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1. Introduction

In the n-dimensional Euclidean space R”, we are concerned with the
differentiability properties of Riesz potential U% of order o, 0<a<n, of a non-
negative measure u. The potential U4 may fail to be differentiable at any point
of R", since U% may take the value co on a countable dense subset of R*. We
are therefore motivated to relax the requirement in the definition of differen-
tiability; in fact, if we restrict the set of approach to x°, then we may be able to
conclude

lim  JUA) = USx®) = Lx=x%)| _

x+x% x¢E | x—x9]|

0,

where L=L,, is a linear function. The following problems are proposed here:

(i) Characterize the excluded set E in an appropriate manner.

(ii) Evaluate the size of the set of all x° at which U¥ is not differentiable
in such a sense.

Before finding answers to these problems, we fix some notation which will
be used in this note. For a point x=(x,,..., x,) € R* and a multi-index y=(y,,...,
Ya), We define

X7 = Xl (8J0x)7 = (@)0x)7se+(@/0x,),

Y=l Wl=y04 e+
We denote by R, the Riesz kernel of order a. Fix a point x° e R" and set

_ —7) — _1_ — x0 6"'R¢ 0__
Kn(x, y)=Ry(x—y) m?g”! (x—x%)? =5 (x°~y)

for a positive integer m.
A set E is said to be a-thin at x© either if x°¢ E\{x°} (the closure of E\{x°})
or if x° € E\{x%} and there is a non-negative measure u satisfying

liminf UX(x) > UX(x9).

x-x% xeE\{x°}

Our first aim is to prove the following theorem.
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THEOREM 1. Let u be a non-negative measure such that

() fixe = yle=mrduey) < o.
Then there exists a Borel set EcR" which is a-thin at x° and satisfies

lim  |x — xol‘mSK,,.(x, y)du(y) = 0.

x=x0,x¢E

Next we consider the case when p has a density in LP(R"), l<p<oo. Let-
ting G be an open set in R", we define the capacity

Cop(E; G) = infllg|5,  E = R",

where the infimum is taken over all non-negative measurable functions g such
that g vanishes outside G and UY(x)=1 for all xe E. A set EcR" is said to be
(a, p)-thin at x© if

Ms

[24=en)C, (B3 B(x% 2)]H@™D < 0, incase ap <,
k

1
x0¢ E\{x°}, in case oap > n,

where E,=E n B(x°, 27¥*1)\ B(x°, 2~*%), B(x°, r) being the open ball with center
at x° and radius r.

REMARK. In case ap<n, E is («, p)-thin at x° if and only if
1
[ [rerrca(E 0 B, 13 B, 2] & < oo,
0

Thus our thinness in this case coincides with the thinness defined by Meyers [4].
For a proof, see the Appendix. We also refer to Adams and Meyers [1].

THEOREM 2. Let f be a non-negative function in LP(R") such that glx"—
yle=m=r f(y)dy < oo and '

B 70

Then there exists a set Ec R" which is (a, p)-thin at x° and satisfies

1/(-1) gy
£ < .
-

lim |x — x°|-"'§1<,,,(x, NIy = 0.

x—=x0 x¢E

Our theorem corresponding to the case m=0 has been proved by Meyers
[4; Theorem 3.1].
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2. Proof of Theorem 1

To prove Theorem 1, we use the following elementary lemmas.

LemMA 1 ([2; Theorem 5.2]). A set EcR" is a-thin at x° if and only if
3 2= C(Ey) < oo,
k=1

where E,=E n B(x° 2 **1)\B(x° 27%) and C, denotes the Riesz capacity of
order o. This is equivalent to

\;ra-nc,(E n B2, M) - < oo,
LEMMA 2. Let A be a non-negative measure and set A={xe R"; UAx)=1}.
Then C,(4)<2"*A(R").
Lemma 2 follows readily from a maximum principle (cf. [2; Theorem 1.10]).
LEMMA 3. There exists a constant C>0 such that
IKn(x, )| £ Clx — x°|"|y — x0]*~m="
whenever |x— y| = |x—x°|/2.

Proor. In the case where |x—y|=|x—x°|/2 and [x°—y|Z2|x—xO, it
suffices to evaluate each term of K,, separately. In the case where |x°— y|>2|x—
x%|, we apply the mean value theorem for the function

f@=Ix°—y+tx—-x%], >0,
and obtain the desired result.

Proor or THEOREM 1. By Lemma 3, we can apply Lebesgue’s dominated
convergence theorem to obtain

Jim |x — x0|—mg
x-x0 |x=y|Z|x-x°|/2

Kou(x, y)du(y) = 0.

For each integer k, we set

a, = —_ Oa—m—nd .
= oy epoeal TR

Then Y2, a,<co by our assumption, and hence we can find a sequence {b,} of
positive numbers such that lim,_,,, by=00 and Y} =, a.b, <. Consider the set
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E® = {xeRn; 27k < |x — xO < 27k+1)
b = ylErdu(y) 2 27mbg

Slx-yl<lx—x°ll2

Then from Lemma 2 it follows that

CE®) < 2<24mb, du(y)

2-k-1g|y-x0|<2-k+2

< 22m+3(n—u)2—k(n-¢)akbk’

so that X2, 2k=-a)C(E®)<oo. If we set E=\UZ; E®, then we see from
Lemma 1 that E is a-thin at x°. Moreover,

lim |x - x?( Ix = yldu(y) = 0,
x—=x0x¢E |x=y|<|x—x9|/2
which yields
lim |x — x°|-m§ K(x, Y)du(y) = 0.
x=x%x¢E |x=y|<|x—x0|/2

Thus we obtain lim, ..o,z lx—xol“"'SKm(x, Y)du(y)=0.

COROLLARY. Let 1<a<n and let u be a non-negative measure such that
Ui(x% < oo and Ut_(x°)<oo. Then there is a Borel set Ec0B(O, 1) such that
C(E)=0 and

lim Ve 4r) — Ue) (n—cx)g(y—x", &)1y —x°| = 2-"dp(y)

for every & e 0B(O, 1)\E, where (-, -) denotes the usual inner product in R".

For this, we have only to note the following lemma which can be proved by
Lemma 1.

LeMMA 4. For a set AcR", denote by A~ the set of all points z € 0B(x°, 1)
such that x°+r(z—x°) € E for some r>0. If E is a-thin at x°, then C(N\(E N
B(x°, k1)) =0.

REMARK 1. We say that U% is a-finely m times differentiable at x° if the
conclusion of Theorem 1 holds. If O<m<a and U%4# oo, then U% is a-finely
m times differentiable on R" except possibly for a set A with C,_,,(4)=0; in fact,
A={xeR"; Ut_, (x)=00}.

ReMARK 2. In Theorem 1, Condition (1) is needed. For example, we can
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find a non-negative measure p such that U4(0)<co and lim,_,¢ ;g |x|"[U%(x)—
U%0)]= — oo for some E which is not a-thin at 0. It is easy to see that this U%
is not a-finely differentiable at O.

To construct such p, let
A={y=(0" y)€R" x R |y'| < y,/2, ly| < 1},
B={y=(y)eR" x R, (¥, — y,)€A},

and consider the potential

u() = | Jx = yleriyeridy.

Then u(x)<co for all xe R*. We shall prove lim,_,¢ .., |x|7*[u(0)—u(x)]=co.
There is a constant C>0 such that

Iyl = |x — y|*=" 2 Clx|-[y[*=t"

whenever x€ 4, ye B and |y|>2|x|. Noting that |x—y|>|y| whenever xe 4
and y € B, we obtain

[x|~1[u(0) — u(x)] 2 CS |y|e=1-n|y|-=+1/2dy.

{veB;|y|>2|x]}

— o0 as x— 0, xe A.

With the aid of Lemma 1, one sees easily that A4 is not a-thin at O.

REMARK 3. Let E be a set which is a-thin at x°. Then there exists a
non-negative measure u such that Slxo— yle ™ rdu(y)<oco and lim, 0 4ep [X—

x| K, 9)du(y)= 0.

To prove this fact, take sequences {a,}, {b;} of positive numbers such that
lim,_, , a,=o0c0 and

k§12k(n—a)ak[C¢(Ek) + bJ] < 0, E,=E n B(x° 2-k+1)\B(x°, 27%).

For each k we can find a non-negative measure y, with support in B(x?, 27%+2)\
B(x®, 27%-1) such that p(R"=<CLE,)+b, and Uk«(x)=1 for all xeE,. Set
n=>2 2 *mq.u. Then glx"—ylﬂ""""du(y)< co. This gives:

@) fim [x — x0]im X0 — yle=i="du(y) = 0

x-x Slx—y|<|x—x°|/2
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for i=0, 1,..., m;

3) lim |x — x°l-m§ Ix — yl=mdu(y) = 0;
x—-x0 |x=x0]/25|x—y|<5|x—x0|

@ lim |x — x°|-m§ K,(x, Y)du(y) = 0.
x-+x0 |x=yl2|x—x°]/2

On the other hand we have

liminf |x — x|

( % — yl*="du(y) 2 lim inf 2-7a,Uk(x) = oo,
x=x9,xeE |x=y|<5]x=x9| k=0 xeE

which together with (3) implies

) fim = x0|n( Ix = yle=ndu(y) = oo.

x-+x0,xeE |x=y|<|x-x9]|/2

By (2), (4) and (5), we obtain

lim |x — xor"'SK,,.(x, y)du(y) = oo.

x-x9 xeE

REMARK 4. Let m and y be as in Theorem 1. If, in addition, there are
constants C>0 and r,>0 such that u(B(x, r))< Cr*tm=< for all x € B(x°, r,)
and all r>0 with r<r,, then

lim [x — x| K, (x, () = 0,

XX
i.e., U4 is m times differentiable at x©.

For this it suffices to prove

©) lim x — x°/=( Ix = yle=rdu(y) = 0.
x—rx |x=y|<|x=x°|/2
Set a(r)=Sl o |y —x°[e=m=rdy(y) for r>0. Then a(r)—0 as r | 0 and
y—=x9|<r

u(B(x®, r)) £ a(r)rn+m=a for r>0.
Hence for b>0 and r=|x—x°],

Ix — yl*="du(y) < (br)* "u(B(x°, 2r))

< 2rtm=eq(2r)be—mym,

gbr_s_lx—y|<r/2

On the other hand,
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_ br
[ x = sterduey) = [TuBes oyd(- o)
|x=y|<br 0
= (n—a)Cm1pmrm

if |[x—x% <rq, and br<r,. Taking b=a(2r)!/2("=_  we obtain (6).

3. Proof of Theorem 2

First we shall be concerned with the case ap<n. In the proof of Theorem I,
we have shown that

lim |x — xol‘mg
x=x0 Jlx=ylz|x-x0]/2

K.(x, y)f(y)dy = 0.

Let a(r) be a non-increasing positive function of »>0 such that lim,,, a(r)= oo,
a(r)<2a(2r) and

V=1 gy

g'[rw—m)v-na(r)g f(y)l’dy] ar .
0 B(x%r) r
Consider the set

E® = {xeR"; 27k < |x — x0| < 27K+,
[ [x = sl f()dy 2 2-*ma2ry e
|x=p]<|x=x°]/2

for each positive integer k. By definition,

Co (E®; B(x, 2)) < 2k"wa(2-k>g F)rdy.

2-k—l<|y_x0l<2—k+2

Setting E=\Uj-, E‘*), we have

3. [240=0C, (E 1 B(x°, 2+ )\B(x?, 2-4); B(x%, 2))]/#~)
k=1

ékil[zk(n—ap-kmp)a(z-k)gl f(y)pdy:‘ll(p—n < o0,

y_x01<2'k+2

which implies that E is («, p)-thin at x°. We also derive

lim | — x0|-n Knlx, )y = 0

x~+x0,x¢E |x—y|<]x—=x°]/2

and thus obtain our theorem for ap=<n.
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Next we treat the case ap>n. For this purpose it suffices to prove

lim [x — X0 Ix = yl*="f(y)dy = 0.

X=X S|x-—y|<lx—x°|/2
- -1 _
Let b(r)=S [s(“ m>v-ng f(y)l’dy} s-1ds, r>0. ThenS f)rdy<
0 B(x%r)

B(x9,s)

const. b(r)p~1r"=(a=mpr_ Consequently, using Hoélder’s inequality, we obtain for
p'=p/(p—1)

x = x| [x = 31" )y

[¥=y|<|x=x°|/2
1/p’
lx — yl""“""dy} {S

< const. b(2|x — x°))1/”" — 0 as x — x°,

< b — <o fyrayt”

lx=yl<|x-x0]/2 [x=pl<|x=x°|/2

The proof is now complete.

ReEMARK 1. Let f be a non-negative function in LP(R") and set

Ey = {xeRn (v = ylemrf(n)dy = ool

1 1/(p—1)
am e (ool a7 )
0 JB(x,r) r

If 0O<m<a and UJ_,# o, then C,_, (E,NB(0, a); B(O, 2a))=0 for every
a>0, which is equivalent to B,_, ,(E,)=0. Here B,_, , denotes the Bessel
capacity of index (x—m, p) (cf. [3]). We also have B,_,, ,(E;)=0 on account
of [4; Theorem 2.1]. By these facts and Theorem 2, we may state that the
potential U/ is («, p)-finely m times differentiable B,_,, ,-q.e. on R" if UJ # 0.

REMARK 2. Let ap=<n and let E be a set satisfying
3 [20menC, (E; GYIP < o,
k=1
where E,=E n B(x°, 2 ¥*1)\B(x?, 27¥) and G,=B(x°, 2-%*2)\B(x°, 2-%~1). (This

is stronger than the condition that E is (e, p)-thin at x°.) Then there is a
non-negative function fe LP(R") with the following properties:

) {lx0 = yi=m=rp(dy < oo

(8) Sw[r‘“"””""g f(y)"dy]”pi < ©0;
0 B(x%r) r
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%) lim |x — x°|""SK,,.(x, Nf(y)dy = co.

x—+x0,xeE

To construct such f, take sequences {a,}, {b,} of positive numbers such that
lim,_, , a,=o00 and

3 24~ Paf{C, (Ey; Gy) + b}]/? < co.
k=1
Then for each k, there exists a non-negative function f, such that f,=0 outside

Gy, I1fill5<C, (Ei; G)+b, and Uf<=1 on E,. Consider the function f=
> 12 mkq, f,. Then (7) is fulfilled and

© 1/
g 2ol sy | < oo,
B(x%,27k)

k=1

which yields (8). As in the proof of Remark 3 in §2, f is seen to satisfy (9).

4. Appendix

We shall show below that in case ap<n, a set EcR" is («, p)-thin at x° if
and only if

(LB 0 B0, s B0, 2010070 L < oo,
(o]
which is equivalent to
L pe dr
g [r7"B, ,(E n B(x®, )]~ 4 < o,
Jo
If p>2, then 1/(p—1)<1 and

3, [2/070)C, ,(E n BQ~7*1); B(x%, 2))]#~D
=1

8

< 3 200meplGm) 31 [C, (Ey; B(x°, 2))]H0D
j=1 k=j ’

< const. 3\ [2-=enC, (Ey; B(x°, 2))]/D),
k=1
where E,=E n B(x% 27¥*)\B(x?, 27%). If p<2, then we have
ConfE 0 BG% 1); B, 2) < (' CL (B 0 B0, 26)\BGx%, 5/2); Bx%, 2)) 42,
0

so that the inequality of Hardy (cf. [S; Appendices, A.4]) gives
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1 _ _y dr
[ o8 0 B0, s B0, 2)7 100 4
0

1
< const.g [5%777C, ,(E 0 B(x, 2)\B(x°, 5/2); B(x®, 2))] =0 45
JO

These arguments readily yield the required assertion.

[
[2]
[31]

(4]
[51]

References

D. R. Adams and N. G. Meyers, Thinness and Wiener criteria for non-linear potentials,
Indiana Univ. Math. J. 22 (1972), 169-197.

N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin,
1972.

N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes,
Math. Scand. 26 (1970), 255-292.

N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
E. M. Stein, Singular integrals and differentiability properties of functions, Princeton
Univ. Press, Princeton, 1970.

Department of Mathematics,
Faculty of Science,
Hiroshima University





