
HIROSHIMA MATH. J.

8 (1978), 469-489

KO-Groups of Lens Spaces Modulo Ptrwers of Two

Dedicated to Professor A. Komatu on his 70th birthday

Kensό FUJII, Teiichi KOBAYASHI, Katsumi SHIMOMURA

and Masahiro SUGAWARA

(Received March 13, 1978)

§ 1. Introduction

The K- and XO-rings of the standard lens space Ln(m) = S2n+1IZm mod m
are investigated by several authors, and the structures of the reduced K- and
KO-rings K(L"(m)) and K0(Ln(m)) are determined by J. F. Adams [1, Th.7.3-4]
when m = 2 (Ln(2) = RP2n+1 is the real projective space), and T. Kambe [3]
when m is an odd prime. Furthermore, the additive groups K(Ln(pr)) (p: prime)
and Kb(Ln(pr)) (p:oάά prime) are determined by N. Mahammed [9, Th.3],
and an explicit additive base of K(Ln(pr)) (p: odd prime) is given in [5, Th.1.7].

In this note, we shall determine the additive structure of

K0(Ln(2r)) for any r ^ 2.

Let p be the non-trivial real line bundle over L"(2r), and η be the canonical
complex line bundle over Ln(2r), i.e., the induced bundle of the canonical complex
line bundle over the complex projective space CPn by the natural projection
π: Ln{2r)-*CPn. Then we can prove the following

PROPOSITION 1.1. The reduced KO-ring K0(Ln(2r)) (r^2) is generated by
the stable classes

(1.2) K = p— 1, σ — rη — 2 (rη is the real restriction ofη)

and there hold the following relations:

{ 1 ifn = l mod 4,

0 otherwise;

(1.4) σ(r-l) = 2fc, κ2 = - 2κ,

(1.5) KG = - 2κ + ΣE? {(2 + σ)σ(S)ΠΓ=?+i (2 + σ(ί))} ,

where σ(s) = σ 2 s + Σ j ί 1 ^ ^ ' eώ(L«(2 r)) is given inductively by

(1.6) σ(0) = σ, σ(s) = 4σ(s-1) + σ(s-1)2 (0 < s < r).
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Hence we see that KO{Ln{2r)) is generated additively by

(1.7) {K, σ f: 1 ^ i^N'}, N' = min{2 | - 1 -l, [n/2] + ε}.

Furthermore we have the following main theorem, where ZM<α> means the

cyclic group of order u generated by α as and bs are the integers with

(1.8) as = [n/2s], n = 2sas + bs, 0^bs<2s (0 < s < r),

ε is the one in (1.3), N' is the one in (1.7); and K, σ and σ(s) are the elements in

(1.2) and (1.6).

THEOREM 1.9. The reduced KO-group of the standard lens space Ln(2r)

mod2Γ (r^2) is given as follows.

(i) ([6, Th.B]) KO(L°(4)) = Z2(κ} and K0(Ln(4)) is the direct sum

KO(L»(4)) = Zu(κ + 2«'σ> 0 ZM(1)<σ> ,

M = 2 f li+ ε, w(l) = 2 2 f l i + 1 (n ^ 1),

where the first generator is able to be replaced by K if n = lmod4.

(ii) KO(Ln(2r)) (r^3) is the direct sum

KO(L»(2')) = Σ£oZ«(i)<*!> ' ^

ί/ie order u{ί) and the generator σi9

where zu=l or 1 — 2a'^~ί (af(i)^2), are given as follows:

(a) The case nφ\ mod4: For i = 0,

«(0) = 2 Λ -s σ0 = K + Σ?=}2 ( 2 ί-1> ( α '-1 + 1 )-1σ(r~l-~0 (n ^ 2'" 1),

ιι(0) = 2, σ0 = K (n < 2-i)

and for i = 2s + d ^ α 1 wiίΛ 0 ^ 5 ^ r - 2 and 0 ^ d < 2 s ,

w ( 1 ) = 2r-i+2«v . fi1=sd if i = l;

2 /) z/ / = 2s ̂  2;

(0
[as+ί for 2d>bs+u

SJ (2
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- 0 if i = 2s+ d^ 3, d^ 1.

(b) The case n = \ mod4: u(j) and σ, are the same as (a) if iφaΛ

mod 2 r " 2 ; and

ιι(0 = 2, σ, = σ* i/ i. = αx + 1 ( n < 2 - 1 ) .

As compared with the above theorem, the result for the real projective space

Lπ(2) = # P 2 n + 1 is stated as follows:

(1.10) (J. F. Adams [1, Th.7.4]) XO(L"(2)) = Ztt,<κ>, u' = 2 2 ^ + 1 + δ .

In §2, we study some relations in the reduced X-ring K(Ln(2Γ)) which is

generated by the stable class σ = η — l with the relations σn+ί = 0 = (l + σ)2 r— 1, and

give an additive base of K(Ln(2r)) explicitly in Theorem 3.1.

In § 4, we study the induced homomorphism

i*: KO(Ln(2r)) > K0(Ln-\2r)) (i: Ln"1(2 r) c L"(2r))

by using the results of B. J. Sanderson [11, Th. (3.9)] on the JCO-ring of the

complex projective space, and prove the first half of Proposition 1.1 in Propo-

sition 4.4(ii) and (1.3) in Corollary 4.12 (ii). Furthermore, by using the Bott

sequence ([2, (12.2)]), we prove some properties of the complexification

c: XO(L"(20) > K(Ln(2r))

in Proposition 5.3, which contains the recent result of M. Yasuo [12, (A.13)]

that c is monomorphic if n == 3 mod 4.

By using these results, we study some relations in KO{Ln(2r)) in §§6-7,

and obtain the relations (1.4-5) in Proposition 6.3, and prove finally the main

theorem in §7. Moreover, the group κb(Lζ(2r)) of the 2n-skeleton Lg(2Γ)

of Ln(2r) is given in Theorem 7.5.

§ 2. Some relations in K{Ln(2r))

The group S1 = {z e C: \z\ = 1} acts on the (2n + l)-sphere

S2«+1 = {(z0,..., zn)eC^:\z0\
2 + . . . + |zn | 2 = 1}

diagonally (i.e., z(z0,..., zn) = (zz0,..., zzn)), and the orbit manifold
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L\m) = S2n+ί/Zm9 Zm={zeS1:zm = l}cz S\ (m ^ 2)

is the standard lens space mod m. By considering the subspace

(2.1) Lg(m) = {[z0,..., Zn]eL»(rn): zn is real ^ 0} c L\m)9

we have the cell-decomposition Ln(m) = Lg(m) U e 2 π + 1 = W2=o ιe\ and

(2.2) L"(m)/Lg(m) = S2»+\ Lg(m)

where the attaching map m:S 2 / l ~ 1 -^S 2 π " 1 is the map of degree m.

Let CPn = S2n+ίISι be the complex projective space, and

(2.3) π: Ln(m) > CP\ π: Lg(m) > CPn

be the natural projection and its restriction.

Let η be the canonical complex line bundle over CPn. Denote also the ca-

nonical one π*η over Ln(m) or Lg(m) by η9 and its stable class by

(2.4) σ = η-l in K(Ln(m)) or X(Lg(m)).

Since the first Chern class of ηm is 0 in H2(Ln(m)) = H2m(m)) = Zm,

(2.5) ηm -1 = (1 + σ)m - 1 = 0 in K(Ln(m)) or X(Lg(m)).

Further we have the following by using the Puppe exact sequences of (2.2) and

the results of J. F. Adams [1, Th.7.2] on K(CPn) :

PROPOSITION 2.6 ([4, Lemma 2.4, Prop. 2.6]). (i) The induced homomor-

phism

i*: K(Ln(m)) > K(Ln-\m)) (ί: L»

is epimorphίc, i*σ = σ and Ker ϊ* = Zm<σ"> .

(ii) K(Ln(m)) = K(Lζ(m)) by the induced homomorphism of the inclusion,

and this ring contains exactly m" elements and is generated by σ which satis-

fies σn+ί=0 and (2.5).

Now let m = 2r, and consider the reduced X-ring

£(L»(20) = £(L8(2')) (r ^ 1)

and its elements

(2.7) σ(s) = f/2*-l = ( l + σ ) 2 s - l ( O ^ s g r ) , σ(0) = σ.

Then by definition and by (1 + σ)2r-1 = 0 in (2.5), we see that
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(2.8) σ(s) = 2σ(5 -1) + σ(s -1) 2 ( 0 < s g r ) , σ(r) = 0,

and (l + σ(s)) 2 r " s -l=0. These and σπ+1 = 0 in Proposition 2.6(ii) imply the
following

LEMMA 2.9 ([8, Lemmas 2.3-4]). (i) For any integers fc0,..., k^^O and

= 0 in

ifh^O is an integer such that 2s(h-r+s) ϊ§ n - Σ?=o2%

(ii) For any integers /c0,..., ks-x ^ 0 and ks > I g: 0 (0 ^ s < r),

2h'aσ(s)k* = ( - l)ι2h'+ιocσ(s)k°-1 (α = Πf=o <r(t)kt) in K(Ln(2r))

ifh'^O is an integer such that 2s+ί(h'-r + s+l)^n-ΣUo2tK

Furthermore, we see the following

LEMMA 2.10. IfO<s<r, n<d + 2sk, d^O and fe^2, then

ΣUo 2r~s-2+2tkσdσ(s -t) = 0 in K(Ln(2r)).

PROOF. If k is even, the lemma is proved in [8, Lemma 2.5].
Since n<d + 2sk, by Lemma 2.9 and σn+1 = 0 in Proposition 2.6 (ii), we

see that

(2.11) 2'-s-ίσdσ(s)k = ± 2r-s~2+kσdσ(s)9 2r-s-ισd+2'k = 0.

Suppose that fc = 2fc' + 1^2 is odd. Then we can prove that

(2.12) 2 r-5-1σdσOy-ί+l)2 t~1* - 2r-s-ίσdσ(s-t)2tk

± 2r-s-2+kσdσ(s ~ l)σ(s) + 2r-s~2+2kσdσ(s -1) if * = 1 g s,

± 2r-s~1+2kσdσ(s -1) + 2'-s~2+*kσdσ(s -2) if t = 2 ^ s,

if 3 ^ / ^ J

in K(Ln(2r)), instead of (*) in the proof of [8, Lemma 2.5], as follows.
Set u = s — t for l ^ ί g s . Then we see that

(2.13) 2r~s-1σdσ(u+l)2t-ίk = 2r-s~1σd{2σ(u) + σ(u)2}2tk'σ(u+l)2t'1

(by (2.8))

= Σ2i*o(2'f '^2r-s-1+iσdσ(u)2t+ίk'-iσ(u+ I)2'"1
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= 2r~s-1σdσ(u)2t+lk'σ(u + I ) 2 ' " 1 (by Lemma 2.9(i)),

by noticing that ί2^ λ = 0mod2 ί-y if i = 2vj^l and; is odd.

If f= 1, then the left hand side of (2.12) is equal to

r V f f ( s - l f ' + 1 = 2r~sσdσ(s-1) {σ(s)-2σ(s-1) }2k> (by (2.13) and (2.8))

= 2r "sσ<ίσ(s-l)σ(s)fc-1 + 2r~s-ι+kσdσ(s-l)k (by Lemma 2.9 (i)).

This is equal to the right hand side of (2.12) by Lemma 2.9.
If t ^ 2, then the left hand side of (2.12) is equal to

(2.14) Σ f i ΐ ^ ' Γ 1 ) 2'-*-1+ίσdσ(M)2tfc-f (by (2.13) and (2.8)).

The i-th term of this sum is equal to

( - iy~1Π't~1')2r-'-2+2tkσdσ(u) if / φ 1, 2, 4,

by Lemma 2.9 (ii). If i = 2υ (υ=0, 1 or 2), then the i-th term in (2.14) is equal to

-s-ί+iσdσ(u)4~i{σ(u+ 1) - 2σ(t/)}2t" l fe"2

= ± 2 ' - u - 2 + i - v d * i 2 t ί k 2

by Lemma 2.9(i), since f2^ ) s 2 i"1" t ;mod2 i- i ;. Further this is equal to

± 2'-«- 5 + ί - ϋ + 2 t " l f e

by Lemma 2.9 (ii). Thus the sum (2.14) is equal to the sum of

= 2'-s~2+2tkσdσ(u),

± 2'~u-*+2t-ίkσd{σ(u)2 + σ(u)3}σ(u+ 1) = ± 2 r- t t-3 + 2 t" l f c

(the equality follows from Lemma 2.9 (ii) since σ(u)2 + σ(uy = 2σ(u)-σ(u
σ(w)σ(M + l)by(2.8))and
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± 2'-«-3+2'-i*σdσ(M + 1) i f ^ 3 .

and the last term does not appear if ί = 2. Hence we see (2.12) also for ί^2.

Now, by (2.11-2), we see that

(2.15) Σ?=o 2r-s~2+2tkσdσ(s -t)

± 2r-3+kσd+1σ(l) if s = 1,

+ 2r~s-2+kσdσ(s - l)σ(s) ± 2r-s~1+2kada(s - 1) if s ^ 2.

If s ^ 2, then by (2.15) x σ(s-1) and Lemma 2.9, we see that

= ± 2r-s~2+2kσdσ(s-l)2 = ± 2 | - s - 1 + 2 f c σ d σ( 1 y-1).

Thus the right hand side of (2.15) is 0 as desired if s^2 . The same is also valid

if 5 = 1 by Lemma 2.9 (i).

Therefore the lemma is proved completely. q.e.d.

§ 3. The additive structure of R(Ln(2r))

By the results in § 2, we have the following theorem, where σ and σ(s) are

the elements in (2.4) and (2.7), and at and bs are the integers in (1.8), i.e.,

n = 25as + f>5, 0 <; bs < 2s (0 ̂  s < r).

THEOREM 3.1 (cf. N. Mahammed [9, Th. 3]). The reduced K-group of

the standard lens space Ln(2r) or its 2n-skeleton Lg(2r) ( r ^ l ) of (2.1) is the

direct sum

2Γ)) = Σf=i 2 i ( i ) <^>, N = min {2 Γ -1, ή],

and the order t(i) and the generator σt of the i-th cyclic factor for

I ^ i = d + 2s <L N, 0 g s < r and 0 <; d < 2s,

are r̂if en as follows:

ί(0 =

σ"σ(s)

Σ?=o2<2

f α s + l

«-l)α(i)σ<fσ(s_ί)

if

if

if

d>

d =

K

otherwise.

PROOF. By Proposition 2.6 (ii) and (l-f-σ) 2 r -l = 0 in (2.5), we see that

X(Ln(2r)) is generated additively by {σι: l<i<^N}, and hence it is also so by
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since σf = σf + Σ j=i xuσj by (2.7) and the above definition.

On the other hand, by Lemmas 2.9 (i), 2.10 and the above definition, we see

that

ί(ί)σ. = 0 for 1 g i g JV,

since n=2s a s + bs<d+2sa(ί) and a(ί) ^ 2 if / = d + 2s g iV. Further

by (1.8), where u = r if n ^ 2 r and α M = l otherwise. Thus

which is equal to the order of K(Ln(2r)) by Proposition 2.6 (ii).

Therefore, we have the theorem. q. e. d.

Here, we prepare the following for the purpose of the later sections.

Instead of K(Ln(2r)\ we consider the quotient ring

(3.2)

where the ideal <2σM+1> generated by 2σn+ί is the cyclic subgroup Z2» -t<2σw+1>
by Proposition 2.6; and we denote an element in fc(Ln+1(2r)) and its coset in
X(Lw+1(2r))/<2σ'I+1> by the same letter.

LEMMA 3.3. (i) σn+ί^0 in R(Ln+ί(2r))K2σn+ί> of (3.2).

(ii) Lemma 2.9 holds for K(Ln+ί(2r))l(2σn+ί} instead of K(Ln(2r)).

(in) So does Lemma 2.10 under the additional assumption that s^r — 2

or n + 2<>d+2sk.

PROOF, (i) is seen immediately by Proposition 2.6 (i).

(ii) In the proof of Lemma 2.9 ([8, Lemmas 2.3-4]), we use the relation

σn+1 = 0 in X(Lw(2r)) only at the first step of the inductive proof of [8, Lemma 2.3]

to show that 2r+hσn~h = 0 for /z<0, which follows from the relations

(3.4) 2σΛ + 1 = 0 and σn+2 = 0 in K(L"+1(2'))/<2<7«+1>,

since r^>2. Hence we can prove (ii) by the same argument as [8,Lemmas 2.3-4].

(iii) In the proof of Lemma 2.10 (and [8, Lemma 2.5]), we use the relation

σ Λ + 1 = 0 in K(Ln(2r)) only to show that 2r-5-ίσd+2sk = 0 in (2.11) (and [8, p.87]),
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which follows from (3.4) if r — s —1^1 or d + 2sfc^n + 2. Hence we can prove

(iii) by the same argument as Lemma 2.10 (and [8, Lemma 2.5]). q.e.d.

LEMMA 3.5. (i) IfO<s<r, n<d + 2sk, d^O and fc^2, then

+ 2r-s~2+kσdσ(s) = Σf=i 2'-s-1+2t(k-Vσdσ(s-t)2t in K(Ln(2')) .

(ii) If s^r — 2 or n + 2^d + 2sk in addition, then the above equality holds

also in K(L"+1(2r))/<2σ"+1> 0/(3.2).

PROOF. We see easily (i) by Lemmas 2.10 and 2.9, and (ii) by (iii) and

(ii) of the above lemma. q. e. d.

REMARK 3.6. We notice that the result of [5, Th. 1.7] on R(Ln(pr)) for

an odd prime p holds also for p — 2. In fact, by using Lemma 3.5 (i) instead of

Lemma 2.10, we see that the generator σf in Theorem 3.1 is able to be replaced by

Σ ; = o 2 ( 2 M ) ( β ( i H ) Λ ( s . ή 2 t if i = d + 2\dφ bs.

% 4. The induced homomorphism on the KO-groups

of the inclusion Ln~ί(2r)czLn(2r)

We use the following notations frequently:

(4.1) L?»+1 = L»(20, L?» = L8(2') (r £ 2) ,

where the latter is the 2n-skeleton in (2.1).

Consider the stable classes

(4.2) σ = rσ = rη - 2, K = p -1 in K0(Li)

of (1.2), where σ e K{Lk) is the one of (2.4), r: K-+K0 is the real restriction, and

p is the non-trivial real line bundle over L*, i.e., p is the real line bundle over

L£ whose first Stiefel-Whitney class w 1 (p)ei/ 1 (Lj; Z^) = Z2 is non-zero.

LEMMA 4.3. By the complexification c:

cσ = σ2/(l + σ), CK = σ(r— 1),

where σ ( r - l ) = ̂ 2 r " 1 - 1 eK(Lj) is the element in (2.7).

PROOF. Let t: K-*K be the conjugation. Then cr = 1 + ί, fry = η'1 and

cσ = crσ = (1 + Ofa-1) = >7 + T 1 - ^ = (η-l)2lη = σ2/(l + σ).

The second equality follows from cp = η2r'1 ([6, Prop. 3.3]). q.e.d.
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Now, we can prove the following

PROPOSITION 4.4. (i) The induced homomorphism

if: KO(Lΐ) — + KO(Li'1) (h: L^1 c= Lf)

is isomorphic if k = 7, 6, 5 or 3 mod 8, epίmorphic otherwise and

' Z2r<2σ2m+1y if k = 8m + 4,

Z 2 <σ 2 w + 1 > if fc = 8m + 2,

Z 2<κσ 2 m> i/ fc = 8m + 1,

Z2r(σ2m} if k = 8m, m > 0.

(ii) ϊfσ = σ, i%κ = κ and the ring KO(L*) is generated by σ and K.

PROOF. The two equalities in (ii) are clear by definition.

Consider the commutative diagram

(4.5)

KOiS^-^KOiS^-lUKOiS^^KJre2") —

KO(S2n) -BU KO(L2n) ^U

KO(CPn) -*U KO(L2n) KO(L2n~2)

of the Puppe exact sequences, where p's are the projections (cf. (2.2)) and π is

the second one in (2.3).

(4.6) If fc = 7, 6, 5 or 3 mod 8, then Ker i£= 0 since KO(Sk) = 0.

Let n = 4m + 2, 4m + 1 or 4m. Then KO(S2n) = Z, Z2 or Z, and

p*s2n = 2y2m+1, y2m+1 or y2m (p*: KO(S2n) > i Γ θ ( C P " ) ) ,

respectively, by the results of B. J. Sanderson [11, Th. (3.9)], where s2neK0(S2n)

is a generator and y = rη — 2eKO(CPn). On the other hand, π*y = σ by defi-

nition. Thus by the above commutative diagram of the exact sequences, we

see that

(4.7) Ker i*n(n — 4m = 2, 1 or 0) is the cyclic subgroup generated by 2σ 2 m + 1,

σ2m+ί or σ2m, and its order is a divisor of 2r, 2 or 2Γ, respectively.

For the case fc = 8m + 1 , consider the diagram
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Lk _JU LίlLfm( = Sk) *- i- Li Λ (L^/L?-" 1 ) = L\ A S

L iΛπ iΛl

* x L*τ-^> Lk x (CP*m/CP4m-1) -U Lk A ( C P ^ / C P 4 " 1 " 1 ) = L* Λ

where -d is the diagonal map, τ and φ are the homeomorphisms given by

τ\Lzθ9'"i Z4m-l9 Z4mj) = Lz4m> z0> > z 4 m - l J >

Ψ(M» [̂ o» » Z4ml) = t>z0,..., zz 4 m] (z 4 m is real ^ 0),

π's are the ones in (2.3), q is the projection and ΐ is the inclusion. Then we see

easily that this diagram is homotopy commutative by the homotopy ht: Lk

r

-> Lk A (CP4mICP4m'1) given by

Λ,(O = (CO2 + (l-t2)\z4mr2yi2z4m9 ίz0,..., ίz 4 , w -i], π(O)

(ζ = [z o , . . . ,z 4 m ]eL?). Hence by noticing that τ* = l : X0(L*)-+X0(L*), we

have the commutative diagram

KO(CI*m) < 1 (^* iθ(Lfe) ® KO(SSm) ,

where is the multiplication in the ring KO(Lk).

In this diagram, π*p*sSm = σ2m by the above proof of (4.7), and i*κ = κ is a

generator of K0(L{

r) = x d ί S 1 ) = Z 2 by definition. Thus

(4.8) K e r ί | m + 1 = Im p* is generated by κσ2m whose order is 2 or 1.

Now, we see the latter half of (ii) inductively by (4.6-8), so that the ring

homomorphism if is epimorphic for any k by the equalities in (ii). Thus we have

the proposition by (4.6-8) and by showing

2'σ2m+1 # 0 in i f θ ( L ^ + 4 ) , σ2m+ί Φ0 in KO(L*m+2),
(4.9)

κσ2m Φ0 in KO(L*m+ι), 2r-ισ2m Φ 0 in KO(L*m) .

Since the complexification c is a ring homomorphism, Lemma 4.3 implies

Then by using Proposition 2.6, Lemma 2.9 (ii) and (2.7), we see (4.9) as follows:

(4.10) 2rcσ2m+1 = 2rσ*m+2 = - 2 ' " 1 σ 4 m + 3 # 0 in K(L?W + 7),
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so that 2rσ2m+1^0 in KO(Lfm+Ί), which implies the first relation in (4.9) by

(4.6) for /c = 7, 6, 5 mod 8. Hence the second one in (4.9) holds by (4.7) for

and (4.6) for k = $m + 3. Moreover,

(4.11) cσ2m+i = 0, c(κσ2m) = σ{r-\)σAm = 2r~ίσ4m+i φθ in K(L?m + 2),

so that σ2m+1φκσ2m in K0(L*m+2), which implies the third one in (4.9) by (4.7)

for n=4m + l. Further the last one holds since 2Γ~1cσ2m = 2 r " 1 σ 4 m ^ 0 in

K(L?m).

Thus we see (4.9), and the proposition is proved completely. q.e. d.

By (i) of the above proposition, we see immediately the following

COROLLARY 4.12. (i) (N. Mahammed [10, Th. 3.4.2], M. Yasuo [13, Th.

(0.1)]). The order of the group K0(Ln(2r)) ( r ^ 2 ) is equal to 2^r+1^^2^+1+ε where

ε is the integer in (1.3), i.e., ε = l if n=\ mod4, = 0 otherwise.

(ii) σι = 0 in K0(Ln(2r)) if i > [n/2] + ε.

§5. The complexificatίon

It is known that the complexification c is contained in the Bott exact sequence

(5.1) K0ι(X)-ϊ-+ KO(X) -£-> K(X)

(R. Bott [2, (12.2)]), where KOl (K0Ό = K0) is the reduced XO-cohomology

and d is the natural homomorphism.

By using this sequence, we prove the following proposition on the com-

plexification

c: XO(L"(20) > K(Ln(2r)) (r ^ 2),

which contains the result of M. Yasuo [12, (A.13)] that

(5.2) c is monomorphic (/n = 3 mod4.

PROPOSITION 5.3. For any n = 4m + /, 0 ^ / ^ 3 , we set

(5.4) n' = 2[n/2] + 1 = n if n is odd, = n + 1 otherwise.

Then there are monomorphisms of rings

c, : K0(L«(2')) »£(L»'(20) if l*U
(5-5)

cj : KO(L"(2r)) »K(L"'+1(2r))/<2σ"'+1> if / = 1,

^ 2 , and the last ring is the one in (3.2)) such that c3 = c and the diagram
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KO(L*m+7) -JU KO(L*m+5) -ϋ-> KO(L*m+3) -J1+ KO(L*m+1)

K(L*m+Ί) -jΓ* K(L*m+5) -ψ

is commutative, where fs are the inclusions and φ9 ψ' are the projections with

ψ'ψ = i*.

PROOF. We prove the proposition inductively by assuming

(5.7) KO\L8

r

m) = 0, (KO 1 ^?) = KOKpt) = 0 is well known).

Consider the Puppe exact sequence

KO(L*n) -ϋ-> KO(Lln-2) > KOί(S2"-1yj2re2n) -*L>

KO'iL2") - 1 % KOKLl*-2)

of the second one in (2.2). Since the left i* is epimorphic by Proposition 4.4 (i),

(5.8) p* is monomorphic for any n.

On the other hand, by the Puppe exact sequence for KOι of the first one in the

proof of Proposition 4.4, we see easily that

(5.9) KOί(S2n-ίVJ2re2n) = Z 2 ifn = 1 or 2 mod 4, = 0 otherwise.

Therefore (5.7) implies

(5.10) KO\L^2) = Z2.

Consider the Bott exact sequences in (5.1) and the commutative diagram

KOι(L2n-2) -J2-> KO(L2n-2) -£-> R(L2n-2)

v y y
KO\L2n) -A_> KO(L2n) -£-> K(L2n).

Then by the second equality in (4.5) and the first one in (4.11), (5.10) implies

(5.11) I m δ = K e r c = Z 2 < σ 2 m + 1 > = K e r # m + 2 in KO{L*m+2)

(ik: LΪ-ιaLi). \ΐaeKO\L*m+% then ϊ*δα = ai*α = α σ 2 w t + 1 by (5.11), so that

da = (α + 2a')σ2m+ί in K0(L*m+4) for some α ' e Z , α = 0 o r l ,

by Proposition 4.4 (i) for fc = 8m-f 4, 8/n + 3. On the other hand,
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(5.12) cσ2m+ί = σ4m+2 in K ( L Γ

8 O T + 4 ) , Z 2 , < σ 4 m + 2 > cz K(Lfm+4),

by Lemma 4.3 and Proposition 2.6. Hence (a + 2af)σ4m+2 = cd(x = 0 in K(L?m+%

so that α = 0. Thus δi*α = 0, so that ί*α = 0 by (5.10-11). Therefore i*:
+ 2 ) is 0, and the first exact sequence and (5.8-9) imply

(5.13) KOι(L*m+4-) = Z2.

Similarly, the first equality in (4.5) and (5.12-13) imply that

(5.14) Im d = Ker c = Z2 (2rσ2m+1) in K0(L*m+4).

If βeKOι(L*m+% then i*dβ = di*β = 2rbσ2tn+ί (b = 0 or 1) by (5.14), and dβ =

2rbσ2m+1 in K0(L?m+6) by (4.6). Hence by (4.10) and Proposition 2.6,

_2r-ifcσ4m+3 = 2rb(cσ2m+1) = cdβ = 0 in K(Lfm+6) = K(L*m+Ί),

so that fc = 0. Thus di*β = O, so that i*j8 = 0 by (5. 13-14). Therefore

i*: KO\L*m+6)-+KO\L*m+*) is 0, and the first exact sequence and (5. 8-9) imply

(5.15) KO^L*"1*6) = 0, so that K0\L*m+η) = KOι(Lfm+s) = 0

by the Puppe exact sequence KO\Sk)-?UKQXL$)-JUlfo^

Now, the above proof shows that (5.7), (5. 10-11) and (5. 13-15) are valid

for any m by induction and these imply the proposition as follows.

c3 — c is monomorphic by (5.15) and the Bott exact sequence, and so is

c2 = c3/*~1 since the upper left i* in (5.6) is isomorphic by Proposition 4.4 (i).

In the middle of (5.6), we have noticed in (3.2) that

Kevψ = Z2r-i(2σ*m+2) in K(L*m+5).

Further iHm + 5: Lfm+4c:L^m+5 induces isomorphisms of the KO- and K-groups

by Propositions 4.4 (i) and 2.6 (ii), and hence (5.12) and (5.14) are valid in K(L?m+5)

and KO(L*m+5)9 respectively. Thus we see that

Ker 0/rc) = Z2r(2σ2m+1y in K0(L? m + 5 ) .

On the other hand, the upper middle i* in (5.6) is epimorphic and its kernel is

equal to the right hand side of this equality by Proposition 4.4 (i). Therefore

c1=ι/^c/*~1 is the desired monomorphism.

Similarly, in the right of (5.6), /* is epimorphic and (5.11) implies Ker/*

= Kerc since both i8m+3's o n t n e ^ ^ " a n d X-groups are isomorphic. Thus

co = ci*~1 is the desired monomorphism. q.e. d.
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As an application of the above proposition, we see the following

COROLLARY 5.16 ([8, Th. 1.4], cf. M. Yasuo [12, Prop. (3.5)]). In

K0(Ln(2r)) ( r^2) , the order of the power σι ( l ^ i ^ [ n / 2 ] ) of σ in (4.2) is equal to

2r+n-2i if n is o d d i 2r+»-2i+ί if n is even;

fs of or(]er 2 if n = l mod4, and is 0 otherwise; and σ [ M / 2 ] + 2 = 0.

PROOF. We see the results for σ'x (i>[nβ~\) by Proposition 4.4 (i).

The order of σι (l^i^ri) in K(Ln'(2r)) is equal to 2'+"'-* by [4, Th. 1.1],

and we see similarly that the same is true in K(L"'+1(2r))/<2σ"'+1> by using

Lemma 3.3 (ii). Furthermore, by Lemma 4.3 and the commutativity of (5.6),

the monomorphism ct in (5.5) satisfies

Therefore we see easily the results for σι (1 ̂  i ̂  [w/2]). q. e. d.

REMARK 5.17. We can prove that KOl(L*) ( r ^ 2 ) is equal to

0 if k = 0,6 or! mod 8, Z 2 if k = 2 or 4 mod 8,

Z if k = 1 or 5 mod8, Z2@Z2 if k = 3 mod 8,

which has been proved by M. Yasuo [13, Th. (0.1-2)]. In fact, the first half

is proved in the proof of Proposition 5.3. Then, we see the results for fe=l, 5

mod 8 by using the exact sequence after (5.15) where p* is monomorphic, and for

/c = 8m + 3 by noticing that Lk

rm~2 is homotopy equivalent to Sk~ίv Sk and by

studying its Puppe exact sequence.

§6. Some relations in KO(L"(2r))

Together with σ and K in (4.2), we consider the real restriction

(6.1) σ(s)=:rσ(s)eKb(Ln(2r))(O = s^r), σ(0) = σ, σ(r) = 0,

where σ(s) e X(Lπ(2r)) is the element in (2.7).

LEMMA 6.2. (i) By the complexification c: κb(Ln(2r))-+K(Ln(2r)\

cσ(s) = σ(s)2/(l + σ(s)), c(2 + σ(s)) = (2 + σ(s +1))/(1 + σ(s)).

(ii) (i) and Lemma 4.3 hold also for ct in (5.5) instead of c.

PROOF, (i) The first equality is seen by the same way as the first one in

Lemma 4.3, and it implies the second one by (2.8).
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(ii) is seen immediately by the commutative diagram (5.6). q. e. d.

Now, we study some relations in K0(Ln(2r)).

PROPOSITION 6.3. (i) The following relations hold in K0(Ln(2r)) ( r^2) :

(6.4) σ(s) = 4σ(s -1) + σ(s - 1 ) 2 (0 < s S r),

i.e., σ(s) coincides with the element given by (1.6).

(6.5) σ(r- l ) = 2κ, κ2 = - 2 K .

(6.6) κ(2 + σ(s)) = Σr

tZ
2

+ί{(2 + σ^))σ(/)Π^+i(2 + σ(u))}

(0 = s ^ r - 2)

in particular, κ(2 + σ(r — 2)) = 0 and we have (1.5) by taking 5 = 0.

(ii) KO(Ln(2r)) (r^2) ΪS generated additively by the elements

{K, σi'Λ^i^N'}, N' = min {21*"1 - 1 , [n/2] + ε},

where ε is the integer in Corollary 4.12 and N' is the one in Theorem 1.9 (ii).

PROOF, (i) The second equality in (6.5) follows from (1 -f-κ)2 = p 2 = 1.

By Lemmas 6.2 (i), 4.3 and (2.8), we see easily that

cσ(s) = (2σ(s-l) + φ - l ) 2 ) 2 / ( l + σ(s-l)) 2 = c(4σ(s-l) + σ(s-l) 2 ),

cσ(r-l) = 2σ(r»l)(l + σ(r-l))/(l + σ(r-l)) = 2cκ.

Thus we have (6.4) and the first equality in (6.5) for m = 3 mod 4, since c is mono-

morphic in this case by (5.2), and so for any n by the equalities in Proposition

4.4 (ii).

Similarly we see (6.6) by showing that the c-images of its both sides are equal

as follows: By Lemmas 6.2 (i), 4.3 and (2.8),

t-ί+i (2 + σ(u))IUru=2t^ + σ(u))

= {σ(0(2 + σ(ί+l))-σ(ί+l)}Πί=1

ί+2(2 + σ(tt))/(l + σ(r-l)),

since σ(ί)2(l + σ(0) = σ(0(2 + σ( ί+l))-σ( ί+l) . Hence the c-image of the right

hand side of (6.6) is equal to

(2 + σ

= {σ(r) - (2

which is equal to c{κ(2 + σ(s))} since 2σ(r -1) + σ(r - 1 ) 2 = σ(r) = 0.
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(ii) By σ(0) = σ and (6.4), we see inductively that

(6.7) σ(s) = σ2s + Σ f - l 1 y,j*J <y.j' even).

Hence by the first equality in (6.5), σ2r'1 is a linear combination of

(6.8) {κ9 σ
f: 1 ^ i<2 1 "- 1 } ,

and so is κ2 by the second one in (6.5). Moreover so is KG by (6.6) for 5 = 0
whose right hand side is a polynomial on σ of degree 21""1 — 1 by (6.7).

On the other hand, the ring K0(Ln(2r)) is generated by σ and K by Prop-
osition 4.4 (ii). Thus we see that it is generated additively by (6.8), and we
obtain (ii) by Corollary 4.12 (ii). q. e. d.

In the following, we use the monomorphism ct in (5.5).

LEMMA 6.9 (cf. [8, Lemmas 3.4-5]). The following relations hold in

K0(Ln(2r)) (r^2) where n' = 2[n/2] + l is the integer in (5.4):

(i) For any integers /c0,..., /cs_!^0 and ks>0 (Ogs^r),

ίfk^O is an integer such that 2s(k- r + s)^n'- Σ?=o2ί+1/cf.

(ii) For any integers fc0,..., ks.ί'^0 and ks>l^0 (Ogs<r),

2k'aσ(s)k' = (-I)ι2k'+2l<*σ(s)k'-1 (α = Πf=o σ(/)fc0

i/fc'^0 is an mie^er swcn ίfcαί 2s+1(/c/-r + s+l)^n / -Σ?= 0 2 ί + ι /c ί .

PROOF, (i) By Lemmas 6.2 (ii), 2.9 (i) and 3.3 (ii), we see easily that

*,(2*Πί=o W O = 2fcΠf=o {σ(02kί/(l + σ(/))* } = 0,

where ct is the monomorphism in (5.5). Thus we see (i).
(ii) We see easily that 2fc'+2/ασ(s)^-ί-2σ(5+l) = 0 if /c s - l>/^0 by (i).

Thus we have (ii) by (6.4). q. e. d.

§ 7. Proof of the main theorem

Furthermore, we obtain the following relations in K0(Ln(2r)) (r^2).

LEMMA 7.1. (i) J / 0 < s ^ r - 2 , n<2sk and k^>2, then

Σ?=o2 r- s-3 + 2 t kσ(5-0 = 0 in K0(Ln(2r)).
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(ii) In case r^.3 or nφ\ mod4, ifn<2r~1k and k^.2, then

2k~λκ + Σrt={22tk-2σ(r-l-t) = 0 in K0(Ln(2r)).

(iii) Ifn<2r~1k9 then 2kκ = 0 in K0(Ln(2r)).

PROOF, (i) By Proposition 5.3, it is sufficient to show that

(2r)) if
i n , _

K(Ln'+ί(2r))K2σn'+1y if / = 1,

where n = l mod4, ct is the one in (5.5) and n' is the one in (5.4).

If ί^2, then we see easily that

2'-s-*+2tk

Cισ(s-t) = -2'-*- 1 + 2 t<*- 1>c /σ(5-0 2 t~ 1 (bY Lemma 6.9 (ii))

(by Lemma 6.2 (ii) and (2.7))

^ -2 | 1-β- 1 + 2 tί*- 1>(j(s-ί) 27(l + Φ)) (by Lemmas 2.9 (i) and 3.3 (ii)).

Similarly, we see easily that 2r~s~3+2fcciσ(s —1) is equal to

2r-s-3+2fc(σ( s_1)2 + σ ( 5 -1)3)/(1 + σ(s)) = - 2r-s~ι+2i<k-^σ{s -1)2/(1 + σ(s))

by Lemmas 2.9 (ii) and 3.3 (ii); and 2r-s~3+kcισ(s) is equal to

2'-*-3+*(j(s)2/(l + σ(s)) = 2Γ-s-2+fcσ(s)/(l + φ))

(by Lemmas 2.9 and 3.3 (ii)).

Thus we see (*) by Lemma 3.5, since n' <2sk by n<2sk, s >0 and (5.4).

(ii) By noticing that n<2r~λk implies n/ + l<2Γ" 1/c if n = l mod4 and

r ^ 3 , we see by the above proof that (i) holds also for s = r— 1 unless n = 1 mod4

and r = 2. Thus (ii) holds since 2κ = σ(r-1) by (6.5).

(iii) By Lemmas 6.2 (ii), 2.9 (i) and 3.3 (ii), we see that 2kctκ = 2kσ(r-1) = 0.

Thus (iii) holds. q. e. d.

Here we attend to the special case r = 2 .

PROOF OF THEOREM 1.9 (i). In K0(Ln(4)) (n>0), we see that

22in/2i+iδ = o (by Lemma 6.9 (i)),

2[»/2J(fc + 2["/2]σ) = 0 if n ψ 1 mod4 (by Lemma 7.1 (ii)),

and 2Cπ/2]+1κ = 0 (by Lemma 7.1 (iii)). On the other hand, 3[n/2] + l + ε is
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the order of K0(Ln(4)) by Corollary 4.12 (i), and we see the desired result by

Proposition 6.3 (ii). q.e.d.

To study the case r^3, we consider the first term

(7.2) (ϊ(5, d) = σ ' - ^ υ Π S i P + σ(t)) e K0(L»(2'))

( 0 < 5 g r-2, 0 < d < 2 s )

in the definition of σt for i = 2 s+d in Theorem 1.9 (ii) (cf. (6.4)).

LEMMA 7.3. (i) IfO<s^r-29 n<2d+2s+ίk' and r-s-2+fc'^0, then

2r~s-2+k'σ(s, d) = 0 in K0(Ln(2r)).

(ii) Ifk'^2 in addition to (i), then

2r-s-3+k'{σ(s, d) + ΣSK-iF'^-^ '-^Φ+i-O} = o

in K0(Ln(2r)), unless n = l mod 4, s = r - 2 and n + l = 2d+2r-1kf.

PROOF, (i) In the same way as the proof of (6.6), we see that

Cισ(s, d) = σ2d-2σ(l)σ(s +1)1(1+ σ)d(l + σ(s))

by using Lemma 6.2 (ii). Hence we see easily that 2r~s~2+fc'c/σ(s, d)=0 by

Lemmas 2.9 (i) and 3.3 (ii). Thus we have (i) by Proposition 5.3.

(ii) Similarly, by using (2.8), we see that

2'-s-s+k'cισ(s9 d) = 2'- s-3 + f e 'σ2 dσ

Also, we see easily that (-l ) 2 t " 1 2'- s - 4 + 2 t Λ / c i (σ d σ(s + l - 0 ) is equal to

-2r-s-2+2t(k'-Vφdσ(s+1 -O 2 ' " 1 ) (by Lemma 6.9 (ii))

= - 2r-s-2+2t(k'~Vσ2dσ(s +1 - ί)27(l + σ)d(l + σ(s))

(by Lemma 6.2 (ii) and (2.7)).

Since the assumption n<2d + 2s+1k' implies n'<2d + 2s+ιkf by (5.4), these and

Lemma 3.5 imply that the cΓimage of the left hand side in (ii) is 0. Thus we see

(ii) by Proposition 5.3. q. e. d.

Now, we are ready to prove the main theorem.

PROOF OF THEOREM 1.9 (ii). By the definition of u(i) and σΓin the theorem,

the equality

w(j)σf = 0 (0 ̂  i ̂  N') in K0(Ln(2'))
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follows from Lemma 6.9 (i) for n>\ and ί = l; from Lemma 7.1 for i=2s ( s ^

or 0 since

n<2s(as+l)9 and as ^ 1 if 2s ^ N' or a,.! ^ 1 if n^l*'1;

from (4.5) for n = l mod 4 and ίββj + l; and from Lemma 7.3 otherwise since

n < 2d + 2*+V(i), α'(i) ^ 2 if i = d + 2s ^ ai(=

On the other hand σ(s, έ O ^ ' + ' + Σfci J ^ ' * 4 " 1 by (7.2) and (6.7), and
hence the definition of σi9 (6.7) and Corollary 4.12 (ii) imply

°o = K + Σ7-1 *jδJ σ, = Σ}-i Zij°j> za' odd (1 g i g ΛT) ,

since α'(i)^2 as is noticed above. Thus Proposition 6.3 (ii) and Corollary

4.12 (i) imply that K0(Ln(2r)) is generated additively by

Furthermore, by the definition of u(ί)9 we see easily that

ΠSlo «(0 = 2\ A = (r + 1) [n/2] + 1 + ε.

In fact, this is clear if n < 2. If n=2M + bu (1 ̂  w < r), then

λ = 1 + ( r - 1 + 2 f l l ) + Σtt { ( r - 5 - 3 + α s + 1 )2 s + [fcf+1/2]}

+ (r-ιι)[fcll/2] + β

= r + (w + l)a t + (r-w)2«- 1 -(r- l ) + (r-t/)(α 1 -2«- 1 ) + ε

= (r + l)αx + 1 + β.

If n^2Γ, then we have the above equality by replacing the first term 1 with ar-x

- (αP_! — 1) and by taking u = r.

Moreover the order of K0(Ln(2r)) is equal to 2λ by Corollary 4.12 (i).

Thus we have proved the theorem completely. q. e. d.

REMARK 7.4. We notice that the additive base of Kb(Ln($)) given in

[7, Prop. (4.3)] is slightly different from that in Theorem 1.9 for r=3, but these

are related by the relation (6.6) for s = 0 .

Finally, we notice the following

THEOREM 7.5. For n>0, the reduced KO-group of the 2n-skeleton Lζ(2r)

(r ̂  2) of (2.1) is g iven by



KO Gτoups of Lens Spaces Modulo Powers of Two 489

f K0(Ln(2r))lZ2(2r+n-2σ} if n = 0 mod 4,
)) = | _

I K0(Ln(2r)) otherwise.

PROOF. By Proposition 4.4 (i), it is sufficient to show that

κd2m = 2r+4m-2a: i n XO(L^(20) (m > 0).

This is seen by Proposition 5.3, since co(κσ2m) is equal to

in £(L4m+1(2Γ)) by Lemmas 6.2 (ii), 2.9, Proposition 2.6 and (2.7). q.e.d.
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