A Correction to "Forced Oscillations in General Ordinary Differential Equations with Deviating Arguments"

Bhagat Singh

(Received February 14, 1978)

1. Introduction

In [1] this author presented conditions to ensure that all oscillatory solutions of the equation

$$
\begin{equation*}
\left(r(t) y^{\prime}(t)\right)^{(n-1)}+a(t) y_{\tau}(t)=f(t), \quad y_{\tau}(t) \equiv y(t-\tau(t)) \tag{1}
\end{equation*}
$$

approach zero as $t \rightarrow \infty$. The proof of the main result (Lemma (1)) was based on the "truth" of the inequality

$$
\begin{equation*}
\left|\int_{t_{1}}^{t_{2}} \int_{s}^{p} a(t) d t d s\right| \leq \int_{t_{1}}^{t_{2}} \int_{t}^{t_{2}}|a(s)| d s d t \tag{2}
\end{equation*}
$$

where $t_{1}<p<t_{2}$ and $a(t)$ continuous in $\left[t_{1}, t_{2}\right]$.
But this inequality (cf. Staikos and Philos [2]) is false as the following counter example (due to Prof. T. Kusano of Hiroshima University) shows:

$$
\int_{\pi}^{5 \pi} \int_{s}^{5 \pi}|f(t)| d t d s=3 \pi \quad \text { and } \quad\left|\int_{\pi}^{5 \pi} \int_{s}^{2 \pi} f(t) d t d s\right|=5 \pi
$$

where

$$
f(t)= \begin{cases}0 & (\pi \leq t<2 \pi) \\ \sin t & (2 \pi \leq t \leq 3 \pi) \\ 0 & (3 \pi \leq t \leq 5 \pi)\end{cases}
$$

However the conclusion of this crucial lemma remains true with a very minor change. We shall consider the following more general equation

$$
\begin{equation*}
\left(r(t) y^{\prime}(t)\right)^{(n-1)}+a(t) h(y(g(t)))=f(t) \tag{3}
\end{equation*}
$$

subject to similar assumptions. More precisely we assume
(i) $a(t), r(t), g(t), h(t), f(t)$ are real, continuous on the whole real line R :
(ii) $r(t)>0, g(t) \leq t, g(t) \rightarrow \infty \quad$ as $t \rightarrow \infty$;
(iii) $0 \leq \frac{h(t)}{t} \leq m$, for some $m>0, t>0$.

2. Main results

Lemma (2.1). Suppose

$$
\begin{align*}
& \int^{\infty}|a(t)| d t<\infty \tag{4}\\
& \int^{\infty}|f(t)| d t<\infty \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{r(t)}=O\left(1 / t^{n-k}\right), \quad 0 \leq k<1 \tag{6}
\end{equation*}
$$

then all oscillatory solutions of equation (3) are bounded.
Proof. Let $y(t)$ be an oscillatory solution of (3). Let $T>t_{0}$ be large enough so that for $t>T, g(t)>t_{0}$. Since $\left(r(t) y^{\prime}(t)\right)^{(n-2)}$ is oscillatory, there exist a $T_{1}>t_{1}>t_{0}$ such that $\left(r\left(t_{1}\right) y^{\prime}\left(t_{1}\right)\right)^{(n-2)}=0$ and for $t \geq T_{1}, g(t) \geq t_{1}$. Designate $C_{0}=r\left(t_{1}\right) y^{\prime}\left(t_{1}\right)$, $C_{1}=\left(r\left(t_{1}\right) y^{\prime}\left(t_{1}\right)\right)^{\prime}, \quad C_{2}=\left(r\left(t_{1}\right) y^{\prime}\left(t_{1}\right)\right)^{\prime \prime} / 2!, \ldots, \quad C_{n-3}=\frac{\left(r\left(t_{1}\right) y^{\prime}\left(t_{1}\right)\right)^{(n-3)}}{(n-3)!}$.
From (3) on integration

$$
\begin{equation*}
\left(r(t) y^{\prime}(t)\right)^{(n-2)}+\int_{t_{1}}^{t} a(s) h(y(g(s))) d s=\int_{t_{1}}^{t} f(s) d s \tag{7}
\end{equation*}
$$

On repeated integration from (7) we have

$$
\begin{align*}
r(t) y^{\prime}(t)= & C_{0}+C_{1}\left(t-t_{1}\right)+C_{2}\left(t-t_{1}\right)^{2}+\cdots+C_{n-3}\left(t-t_{1}\right)^{n-3} \tag{8}\\
& -\int_{t_{1}}^{t} \frac{(t-s)^{n-2}}{(n-2)!} a(s) \frac{h(y(g(s)))}{y(g(s))} y(g(s)) d s \\
& +\int_{t_{1}}^{t} \frac{(t-s)^{n-2}}{(n-2)!} f(s) d s .
\end{align*}
$$

Dividing (8) by $r(t)$ and then integrating between t_{1} and $g(t)$ for $t \geq T_{1}$ we have

$$
\begin{aligned}
& y(g(t))=y\left(t_{1}\right)+C_{0} \int_{t_{1}}^{g(t)} \frac{1}{r(s)} d s+C_{1} \int_{t_{1}}^{g(t)} \frac{\left(s-t_{1}\right)}{r(s)} d s+\cdots \\
& \quad \quad+C_{n-3} \int_{t_{1}}^{g(t)} \frac{\left(s-t_{1}\right)^{n-3}}{r(s)} d s \\
& \quad-\int_{t_{1}}^{g(t)} 1 / r(s) \int_{t_{1}}^{s} \frac{(s-x)^{n-2} a(x) h(y(g(x))) y(g(x)) d x}{(n-2)!y(g(x))} d s \\
& \quad+\int_{t_{1}}^{g(t)} 1 / r(s) \int_{t_{1}}^{s} \frac{(s-x)^{n-2}}{(n-2)!} f(x) d x d s .
\end{aligned}
$$

$$
\begin{aligned}
& |y(g(t))| \leq K_{0}+m K_{1} \int_{t_{1}}^{t} \int_{t_{1}}^{s} \frac{(s-x)^{n-2}}{s^{n-k}}|a(x)||y(g(x))| d x d s \\
& \quad+K_{1} \int_{t_{1}}^{t} \int_{t_{1}}^{s} \frac{(s-x)^{n-2}}{s^{n-k}}|f(x)| d x d s \\
& \leq K_{0}+m K_{1} \int_{t_{1}}^{t} \int_{t_{1}}^{s} \frac{|a(x)| y}{s^{2-k}} d x d s+K_{1} \int_{t_{1}}^{t} \int_{t_{1}}^{s} \frac{|f(x)| d x d s}{s^{2-k}}
\end{aligned}
$$

where

$$
\frac{1}{r(t)} \leq \frac{K_{1}}{t^{n-k}}
$$

Changing the order of integration in the above we get

$$
\begin{align*}
|y(g(t))| \leq K_{0} & +m K_{1}\left[\int_{t_{1}}^{t} \int_{x}^{t} \frac{1}{s^{2-k}} d s\right]|y(g(x))||a(x)| d x \tag{9}\\
& +K_{1} \int_{t_{1}}^{t}\left[\int_{x}^{t} \frac{1}{s^{2-k}} d s\right]|f(x)| d x
\end{align*}
$$

Since $0 \leq k<1, \int_{x}^{t} \frac{1}{s^{2-k}} d s \leq K_{2}$ for some $K_{2}>0$.
Let $m K_{1} K_{2}=K_{3}$. We have from (9)

$$
\begin{equation*}
|y(g(t))| \leq K_{0}+K_{3} \int_{t_{1}}^{t}|a(x)||y(g(x))| d x+K_{1} K_{2} \int_{t_{1}}^{t}|f(x)| d x \tag{10}
\end{equation*}
$$

and since $\int_{t_{1}}^{\infty}|f(x)| d x<\infty$, there exists $K_{4}>0$ such that

$$
\begin{equation*}
|y(g(t))| \leq K_{4}+K_{3} \int_{t_{1}}^{t}|a(x)||y(g(x))| d x . \tag{11}
\end{equation*}
$$

The conclusion of the lemma follows from (11) by application of Gronwall's inequality. The proof is complete.

Rbmark. The following inequality is needed in the proof of our main theorem:
If $t_{1}<t_{2}<t_{3}$ then

$$
\left|\int_{\mathrm{t}_{\mathrm{t}}}^{t_{2}} \int_{s}^{t_{3}} a(x) d x d s\right| \leq \int_{t_{1}}^{t_{3}} \int_{s}^{t_{3}}|a(x)| d x d s \leq \int_{t_{1}}^{\infty} \int_{s}^{\infty}|a(x)| d x d s
$$

which gives by induction

$$
\begin{align*}
& \left|\int_{t_{1}}^{t_{2}} \int_{s_{3}}^{t_{3}} \int_{s_{4}}^{t_{4}} \cdots \int_{s_{n}}^{t_{n}} a(x) d x d s_{n} \cdots d s_{3}\right| \tag{12}\\
& \quad \leq \int_{t_{1}}^{t_{n}} \int_{s_{3}}^{t_{n}} \int_{s_{4}}^{t_{n}} \cdots \int_{s_{n}}^{t_{n}}|a(x)| d x d s_{n} \cdots d s_{3}
\end{align*}
$$

$$
\leq \int_{t_{1}}^{\infty} \int_{s_{3}}^{\infty} \cdots \int_{s_{n}}^{\infty}|a(x)| d x d s_{n} \cdots d s_{3}
$$

where $t_{1}<t_{2}<t_{3}<\cdots<t_{n-1}<t_{n}$.
Theorem (2.1). Suppose $\int^{\infty} t^{n-2}|a(t)| d t<\infty, \int^{\infty}|f(t)| t^{n-2} d t<\infty$ and $1 / r(t)$ $=O\left(t^{n-k}\right), 0 \leq k<1$, then oscillatory solutions of (3) approach zero as $t \rightarrow \infty$.

Proof. Suppose to the contrary that some oscillatory solution $y(t)$ of (3) is such that $\lim _{t \rightarrow \infty} \sup |y(t)|>2 d>0$ for some number d. By Lemma (2.1), $y(t)$ is bounded.

Let T be large enough so that for $T_{1}>T, \quad \int_{T_{1}}^{\infty} 1 / r(t) d t<1$,

$$
\begin{equation*}
m \int_{T_{1}}^{\infty} x^{n-2}|a(x)| d x<d / M_{1}^{2} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{T_{1}}^{\infty} x^{n-2}|f(x)| d x<d / M_{1} \tag{14}
\end{equation*}
$$

where $M_{1}=\sup \{|y(t)|, t \geq T\}$. Let t_{1}, t_{2} be zeros of $y(t)$ such that $\operatorname{Max}|y(t)|>d$ for $t \in\left[t_{1}, t_{2}\right]$. Let $p_{1}<p_{2}<p_{3}<\cdots<p_{n-2},\left(p_{1}>t_{2}\right)$ be zeros of $\left(r(t) y^{\prime}(t)\right)^{\prime}$, $\left(r(t) y^{\prime}(t)\right)^{\prime \prime}, \ldots,\left(r(t) y^{\prime}(t)\right)^{(n-2)}$. On repeated integration from (3) for $t<p_{1}$

$$
\begin{aligned}
\pm\left(r(t) y^{\prime}(t)\right)^{\prime}= & -\int_{t}^{p_{1}} \int_{s_{2}}^{p_{2}} \cdots \int_{s_{n-2}}^{p_{n-2}} a(x) h(y(g(x))) d x d s_{n-2} \cdots d s_{2} \\
& +\int_{t}^{p_{1}} \int_{s_{2}}^{p_{2}} \cdots \int_{s_{n-2}}^{p_{n-2}} f(x) d x d s_{n-2} \cdots d s_{2}
\end{aligned}
$$

which gives by (12)

$$
\begin{aligned}
\left|\left(r(t) y^{\prime}(t)\right)^{\prime}\right| \leq & m \int_{t}^{p_{n-2}} \int_{s_{2}}^{p_{n-2}} \cdots \int_{s_{n-2}}^{p_{n-2}}|a(x)||y(g(x))| d x \cdots d s_{2} \\
& +\int_{t}^{p_{n-2}} \int_{s_{2}}^{p_{n-2}} \cdots \int_{s_{n-2}}^{p_{n-2}}|f(x)| d x \cdots d s_{2}, \quad \text { for all } \quad t \in\left[t_{1}, t_{2}\right]
\end{aligned}
$$

Therefore

$$
\begin{align*}
\int_{t_{1}}^{t_{2}}\left|\left(r(t) y^{\prime}(t)\right)^{\prime}\right| d t \leq m & \int_{t_{1}}^{p_{n-2}} \int_{s_{1}}^{p_{n-2}} \int_{s_{2}}^{p_{n-2}} \cdots \int_{s_{n-2}}^{p_{n-2}}|a(x)||y| d x \cdots d s_{2} d s_{1} \tag{15}\\
& +\int_{t_{1}}^{p_{n-2}} \int_{s_{1}}^{p_{n-2}} \int_{s_{2}}^{p_{n-2}} \cdots \int_{s_{n-2}}^{p_{n-2}}|f(x)| d x \cdots d s_{2} d s_{1}
\end{align*}
$$

$$
\begin{aligned}
\leq & \frac{m}{(n-2)!} \int_{t_{1}}^{\infty}\left(x-t_{1}\right)^{n-2}|a(x)||y(g(x))| d x \\
& +\frac{1}{(n-2)!} \int_{t_{1}}^{\infty}\left(x-t_{1}\right)^{n-2}|f(x)| d x
\end{aligned}
$$

Let

$$
T_{0} \in\left[t_{1}, t_{2}\right] \text { such that } M=\left|y\left(T_{0}\right)\right|=\max |y(t)| \text { in }\left[t_{1}, t_{2}\right]
$$

Now

$$
\begin{equation*}
M=\int_{t_{1}}^{T_{0}} y^{\prime}(t) d t=-\int_{T_{0}}^{t_{2}} y^{\prime}(t) d t \tag{16}
\end{equation*}
$$

which gives

$$
\begin{equation*}
2 M \leq \int_{t_{1}}^{t_{2}}\left|y^{\prime}(t)\right| d t=\int_{t_{1}}^{t_{2}}(r(t))^{1 / 2}\left|y^{\prime}(t)\right|^{1 / 2}(r(t))^{-1 / 2}\left|y^{\prime}(t)\right|^{1 / 2} d t \tag{17}
\end{equation*}
$$

By Schwarz's inequality

$$
\begin{equation*}
4 M^{2} \leq \int_{t_{1}}^{t_{2}} 1 / r(t) d t \int_{t_{1}}^{t_{2}}\left(r(t) y^{\prime}(t)\right) y^{\prime}(t) d t \tag{18}
\end{equation*}
$$

Integrating second integral by parts gives

$$
\begin{equation*}
4 M \leq\left[\int_{t_{1}}^{t_{2}} 1 / r(t) d t\right]\left[\int_{t_{1}}^{t_{2}}\left|\left(r(t) y^{\prime}(t)\right)^{\prime}\right| d t\right] \tag{19}
\end{equation*}
$$

since $|y(t)| \leq M$. Without any loss of generality we can assume that $d \leq M M_{1}$. From (15) and (19) we have
(20) $\quad 4 M \leq\left(\int_{t_{1}}^{\infty} 1 / r(t) d t\right)\left[\frac{m}{(n-2)!} \int_{t_{1}}^{\infty}\left(x-t_{1}\right)^{n-2}|a(x)||y(g(x))| d x\right.$

$$
\left.+\frac{1}{(n-2)!} \int_{t_{1}}^{\infty}\left(x-t_{1}\right)^{n-2}|f(x)| d x\right]
$$

From (20), (13) and (14)

$$
\begin{equation*}
4 \frac{d}{M_{1}} \leq\left(\int_{t_{1}}^{\infty} 1 / r(t) d t\right) \frac{2 d}{M_{1}} \tag{21}
\end{equation*}
$$

Conclusion follows from contradiction apparent in (21), since

$$
\int_{t_{1}}^{\infty} 1 / r(t) d t<1
$$

The proof is complete.

References

[1] Bhagat Singh, Forced oscillations in general ordinary differential equations with deviating arguments, Hiroshima Math. J., 6 (1976), 7-14.
[2] V. A. Staikos and C. G. Philos, Some oscillation and asymptotic properties of linear differential equations, Bull. Fac. Sci,, Ibaraki Univ. Math., 8 (1976), 25-30.

Bhagat Singh,
Department of Mathematics,
University of Wisconsin Center,
Manitowoc, WI 54220,
U.S. A.

