Ϋ={xeG\χ-1F(x)eFUP}9

which has the GF x MF-action (GF from the left, MF from the right).

Put 7 = Ϋ/MF. We prove that the map
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YexMF \—>xPeG/P

gives an isomorphism of Y onto the open complement X of the hypersurface S

in P"-1, through G/P^P"" 1. Note that if

?

then

hence Y maps into X.

Injectivity: Let x, yeΫ such that xP=j>P; hence x ' ^ e P . But then

χ-ίy = (χ-1F(x))F(χ-1y)(y-1F(y))eFP by the assumption. Thus x^ye

p π FP=M. In order to showx"1); eMF, it suffices to see F(x~ίy)y~ίx=^ 1. In

fact,

belongs to FUP since Fίx"1)^ e F(7P, x~ιy e M, y"xF(y) e FUP and M normalizes

FUp. Since M Π FUP = {1}, our assertion has been verified.

Surjectiυity: Let (Xi: •••: xB) eX in P11"1. Then we may assume

We have to show that there exists a matrix

that is, tx^xeFUP(
t(xijy^ = (x]i)). By assumption, it is clear that there

exists

~ xi
= I : * \eG

such that

<x<«>x =

10-0 Ί

: 9
L *

, where g e GLn _ i(fc).



260 Ryoshi HOTTA and Kiyoshi MATSUI

By Lang's theorem, there exists zeGLn^x{k) such that fz(q)z = g. Then

Γ 10-0 Ί
0

• z'1

L 0
—

— —

: *
xn

and this belongs to Ϋ.
Thus we have Y^X. Hence it suffices to show that the Euler character

* = Σi(-

gives the character 1 + ̂ (π"1»1). In the notation of [8],

As the characters of MF = Uί(Fq) x C7π_ ^F^), we have the identity

V

([3; Cor. 7.14]). Substituting this into Φ, we have

V

By [8; 5 Cor.], ^ < = p(^f ( 1 ) > < Γ ( p 0 ) M ) = Λ^ 1 )((ρΊ)e/l r t ) . Let v=Indf;_1l be
the character of the permutation representation of Sn (v=l + χ ( π " l f l ) ) Then

* = 1

CΓ(p)

= 1 +

again by [3; Cor. 7.14] (vp is the value of v at the class corresponding to peΛn).
The irreducibility of the character ± ^ ( π " 1 1 ) is an easy consequence of [3;
Th. 6.8].

REMARK. In [12], it was guessed that this Tate-Thompson representation
ψn seems to attain the minimal degree among all irreducible representations with
degrees > 1 if n is even. It is, however, known that there exist ones with degrees
equal to^( l )- l ( [7]) .
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§ 2. The character formula

In this section, we compute the value of the character ιj/n = (—ΐ)n~1\l/^n~1Λ)

at each conjugacy class. The result is very simple and fits the conjecture of

Ennola [4]. By Theorem 1, it suffices to compute the value

*, H*(S)) = Σ i ( - l)fTrfo , H*(S))

for g e GF. By [3; Th. 3.2], if g—su is the Jordan decomposition, then

(2.1) Tr(0*, H*(S)) = Tr(u*, H*(S°)).

From the proof of [3; Prop. 3.3] (cf. (4.1.2) loc.cit.), it follows that

(2.2) Ύv(h*, H*(Z)) = - { Σ « i i I Z"-» I *»},_„,

for any variety Z defined over Fq with an automorphism h of finite order (hF

= Fh). (The right-hand side is the value at ί=oo of the rational function of t

expanded as above.) First we compute | S F 2 r " | for a unipotent ueGF, r > l ,

and secondly reduce the general case to the first one.

We prepare some more notations in order to simplify our descriptions. Let

V be an n-dimensional vector space over k with Fq2-structure. F2 denotes the

Frobenius with respect to this Fβ2-structure. Let

( I ) : Vx V >k

be a non-degenerate sesqui-linear form which gives a unitary metric on Vpl over

F g 2 ;

(λx\y) = λ(x\y), (x\λy) = λ\x\y\ (χ\yy = (F2y\x) (x,yeV,λek).

For some F^-basis, {x\y)= Σ?=i^ί3;? Thus our hypersurface is

S = S(V) = {<x> eV(V)\(x\x) = 0},

where < x > denotes the line generated by x, which is identified with a point in

the projective space P(F); our group is

GF = {geGL(V)\(gx\gy) = (x\y) for all x,yeV}.

Let g eGF and assume that there exists ve Vp2 such that vΦO, (v\v) = 0 and

gυ = v (in fact, the assumption will be seen to be satisfied for g unipotent). We

fix such v and g, once and for all. We make the partition of S so that S = S0MSί

So = {<x>eS\(x\v) = 0}9
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Sx = {<x>eS\(x\Ό)¥>0}.

Note that this partition is stable under the (F2, #)-action. By assumption, if we
put <υ>1 = {xeV\(x\ύ) = 0}9 then <v>1/<v> carries the natural sesqui-linear
form induced by (|) and g acts unitarily on it. Here we have a new hypersurface
S(<v>1/<v>) of the same kind of dimension n —4.

LEMMA 1. For an integer r;> 1, we have

\SE2rg\ = q2r\S(<v>^l<v>)F2re\ + 1.

PROOF. Define the map

φ: So - {<v>}9 <x> I—> <x> mod

which commutes with the (F2, #)-actίon. Then it is easily seen that φ is surjec-
tive onto S(<v>1/<v>) and the fibers are the affine lines. The F2r#-action on
P(F) turns out to be a Frobenius action with respect to some F^r-structure (by
Lang's theorem). Hence \φ~Kz)F2rβ\ = q2r for zeS(<v>Lj<v>)F2re, which
implies the lemma.

For Su letting π: F->F/<ϋ> be the natural projection, we consider the map

\l/:St3<x> I >π(x/(φ))

which is clearly well-defined. Denote by τμtV(μq + μ = 0) the linear transformation
defined by τμtV(x) = x + μ(x\υ)v (xe V). (If τμtVΦl, such a τμtV is said to be a

unitary transvection.) Then τμtV e GF and ψ(<τβtV(x)>) = ψ(<x>). Thus if we
consider the abelian group

then ψ factors through

ψ:SL—>SίITυ—+VI<v>.

LEMMA 2. The map SίITv-+V/<v> is injectiυe and the image is

(For yGV9yeV/<v> is an element represented by y.)

PROOF. We first see that Sί/Tv->VI<v> is injective. Let π(xίl(xί\v))
= π(x2l(x2\v)) for <xΐ>, <x2> e S ^ Then

for some λe k. But then (χί\χi) = 0 and (x2\x2)== 0 imply λq+λ = 0. Thus
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v _ (xi\v) r

* ~ {x\v) Tλ

which implies the injectivity. Secondly, let yeVsuch that (y\υ) = l. Let ξek
be a solution of ξ9+ ξ + (y\y) = O. Put x = y + ξv. Then (χ|t;) = O|ι;) = l, and

(x\x) = (y + £ φ + fr)

= OIJO + ξ(υ\y) + ί (y|»)

= (y\y) + ξ(y\v)q + ξ\y\v)

= o.

Thus < x > e S ! . It is clear that ^f{S^{ys V/<v>\(y\υ) = l}. Hence the
lemma.

LEMMA 3. | ^ (S 1 ) F 2 r * | = q2r(n~2).

PROOF. By Lang's theorem, the F2r#-action on V/<υ> turns out to be a
Frobenius action with respect to some F€2r-structure. That is, choose yeGL(V)
such that g = y~ίF2r(y). Then we have an isomorphism

γ: V/<v> ^+ V/<yυ> ,

where V/<v> is an affine space with F2r#-action and Vj<yυ> with the Frobenius
F2r-action. Here ψ(Sι) is an F2r#-stable affine space of dimension n — 2, by
Lemma 2 hence

LEMMA 4.

— Σ | S r F 2 r ' τ Ή = ^ 2 r | 5 ( < t ; > - L / < ί ; > ) F 2 ^ | + q

2^-2) + ί β

PROOF. In the partition 5 = 50.115!, Tv acts trivially on 5 0 . Thus by
Lemma 1,

|SJ2r"M.*| = \Sξ2r9\ =

In the fibering S1^Sί/Tv^φ(Sί)9

Thus Lemma 3 leads to the lemma.

We are now ready to prove:
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THEOREM 2. Let ueGF be unίpotent. Then

\sF2ru\ = V fΣ

PROOF. According to Lusztig [9], we say a unipotent u e GF to be non-

exceptional if there exists weVF2r such that (u — l)wφθ9 (u — l)2w = 0 and

(w|(w — l)w) = 0; otherwise, exceptional. We divide the proof into each case.

(i) Assume M is exceptional. Then by [9; 25. Prop.], u is either 1 or a trans-

vection τμtV for some v e VF, υ Φ 0, (υ\υ) = 0, μ9 -ĥ u = 0, μ Φ 0. If u = 1, the formula

follows from [9; 30. Prop.]. If u = τμv = τ (μφθ)9 then it follows from Lemma 4

that

= q2r\S(<V>1l<V>)F2r

since τμuV is conjugate to τμ2tV for μ l 9 μ2φ0. The desired formula immediately

follows from that for u — \. (Note that dimKer(τ —l) = n —1.)

(ii) Assume u is non-exceptional. Then by [9; 20. Lem., 22. Lem.], there

exists υeVF2 such that vΦ09 uv = v, (v\v) = 0, dimKer(w — 1 , F) = dimKer(w — 1,

<υ>±l<v>) and that every uτμtv (μq + μ = 0) is conjugate to each other. Thus,

by Lemma 4, we have

'"I = i- Σ | S F 2 r " τ Ή
<7 μq+μ=0

Applying the induction on n = dim V9 we may assume that

ί=o q + I

since dim Ker(w — 1, F) = dim Ker(u — 1, <v>1/<v>). Then the theorem holds.

COROLLARY 1. For α unipotent u e GF,

TrO*, ^ * ( 5 ) ) = n -

PROOF. Immediate from (2.2) and Theorem 2.

We are now going into the character formula for arbitrary g e GF. For an

eigenvalue α e kx of g, let Fαc= Fbe the eigenspace of α, and let
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be the eigenspace decomposition. If g = su is the Jordan decomposition, then the

fixed point subvariety of s in P(F) is

LBMMA 5.

s*= u PTOJL LI S(va).

PROOF. If α 9 + 1 = l, then ( |) defines a non-degenerate sesqui-linear form

on Va, and clearly P(Va) n S = S(Va). If α 9 + 1 ^ l , then Fα is isotropic for ( | ) .

In fact, if xeVa, then (x\x) = (sx\sx) = oιq+1(x\x). But then since α β + 1 # l , (x|x)

=0. Thus P(Fα) cz S for α ς + 1 # 1. Thus the lemma.

Let \l/n = (—l)n~ίψ(n~ί ί) be the irreducible character of the GF-module

Hn~2(S) for n odd, or of the non-trivial piece of Hn~2(S) for n even. Here we

have the character formula for ψn.

THEOREM 3. Let geGF. Then

where the summation runs over the eigenvalues α of g such that α 9 + 1 =

PROOF. Let g = su be the Jordan decomposition. Then by (2.1),

By definition, the left-hand side equals

n - l + (-l)«-W<7).

But then by Lemma 5, the right-hand side equals

Σ dimF β+ Σ (Tr(u*,H*(S(V,)))),
<X9+ΪΦ1 «9 + 1 = l

where ua=u | VΛ. Hence

Σ (

From Corollary 1, it follows that

_ _ 1 _
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= ί (( - ^)dimKcr(ίf-αl) __ J) .

Thus the theorem.

REMARK. The formula fits the conjecture of Ennola [4], which has not yet

been proved in general but for sufficiently large p ([6]).

We now illustrate Ennola's principle by proving the irreducibility of the

Tate-Thompson representation ψn directly from Theorem 3. Note that we have

not used the irreducibility result of § 1 for the proof of Theorem 3.

We are first reminded of the character of GLn(Fq) corresponding to ψn.

Consider the representation of GLn(Έq) given by the action on Pw~1(Fg), the

F^-rational points of the projective space P""1. It is then well-known that this

representation breaks up into two irreducible constituents, one of which is trivial

([5], [11]). Thus if we put

Φn(9) = IP--WI - 1 ( J

then φn is an irreducible character of GLn(Fq). We easily have

(2.3) φn(g) = Σ « F 5 l \ _ q l

We recall the parametrizations of the conjugacy classes of GLn(Fq) and

Un(Fq). Consider the action a\-*at9 (resp. αι-»or*) in k* and let 0° (resp. O1)

be the set of all orbits under this action. For aeθ° or aeO1, put d(a) = \a\.

Set Λ = KJfeoΛi (Λ0 = φ) where A( is the set of partitions of i, and set \λ\ = i if

Let

C°n = {/: 0° —• Λ\Σaeoo\f(a)\d(a) = n},

Cί = {/: Oi — • AI Σaεoi \f(μ) \ d(a) - n}.

Then there is the well-known bijection between C° and the set of the conjugacy

classes of GLn(Fq) (resp. CJ and the set of the ones of Un(βq)).

Consider the set

Then there is the surjection

C<—*Ω Π ( i - 0 , 1 )

such that/eCΐ corresponds to δeΩn by δ(λ) = (d(a))f(a)s=λ. Thus we have the

surjection
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(2.4)

We define the polynomial φf,(i) in ί for 5 e Ωn by

where [A] is the number of the parts of λ e A and δ{X)ί is the number of the parts

1, i.e., δ(λ) = (l*<A>*2*<A>* ). Then by (2.3), we have the formula

(2.5) ΦM) = Φl«9Kq) foeGIΛfy),

where γo(g) e Ωn is as in (2.4). On the other hand, for φn9 by Theorem 3, we also

have

(2.6) <An(0) = ( - l)-

We want to show

<Ψn> Ψn>ϋn= i ^ ( p

or

by (2.6). For this it suffices to show

(2.7) ΣδeΩn\y-Λδ)I ψ j ( - ^ ) 2 = \un(βq)\.

But then since φn is irreducible, we have

(2.8) Σ*aMKS) I Φ^(4)2 = \GLn(¥q)\.

Considering (2.8) as the identity of polynomials in q, we have the identity (2.7)

in changing q to — q thanks to the well-known structure theory of the unitary

groups [4].
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