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Introduction

The purpose of this article is to study the enumeration problem of embeddings

of the lens space Ln(p) mod p (odd prime), the real projective space RPn and the

complex projective space CPn in Euclidean spaces.

Let M be an m-dimensional closed differentiable manifold, and let g: M*

-ΪRP™ (the infinite dimensional real projective space) denote the classifying map

of the double covering

π:M x M - A > M* = (M x M - A)/Z2

over the reduced symmetric product M* of M, where A is the diagonal and Z 2

acts on MxM — A via t(x, y) = (y, x). Also Z 2 acts on the n-dimensional sphere

JSW via the antipodal map and we obtain the fiber bundle

p: (S00 x Sn)jZ2 (~ RP») > RP™

which is homotopically equivalent to the natural inclusion RPnczRPco. Then

the following theorem is due to A. Haefliger [7].

THEOREM. Let 2(n + l)>3(m + l). If there exists an embedding of M in

Rn+1

9 then there exists a bijection between the set [Mc.R w + 1 ] of isotopy classes

of embeddings of M in Rn+1 and the set [M*, RPn'9 g~\ of (vertical) homotopy

classes of liftings of g: M*->RP°° to RPn.

The set [M*, RPn; g~\ has the structure of an abelian group by J. C. Becker

[2]. Thus, the set [McjRn + 1] is an abelian group via the bijection of this

theorem. We study the groups [L n (p)c J R
4 n + 2 - i ] , \RPnaRln-i] and \CPn

4"-*] for i<6 and prove the theorems below.

THEOREM A. The following statements hold for odd prime p:

(1) [L\p) c j ^ + i ] = 0 , n > 2.

(2) [L»G>) cz R*"-\ = Z,, n > 3 .

(3) LL»(p) c: Λ*»-i] = Zp9 n > 4.
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(
Zp + Zp9 p φ 3, n > 5,

Z3 + Z3 + Z9, p = 3,n = 2(3), n > 5,

Z 9, p = 3, n φ 2(3), n > 5.

(5) [L ( p ) c R ^ ] = Zpl n>6.
THEOREM B. The following statements hold for even n:
(1) Letn>.\0. If there is an embedding of RP" in R2n~3 then

ί Z 2 , n # 6 ( 8 ) ,
IRP" <= J?2""3] = I

I Z 2 + Z 2 , n = 6(8).

(2) Let n > 12. If there is an embedding of RP" in R2n~4, then

. 0 , n = 0(4),

lRPn <= Λ2"-4] = lz2, ns 2(8),

I-Z2 + Z2+Z2, MS 6(8).

(3) Let n^ 12. If there is an embedding of RPn in R2n~5, then

IRP" cz Λ2«-s] = Z2, Π Ξ O ( 4 ) ,

ί4, n = 2(8),

e i?2»-5] =
I 8 or 16, « Ξ 6 ( 8 ) ,

where 9S denotes the cardinality of the set S.

THEOREM C. The following statements hold:

(1) Let n>5, nφ2r + 2s (r>s>0).

ίZ, us 0(2),
c Λ 4 w " 3 ] =

[Z + Z2, nsl(2).

(2) Lei n>6. // there is an embedding of CPn in I*4""4, then

[CPn a £ 4"- 4] = 0 , n s 0(2).

(3) Lei n > 7 . // i/iere is an embedding of CPn in R4n~5, then

\CPn cz R*»~s ]=Z + Z9 n s 0(2).

For the assumptions of the existence of an embedding in Theorems B and C,

there are several known results, cf. e.g., [14] and [16]. By this time, D. R.
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Bausum, L. L. Larmore, R. D. Rigdon and the author have studied \_RPn c

JR2"-'] for i<3 and [CP»c«*»-'] for z<3 in [1], [9], [19], [20] and [18].

We devote § 1 to the construction of a finite decreasing filtration of the group

[X, RP"',Π of homotopy classes of liftings of/: X-+RP™ to RPn. Next, we

calculate the cohomology of Ln(p)* in §2 and prove Theorem A in §3. In §4,

we calculate the cohomology of (RPn)* and (CPn)* and in § 5, we prove Theorems

B and C.

§ 1. Enumeration of liftings in the fibration RPn^RPco

D. R. Bausum constructed in [1, §§ 1-3] the fifth stage Postnikov factoriza-

tion of the fibration p: RPn^RPco with fiber Sn and converted it into the

factorization of the fibration (RPn)2->RPn which is the pullback of p by p.

However, we use a somewhat modified factorization given as follows (n>8):

3 C 2 L,χ

ί I
_E!+ E2 -Σ±+ £ x > RP»,

f K(Z, n) x RP», us 1(2),

1 ~tl # (Z f n)x J U *JίP , nsθ(2),

, K(Z2, n + 2) x X(Z2 ) n + 4) x K(Z3, n + 4) x i?P", n = 1(2),

1 X(Z2, n + 2) x K(Z2, n + 4) x Lψ.(Z3, n + 4) x RP-RP",

u s 0(2),

C2 = X(Z2, n + 3) x X(Z2, n + 4) x ΛP»,

C 3 = X(Z2, n + 4) x RP",

and the map # is an (n + 6)-equivalence. Here Lψ(Z, n) x RpooRPn is the pullback

of LΦ(Z, n) = S°°x22K(Z, n)*)^S0 0/Z2 = RP00 by p : .RP^-^ΛP00, where the action

of Z 2 on X(Z, ή) is induced from the non-trivial homomorphism φ: Z2->Aut(Z).

Also Lφ,(Z3, π + 4) x ΛPcojRPn*) is defined in the same way by using the non-trivial

homomorphism φ': Z2-*Aut(Z3).

Let X be a CJF-complex of dimension less than n + 6 and let n>7. If g: X

-*RP°° has a lifting/to RPn

9 then [X, £ P " ; g~}π[X9 (ΛP Λ ) 2 ;/]. By the stand-

ard exact couple argument, we can construct a spectral sequence. In this spectral

*) LΦ(Z, n)=K(Zy n; φ) and Lφ'(Zif n+4) = K(Zi> /i+4; φ') by Bausum's notation.
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sequence, the differentials d1 are given by the following primary operations:

Case I. nsl(2).

Θ': H'-\X; Z)—>Hi+1(X; Z2) x Hi+3(X; Z2) x Hi+3(X; Z3),

Θ^ά) = (Sq2p2a + εxv
2p2a, Sq4p2a + ε2v

4p2a, ^\ρ3ά);

ΓΊ H'(X; Z2) x Hi+2(X; Z2) x Hi+2(X; Z3)

• Hi+2(X; Z2) x Hi+3(X; Z2),

Γι{a, b, c) = (Sq2a + ε^a, Sq^a + Sq1®;

Δ1: Hi+1(X; Z2) x Hι+2(X; Z2) — + W3(X; Z2),

A%a, b) = Sq2a + εtv
2a + Sqιb;

where

f l , u s 1(4), [ 1 , fi s 3, 5(8),
βi = ε2 =

lθ, ns3(4), lθ, B S 1,7(8).

Case II. nsθ(2).

Θ>: Hι-\X; Z) > Hi+\X; Z2) x Hί+3(X; Z2) x H i + 3(Z; Z3),

Θι(a) = (Sq2p2a + ε3v
2ρ2a, SqAp2a + ε4v*p2a, 0>\p3a),

{β>\ is the reduced power operation mod 3 in local coefficients [6]);

Γ': H\X; Z2) x Hi+2(X; Z2) x Hi+2(X; Z3)

> H'+2(X; Z2) x H ί + 3 (Z; Z 2 ),

Γ'(β, i, c) = ((Sg2 + t Sg1 + (1 - ε3)ι;2)α,

(Sq^q1 + v2Sq1 + ε3υ
3)a + (Sq1 + v)b);

A1: Hi+1(X; Z2) x Hi+2(X; Z2) > fli+3(Z; Z 2 ),

Δι(a, b) = Sg2α + (1 - ε3)v2a + Sq^b + vb;

f l , n = 2(4), ( 1 , B s 4, 6(8),

t θ , B S O ( 4 ) , [O, B S 0,2(8).

In Cases I and II, p p is the mod p reduction, v=g*z, where z is the generator of
; Z2)=Z2, and Z and Z 3 are the local systems on X induced by



The Enumeration of Embeddings of Lens Spaces and Projective Spaces 239

) = Z 2 -i-> Aut (Z) and nt(X) - ^ Z 2 -41* Aut (Z3), respectively.

Further, the differentials d2 are given by the secondary operations

Φ f : Ker<9f —

Ψ1: KerF'/ImΘ'-1 > Coker J/,

defined by Γi+1θi = 0 and Ai+1Γi=0. Also, the differential d3 is a tertiary

operation

χ' .KerΦ*—> Coker ΨK

Then the theorem of J. C. McClendon [12, Theorem 5.1] is stated as follows:

PROPOSITION 1.1. Let X be a CW-complex of dimension less than n + 6

and let n>7. Ifg: X^RP™ has a lifting to RPn

9 then

(1) [X9 RPn; g~\ has a natural abelian group structure and

(2) there exists a decreasing filtration of[_X9 RP 0 0 ; g"]:

such that

F0/Fί = Kerχ π + 1 , FJF2 = KerΨ π + 1 ,

F 2 / F 3 = Coker Φn

9 F 3 = Coker χn.

§ 2. The cohomology of Ln (p) *

The purpose of this section is to study the cohomology groups H^L^p)*

G) of the reduced symmetric product Ln(p)* of the lens space Ln(p) mod p9 where

p is an odd prime. Here the coefficient G is either Z, Z 2, Z 3 or the local systems

Z9Z3 induced from the double covering π: Ln(p)xLn(p)-A^>Ln(p)*. We

always use the Bockstein exact sequences

q Z)-J±+H'( Zq)

(2.1)
1

associated with 0-+Z ~m* Z - ^ Zq-+0.

Let x and y be the generators of H2(Ln(p); Z) = Zp and H^L^p); Zp) = Zp,

respectively, such that δpy = x. Denote ppx by the same symbol x. Then the

mod p cohomology ring of Ln{p) is given by

(2.2) p p

where Λ(y) denotes the exterior algebra on y; and the integral cohomology is
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given by

(2.3) W(L"(p);Z) =

(Z, i = 0, In + 1,

Zp generated by x1'2, i = 0(2), 0 < i < 2n,

^ 0, otherwise,

where H2n+1(Ln(p); Z) is generated by the cohomology fundamental class

[L"(p)], and the relation ρp[Ln(pJ] = yxn holds.

The next lemma is an immediate result of [16, Proposition 2.9] and (2.2-3).

LEMMA 2.4. The mod 2 cohomology groups of Ln(p)* are given by

f Z2 for 0 < Ϊ < In + 1,
tf'(L»(j>)*;Z2) =

10 otherwise.

COROLLARY 2.5. TTze cohomology groups W{Ln{pY\Z) and H^ip)*;

Z) are finite and have no 2-torsions for i>2n + l.

For an automorphism σ of the group G, Gσ denotes the subgroup of the

invariant elements with respect to σ. By using this corollary, the applications of

the Serre spectral sequence of the fibration Ln(p)xLn(p) — A —*-+Ln(jj)*^>RP°°

and its twisted version (see [12, § 1]) show the following

LEMMA 2.6. Both homomorphisms

π*: HXL»(p)*; Z (or Z3)) > fl'(L»(p) x L»(p) - J ; Z (or Z 3 ) r

/or i > In + 1,

π*: H'(L»(p) ; Z (or Z3)) > iff(Lw(p) x L»(p) - A; Z (or Z3))-'

/or i > 2n + 1,

are isomorphisms, where t is the involution transposing the factors.

Hereafter we identify W(Ln(p)*\ Z) and W(Ln(pY\ Z) with Hl(Ln(p)

xLn(p)-A;Zγ* and H^L^xL^-A; Z)"" for i>2n + l, respectively.

Consider the Thorn isomorphism

φ: fl'(L»(p); Z) -=->H2»+1+ί(L»(p) x Lw(p), Lw(p) x L\p) -A Z),

φ(x*) = l / U ( l x χJ)9 if 2/ = i, 0 <j < n,

where the Thorn class U e H2n+1(Ln(p) x Ln(p), Ln(p) x Ln(p) -A;Z)=Z is

the generator. The Thorn isomorphism and the cohomology exact sequence of

the pair (Ln(p) x Ln(p), Ln(p) x Ln(p)-A) lead to the following
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LEMMA 2.7. The homomorphism

i*: H2k(L»(p) x L»(p); Z) — H2k{L\p) x L»(p) - Δ; Z),

4n + 2 > 2k > In + 1,

is an isomorphism and the sequence

H2k+1(Ln(p) x Ln(p) -A Z) >0, 2fc + 1 > 2n + 1,

is exact, where i and j are the natural inclusions.

Moreover, the action of ί* on H*(Ln(p)xLn(p), Ln(p)xLn(p)-A; Z) is

well-known [15, p. 305], and is given by

(2.8) ί*a = - a for a e H*(Ln{p) x Ln(p\ Ln(p) x Ln(p) -A Z).

LEMMA 2.9. For i<2n + l,

,ZjJ for 1 = 4],

H4n+2-i(Ln(p ) χ L « ( p ) ; Z)/Ker Z* = | Z^+1 for I = 4/ + 1, 4/ + 2,

^ Z2 j '+ 2 /or i = 4/ + 3,

(Gfc denotes the direct sum of k-copies of G), generated by the set Λ\J B given as
follows:

X χ»+l-V+* + χn+ί-2j+k χ χπ-Λ I 0 < fc < j - 1} , ί = 4/,

x xw-2^'+ f c + χn~2J'+k x χ»- fe, χ»-> x χ»-J | 0 < fe < j - 1 } ,

i = 4/ + 2,

X"-fc X j,χ»-2J-l+* - ^χ»-2i-l+* χ j;x«-*)|0 < fc < j} ,

i = 4j + 1,

{δp(yxn~k x j ; χ w - 2 ^ 2 + f c - yχ»-2y-2+* x ^χ«-fc)|0 < k < j } ,

X Xn+ί 2

x xn~2J+i

n~k x yx

"-* x yx

j+k _ χn+1-2j+k

n-2j-2+k + y χ . -

X ^X J 1

2j-2+k χyχ*-k)f

j - i } ,

1},

i

I

i

i

= 4/,
= 4/

= 4j

= 4/

+ 2,

+ 1,

+ 3.
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If we notice that

in/2l

j * U = ± ( 1 x [ L » ( p ) ] - [ L » G > ) ] x l + Σ

j * 1 " 1 x jx"-

(the term in the bracket { } is present only when n is odd), then the proof of this
lemma is a simple calculation.

By identifying H4n+2^(Ln(p) x L"(p); Z)/Ker i* with fl*»+2-*(L"(p) x L»(p)-
A; Z) by i* for i<2n + l, the integral cohomology group and the cohomology
group with coefficients in Z of Ln(p)* are determined by Lemmas 2.6-9.

PROPOSITION 2.10. Leti<2n + 1. Then

(Zi for i = 4/,
H*»+>-%L»(p)*;Z) =

[ ZJ

p

+1 for i = 4/ + 1, 4/ + 2, 4/ + 3,

generated by A, and

(Zi for i = 4j,4j + l,4j + 29

H*»+2-%L»(p)*;Z)=\
[ZJ

p

+i for i = 4j + 39

generated by B.

As for the cohomology groups H\Ln(p)*\ Z 3) and Hi(Ln(p)* Z 3 ), it
follows that

LEMMA 2.11. The following relations hold.
(1)

Jϊf(L»(p) ; Z3) = 0, H\LXp)*\ Z3) = 0 /or ί > 2n + 1.

(2) //p=3, ί/ien

jff4»+1(LB(3)*; Z3) = Z3 generated by yxn x xn + xn x yxn

9

H4n(Ln(3)*; Z3) = Z3 + Z3 generated by {yxn x yx"'1 - yx"'1 x yxn

9

xn x xn},

3)*; Z 3 ) = 0, H4"(L»(3)*; Z 3 ) = 0,

3)*. 2 3 ) = Z3 generated by xn x yx"*1 - yx""1 x xn

= yxn x x""1 — xn~x x yxn.
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§3. Proof of Theorem A

It is known that Ln(p) is embedded in Rm for m>3(2n + l)/2, (cf. e.g., [13,
Theorem 1.1]). We prove (4) and (5) for p = 3 only. The others are obtained
easily by the same way.

PROOF OF (4) FOR p=3. The group [Ln(3)cJR
4M-2] = [Lw(3)*, RP4n~3; g]

in the introduction is clearly isomorphic to [Lw(3)*5 ( i^P 4 π " 3 ) 2 ;/], where / :
Ln(3)*->RP4w-3 is a fixed lifting of g: LW(3)*-*JRP00. Therefore

[L»(3)cK*»-2]«[L»(3) , E 4 ; / ]

by the dimensional reason. By Lemma 2.4, the homotopy exact sequence of
fibrations pt (i = 2, 3, 4) in § 1 induces isomorphisms

[L»(3) , E 4; /] - ^ [L»(3)*, E3 /] •*£> [L«(3)*, E2 / ]

and an exact sequence

H4«-4(L"(3)*; Z) -^^i> H4»(L»(3)*; Z3) - X [L»(3) , E2;f]

-***> H4«-3(L»(3)*; Z) -Θlr^ H4 w + 1(Ln(3)*;Z3).

Here ^ ^ ^ ^ 3 for i = 4n-2, 4n-3 by Proposition 1.1.
To determine Θ1, consider the commutative diagram

; Z) ^ ^ • iί i + 4(L«(3)*; Z 3 )

» π* « π*

Hι(Ln(3) x L"(3) - A; Zf ^ P 3 > Hi+4(L"(3) x Ln(3) - J ; Z3)
r*

(H'(L"(3) x Lw(3);Z)/Ker i )' ^ P 3 > (Hi+4(L"(3) x L"(3); Z3)/Ker i*)ίΦ.

In this diagram, π*'s are isomorphisms by Lemma 2.6 and i* in the left hand side
is an isomorphism by Lemma 2.7 and (2.8). By the use of this diagram, Propo-
sition 2.10 and Lemma 2.11, a simple calculation yields that

Z 3 + Z 3 generated by {δ3(yxn x yxn~3 — yxn~3 x yxn),

δ3(yxn-1 x yxn~2 - yxn~2 x yx""1)}, n = 2(3),
Ker <94 w~2 = \

Z 3 generated by δ3(yxn x yxn~3 — yxn~3 x yxn) +

δ^iyx11'1 x ^Λ;11-2 - yxn"2 x yx"""1), n # 2(3);
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• Z3 -f Z3 generated by {yxn x yxn~ι — yxn~ί x yxn,

χn x xn}, n = 2(3),
Coker 6)4 w"3 = I

Z3 generated by yxn x yxn"x — yxn~ι x yxn,

n # 2 ( 3 ) .

This result and the above exact sequence give rise to the exact sequences

0 — > Z3 + Z3 - !U [L«(3)*, £ 2 ; / ] ^ i> Z3 + Z3 — . 0, n » 2(3),

0 — + Z3 -ίi* [L (3) , £ 2 / ] - ^ Z3 —-> 0, n # 2(3).

To consider the group extensions of these exact sequences, let

Φ(3, 1): Ker Θ^'1 > Coker Θ4""3

be the homomorphism defined by

Φ(3, l)(α) = fe, U{b) = 3p£(a).

LEMMA 3.1. Φ(3, 1)

PROOF. Let p'2: E'2-*K(Z9 4n —3) be the principal fibration with classifying
map ^3P 3 : K(Z, 4n —3)->X(Z3, 4n + l) and consider the commutative diagram
of fibrations in the category &Rp4n-3 (see [11, 1]).

jRP4»-3 x χ ( Z 3 j 4 n ) c ^p4n-3 x j ^ ^ 4 n - 2) x K(Z2, 4n) x K(Z3, An)

1 i

2, 4n - 1) x K(Z2, 4n + 1)
xX(Z 3 ,4n-hl).

Since #f(Lw(3)*; Z2) = 0 for i>2n + l by Lemma 2.4, the homotopy exact

sequences and the five lemma yield a commutative diagram of exact sequences
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H*"-\Ln(3)*;Z)

i
Jί«-(L-(3) ; Z3)

[L»(3)*, EQ « [L»(3)*, ΛP4«-3 x EJ;/] « [L-(3) ; E 2 ; / ]

H4»-3(L»(3)*;Z)

i
Considering the left exact sequence, we can easily verify that Φ(3, 1) coincides

with Φ(3, 1) in [10,1]. By [10, Corollary 3.7. Case II], we have Φ(3, 1) =

This lemma shows the relations

Φ(3, Ϊ)(δ3(yxn x yxn~3 — yxn~3 x yxn))

= (n — 3)(yxn x yx11"1 — yxn~ι x yx"),

Φ(3, lX^^yx"-1 x yxn~2 - yx""2 x yx"'1))

= (n — 2)(yxπ~1 x yx" — yxn x yx"" 1 ).

These relations imply that

:3 + Z3 + Z9 for n = 2(3),

Z 9 for n # 2 ( 3 ) .

PROOF OF (5) FOR p=3. By the same way as in the proof of (4) for p = 3,

there are an isomorphism

and an exact sequence

Since iί 4 w- 4(Lw(3)*; Z) = Z 3 and H4 w(Lw(3)*; Z 3 ) = 0 by Proposition 2.10

and Lemma 2.11, it is sufficient to show that Θ 4 n ~ 4 = ^ p 3 is an epimorphism.

Consider the diagram
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H4n~5(Ln(3)*; Z) ^ > H4»-1(Ln(3)*; ZJ

H*»s(Ln(3) x Lκ(3) - J ; Z)-<* ^ 3 p 3 > H^'^L^S) x LM(3) - Λ; Z 3 )" '*

(H4»-5(LW(3) x L"(3); Z)/Ker <•)-'• ί i ί i ( H 4 " - 1 ^ " ^ ) x L"(3); Z3)/Ker i*)"'*.

Here π*'s are isomorphisms by Lemma 2.6 and i* in the left hand side is an

isomorphism by Lemma 2.7, and the last two ^£'s are the ordinary reduced power

operations mod 3 and the first &\ is the twisted one (see Proposition 1.1). By

using Proposition 2.10, there are relations

= (2n - 5)(xn x yx"'1 - yxn~ι x xw),

δ3(yxn~2 x yxn~2)) = (2 - n)(xw x yx11"1 — yx""1 x x n ) .

If n - 2 = 0 ( 3 ) , then 2 n - 5 # 0 ( 3 ) . Hence Θ*n~A is an epimorphism by Lemma

2.11.

§4. The cohomology of (RPn)* and (CPn)*

This section is devoted to determine some cohomology groups of (RPn)*

and (CP")*.

Let F denote the real field R or the complex field C and let d be 1 or 2 accord-

ing as F=R or C, and let Gn+ίt2(F) denote the Grassmann manifold of 2-planes

in Fn+ί. The cohomology ring of Gn+ίt2(F) is well-known and is given as fol-

lows:

# * ( G n + 1 , 2 ( F ) ; G) =
(4.1)

(G = Z2 if F = £ , = Z if F = C),

w/zere degx = rf, degj; = 2d and a r = Σ ( r ~ Z ) : x : r ~ 2 i 3 ; i (^ = w, n + 1). Moreover,

there are relations

X2iyn-ι-i = o i/ i / 2f - 1 /or some t, (cf. [5, Corollary 4.1])

X 2 ' + J -i = 0, x2r+i~V ^ 0 /or n = 2' + s (0 < s < 2 0 .

77ιe mod 2 cohomology ring of Gn+ί2(C) is given by
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where x, y and ar (r = n, n + 1) are the mod 2 reduction of the same symbols in
the integral cohomology. Further, there is a relation

Sqdx = xy.

The last relation for F = R and the induction lead to the following lemma.
Details will be omitted.

LEMMA 4.2. There are the following relations in H*(Gn+12(R); Z2).

(1)

(2) Sqty'^ayciy',

/ / N (0(2) for ί #3(4),

(3) S« V = ( 2 )

f 0(2) for i s 1(8), 0 < / < 3 ,

& = Σ *< =
0 < i < ί I 1(2) / o r ί = 1(8), 4 < / < 7 .

Case I.
The mod 2 cohomology ring of (RPn)* is investigated by S. Feder [4], [5]

and D. Handel [8] and is given as follows:

(4.3) (RPn)* has the homotopy type of a (2n—ϊ)-dimensional closed manifold
and H*((RPn)*;Z2) has {1, υ} as a basis of an H*(Gn+U2(R); Z2)-module,
where v is the first Stiefel-Whitney class of the double covering RPnxRPn — A
->(RPn)* and the ring structure is given by the relation

The group structure of H*((RPn)* Z2) and its basis for 2 n - 4 < f < 2 n - l
are determined by the Poincare duality and are given in [19, (6.3)] and [19,
(8.3)]. By the same way, we have

(4.4) Let n = 2r+s92<s<2r. Then the mod 2 cohomology groups
Z2)for 2n — 8<t<2n — 5 are given in the table below.

t

2n-5

2n-6

2n-Ί

2/1-8

IP((RP*)*;Z2)

Z\

zi

basis

χ2r + i-5+2iys-i(j = O j 1 ) 5 0*2-1-6+21^.-1(0 < / < 2)

JC2-+i-6+2y-i(0 < i < 2), υx2r+1'7+2y"i(0 < i < 2)

JC2-^-7+2y-ί(o < / < 2), i;jt2r+1-8+2y-*(0 < / < 3)

JC2- + t-8+2y-I(0 < / < 3)s ^2-1-9+21^-1(0 < / < 3 )
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Now, H*((RP")*; Z) and H*((RP")*; Z3) are the cohomology with coef-
ficients in the local system on (RP-)* determined by v e H^RP")* Z2).

(4.5) ([9, p. 481]) The groups H'((RP")* Z) and H'((RP-)*; Z) are 2-
primary groups for n<t<2n — 1.

Consider the Bockstein exact sequences (2.1) for q=2 and for (RPn)*. Then
there are relations

(4.6) p2δ2 = Sq1, p2l2 = Sq1 + v.

By (4.4-6), we can easily verify the following results.

LEMMA 4.7. Let n=0(2), n=2"+s (3 ̂  s < 2"). Then we have

H2»-5((RP")*; Z) = Z§ generated by {δ2(vx2r+ί~ V 1 ) ,

H*»-%{RP»)*; Z) = Z\ generated by {δ
2
(vx

2r
+

ι
-

8
y

s
), δ

2
(x

2r
*

ι
-

η
y*),

δ
2
(vx

2r+ί
-*y*-

2
), δ

2
(x

2
'+

ι
-

3
y°-

2
)},

p
2
H
2
»-

η
((RP

n
)*; Z) = Z\ generated by {wc

2
"

+1
-

ί
y~

1
, x

2r
^-

s
y-K

vx
2
-*

1
-

2
^-

3
};

H
2
»-*((RPψ; Z) = Z\ generated by {^(x

2
'

4 1
"

5
^),

H
2
"-

5
((ΛP")*; Z ) = Z\ generated by {5

2
(x

2
'

+l
-<y)>

Uχ2r*ι-Ay-ι\Uχίr*ι-2y-2)),

H2»-\(RP")*; Z) = Z\ generated by {S2(x2r+1-7j/»),

^(x2-1-^-!),^2'*1^^-2)},

H2»-\(RP»)*; Z) = Z\ generated by {S2(x2r+ι-*y*), S^x2'*1-^'-1),

^ 2 r + ι - v - 2 ) , s2(χ2r*'-2r-3)}

H2»-i((RP»)* Z3) = Z3, H^-^RPψ Z3) = 0.

Case II. (CP«)*.
The integral and the mod 2 cohomology of (CP)n* are investigated by S.

Feder [5] and the author [18], and are given as follows:
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(4.8) (CPn)* has the homotopy type of an unorίentable (4n —2)-dimensional

closed manifold and H*((CPn)*; Z2) has {1, υ, v2} as basis of an H*(Gn+U2(C);

Z2)-module and H*((CPn)*; Z) has {1, u} as generators of an #*(GΠ + 1 '2(C);

Z)-module, where v is the first Stiefel-Whitney class of the double covering

CPnxCPn — A-+(CPn)* and u = δ2v. The ring structures are given by the

relations

v3 = vx, u2 = ux.

Then the integral and the mod 2 cohomology groups of (CPn)* are given by

the following.

(4.9) Let n = 2 r + s (0 < s < 2r). Then we have

t

4n-2

4n-3

4n-4

4n-5

4n-6

4«-7

H'((CP«)*;Z2)

z2

z2
Z2+ Z2

z2
Z2+Z2 + Z2

Z2+ Z2

basis

v2x2r+1-2y°

vx2r+1-2y>>

X2r+ι-2y*, v2x2r*ι-3y*

vx2r+1~3y°

X2r+1-V, υ2x2r+ί-γ, vtxV^-iy'-i

vx2r+i-*y\ υx2'*'-^*-1

H4»-6((CP")*; Z) = generated by {x 2 r + 1 " 3 j ; s ,

*; Z) = 0 for odd i.

Using the Poincare duality H4»-2-'((CP")* Z)=Hj((CP")*; Z) and the
Bockstein exact sequence (2.1), we can show the following:

(4.10) Let n=2r+s (0<s<2' ) .

#4"-4((CP")*; Z) = Z generated by a with

p2(a) = v*xv+ι-3y + xv*ι-*y,

H*»-\(CP»)*; Z) = Z2 generated by pϊKvx2"*'-^*),

if4»-6((CP")*; Z) = Z + Z generated by {b, b'} with

p2(b) = v 2 x 2 r + 1 " V + x 2 " + 1 - 3 y s ,

p2(b') = v*χ»"-2y-ιt
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H*»-->((CP»)*; Z) = Z2 + Z2 generated by {pl1(wc2r+1~"V),

§ 5. Proofs of Theorems B and C

PROOF OF THEOREM B. We prove (1) only. The others are similar and will

be omitted. By applying Proposition 1.1 for (RPπ)* and In-A in place of X

and n, respectively, there follows a decreasing filtration

IRP" c R2»-3] = F o => F! => F2 z> F3 ID 0

such that

Fo/Fi = Kerχ2"-3, Fi/F 2 = Ker Ψ2"~3,

F2/F3 = CokerΦ2""4, F3 = Cokerχ2""4,

where Φ1, Ψi and χι are the secondary and the tertiary operations defined by the

homomorphisms

; Z)—*

")*; Z2) x Jϊί+3((i?P")*; Z2) x Hι+3((RP")*; Z3),

f (βq2p2a, Sq*p2a + v*p2a, 0>\p3ά), n = 0(4),
Θι(a) =

{(Sq2p2a,Sq*p2a,&>3p3a), n

*; Z2) x Hi+2((RP»)* Z2) x Hi+2((RP«)*; Z3) >

H i+2((i?P»)*; Z2) x Ht+3((RP«)*; Z2),

Γι(a, b, c) = ((Sq2 + υSq1 + υ2)a, (Sq^q1 + υ2Sqι)a + (Sqι + v)b);

A1: Hi+1((RPn)*; Z2) x Hi+2((RP >)* Z2) > Hi+3((RP»)* Z2),

Δ\a, b) = Sq2a + υ2a + Sq^b + υb.

Using the results of § 4, we can easily verify that

fZ 2 , n Ξ 0 ( 4 ) ,
Ker<92»-3 =

U n = 2(4),
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ImΓ 2 Λ " 3 = Ker A2*'2, ImΓ 2 "" 4 = Ker J2 r t~3,

KerΓ2""3 = Z 2 + Z 2 + Z2,

Coker J 2 " " 3 = 0, \Z2 + Z2 + Z2, n==0(4),

Im <92""4 =\Z2 + Z2ί n = 2(8),

Coker A2n~4 = 0, [ Z2, n = 6(8),

Hence it follows that

KerΦ2 n~3 = Ker6>2fI~3, Kerχ2"""3 = KerΦ2π~3,

ίO, n = 0(4),

K e r ψm-3 = KerΓ2 Λ-3/Im6>2 w-4 = | Z2, n = 2(8),
\Z2 + Z2, n = 6(8),

Coker Φ 2 "" 4

This implies that

= 0,

IRP"

Coker χ 2 " " 4

c i?2»-3] =

[z2

= 0.

+ z2,

n

n

Φ6(8),

6(8).

REMARK OF THEOREM B. In (3) for n=2(4), the secondary and the tertiary

operations cannot be calculated. Therefore [ΛPπczR2 / l"5] for w = 2(4) is not

determined and so is lRPn<^R2n~i2 (i = 3, 4, 5) for n = l(2) by the same reason.

PROOF OF THEOREM C. We can prove (1) only. (2) and (3) are obtained

by the same way. By Proposition 1.1, there is a decreasing filtration

[CPn c Λ4""3] = F O D F 1 D F 2 D F 3 D 0

such that

Fo/Fi = Ker χ 4"" 3. F1jF2 = Ker IF4""3,

F2/F3 = Coker Φ4"-4 F3 = Coker χ 4 n~ 4,

where Φι, Ψ* and χ* are the secondary and the tertiary operations defined by the

homomorphisms

*; Z2) x Hi+X(CP»)*; Z2) x if ί + 3((CP")*; Z 3 ) ,

(Sq2p2a, Sq*p2a + ι;4p2α, 0>\p3a\ n = 0(2),

" " ' , n = l(2);
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*; Z2) x Hι+2((CP»)* Z2) x Hί+2((CP»)*; Z3) —»

H'+2((CP»)*; Zj) x H'+3((CP") ; Z 2),

Γ'(a, b, c) = ((Sήf2 + vSq1 + v2)a, (Sq^q1 + v^q^a + (Sq1 + v)b);

A': H'+1((CP")*; Z2) x H ί+2((CP")* Z2) • H i+3((CP»)*; Z2),

A'(a, b) = Sq2a + v2a + Sq^b + vb.

By (4.1) and (4.8-10), there are the relations.

fO, n = 0(2),
Ker 6>4""3 = Z, Ker Θ 4"" 4 = \

[Z2, n = l(2),

[ Z2, n = 0(2),
Im <94--4 = I Ker Γ4""3 = Z2,

I 0, n = 1(2),

I m j Γ 4»-3 = Ker J 4 "" 2 = 0, ImΓ4""3 = Ker/d4""3,

Coker J 4 "- 4 = 0, Coker J 4 "" 4 = 0.

Hence it follows that

Ker Φ4""3 = Ker Θ4""3 = Z, Ker χ 4 "" 3 = Ker Φ4»~3 = Z,

fO, n = 0(2),
Ker Ψ4"-3 = Ker Γ4"-3/Ira Θ4""4 =

[Z2, n • 1(2),

CokerΦ4""3 = 0, Coker χ 4 "" 4 = 0.

Therefore, if n=0(2), then [CP" <= R*«~32=F0=Z, and if n=1(2), then 0-»Z2 ->F0

^Z-»0 is a short exact sequence. This completes the proof.

REMARK OF THEOREM C. AS for [CP"cJR4»- i] ( i=4, 5) for ns l (2) , the

following are verified.

( 2 or 4, i» a 1(4),
(2)' #lCPn <= Λ4""4] = I

I 4 or 8, n = 3(4);

(3)' [CP" c Λ4"-5] = Z + Z + G,

ί l o r 2 , n = l(4),

# G = I
I 2 or 4, n = 3(4).
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