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Introduction

R. Vazquez Garcia [19] and S. Araki [1] introduced two kinds of the
Steenrod operations into the mod p Serre spectral sequence {E,}, that is, the
squaring operations

(@) Sq': Ept— Ep'* i<y,
(b) Sg': Byt — Efricta (ix1),
for p=2, and the reduced power operations
(a) pePi: Ept — Eptt2ile—1)te Ri<t;e=0,1),
(b) pePi: E3t —— Est(2i—n)(p=1)te,pt RRi>t;e=0,1),

for p an odd prime; and they discussed the properties of these operations. Also
L. Kristensen [6], [7] obtained the results by using the simplical method.

On the other hand, along with the establishment of the Eilenberg-Moore
spectral sequence, J. P. May conjectured at the Conference on Algebraic Topolo-
gy at Chicago Circle in 1968 that one might introduce the Steenrod operations into
the mod p Eilenberg-Moore spectral sequence; and then D. Rector [10] and
L. Smith [15], [16] showed that the mod p Eilenberg-Moore spectral sequence
is a spectral sequence of modules over the mod p Steenrod algebra with respect
to the operations of type (a).

Further, in his work [9], J. P. May developed a general theory to introduce
the Steenrod operations into a spectral sequence, and W. M. Singer [14] intro-
duced the squaring operations of both types (a) and (b) into a class of spectral
sequences such as the change of ring spectral sequence, the Eilenberg-Moore
spectral sequence and the Serre spectral sequence. It remains to introduce the
Steenrod reduced powers into such spectral sequences.

The purpose of this paper is to introduce and study the Steenrod operations
of both types (a) and (b) for any prime p in such a class of spectral sequences of
Eilenberg-Moore type. The main results are Theorems 1.2, 1.3, 1.4, 1.5 and
1.6. Our results extend those obtained by W. M. Singer [14] who worked when
p=2. The method is slightly different from [14]. The key lemma is Lemma
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2.3, which follows from A. Dold [3; Satz 1.12], and this enables us to work for
any prime p.

The paper is motivated by introducing the Steenrod operations into the
Eilenberg-Moore spectral sequence to calculate the cohomology of the classifying
spaces of Lie groups. To have the Steenrod operations in the spectral sequence
is helpful in at least two ways: first in proving the collapsing of the spectral
sequence and second in reproducing the data lost in passing to quotient. The
applications are found in the works of M. Mimura and M. Mori®*, A. Kono
and M. Mimura**), M. Mimura and Y. Sambe***), and M. Mori****), in
which they calculate the cohomology of the classifying spaces of some Lie groups
whose integral homology groups have torsion groups.

The author would like to express his gratitude to Professors Tatsuji Kudo,
Masahiro Sugawara, Mamoru Mimura and Shichir6 Oka who read this manu-
script and gave him advices.

§1. Results

Let p be a prime, and @ be the category of finite ordered sets and non-
decreasing maps. A simplicial Z,-module R is a contravariant functor from
0 to the category of Z,modules, that is, R is a collection of Z,-modules R,
(n>0) together with morphisms d;: R,—R,_;, 5;: R,—R,,, (0<i<n), called the
face operators and the degeneracy operators, which satisfy the simplicial identities
(see J.P. May [8; Definitions 1.1 and 2.1]). Then we write CR for the Z,-
complex such that C,R=R,, d=3%(—1)'d;, and CR forms a differential Z,
coalgebra with coproduct éD: CR—C(R x R)»CR®CR, where D is the diagonal
map and ¢ is the Alexander-Whitney map. A simplicial Z,coalgebra is a
simplicial Z ,-module equipped with the coproduct {D.

A bisimplicial Z,-module is a contravariant functor from ¢ x0 to the
category of Z,-modules. We write d¥%, s for the horizontal face and degeneracy
operators and d?, s? for the vertical face and degeneracy operators. Let K be a
bisimplicial Z,-module. We write CK for the double Z,-complex such that
ConK=K,,,, d"=3(—1)'d%, d*=3(—1)'dY, and TK for the total Z,-complex
such that T,K=73%,,,-,C,,K, d=d"+(—1)*d” on C,,K. Then we can give CK

*) The squaring operations in the Eilenberg-Moore spectral sequence and the classifying space
of an associative H-space, I, Publ. Res. Inst. Math. Sci., Kyoto Univ. 13 (1977), 755-776.
xx) On the cohomology mod 2 of the classifying space of AdE,, J. Math. Kyoto Univ.,
18 (1978), 535-542.
*xx) On the mod p cohomology of the classifying spaces of the exceptional groups, I, II, III, IV,
J. Math. Kyoto Univ., to appear.
*xxx) The mod 2 cohomology of the classifying space of the semi-spinor group Ss(12), mimeo-
graphed note.
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the bigraded Z,-coalgebra structure in the above way, and a bisimplicial Z,-
module with this structure is called a bisimplicial Z,-coalgebra. Apparently
the coalgebra structure on CK induces the ones on TK and on K.

An augmentation ¢: K—R for a bisimplicial Z,-coalgebra K is a morphism
such that e=0 on K, for s>0 and that ¢: Ky4— R4 is a morphism of simplicial
Z ,-coalgebras satisfying edf =edf: K,,—R,, where R is a simplicial Z,-coalgebra.

Dualizing them, we can define a cosimplicial Z,-module, -algebra, a bico-
simplicial Z -module, -algebra, and a coaugmentation, etc. Obvious notation
and terminology are similarly used (see, for example, [2], [11]).

We now state our results. Let R be a simplicial Z,-coalgebra and K a bisim-
plicial Z,-coalgebra. Then Hom(R, Z,) and Hom(K, Z,) form a cosimplicial
Z,-algebra and a bicosimplicial Z -algebra, respectively, and hence H*(CR) and
H*(TK) have the products. We shall define the Steenrod operations on H*(TK)
as well as on H*(CR), and prove the following proposition in §2:

ProrosiTION 1.1. Let ¢: K—R be an augmentation. Then &*:. H*(CR)
—H*(TK) preserves the products and the Steenrod operations.

We define an increasing filtration on TK by

F,T.,K = % K,

s+t=n
ssr

This gives rise to a spectral sequence passing to Hy(TK). Dually, putting T"K
=Hom (T,K, Z,), we define a decreasing filtration on T*K by

F'T'K = {fe T"K|f(F,-,T,K) = 0},

which gives rise to a spectral sequence {E,} passing to H*(TK).

This spectral sequence {E,} is a spectral sequence of Z,-algebras. Further
we shall define the ‘Steenrod operations’ on E,, r>2, (see § 3):

(@) Sq':Eyt—s Extti (i<1),
BePi: Ept — Esrt2ie-Die  (2i < t;8=0, 1),
(b) Sq': Byt — EFFiTRE (i),
pePi: Egt — Est@imn@-Drert  (2j >t =0, 1).

Here we always assume that the underlying coefficient ring is Z, for the
squaring operations and Z,, p an odd prime, for the reduced power operations.

THEOREM 1.2. The Steenrod operations on E, determine those on E, for all
r=2.
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THEOREM 1.3. Let ue E®*.
(i) Ifi<t—r+1, then d Sq'u=Sq'du. If2i<t—r+1, then

d,fPiu = (— 1)*f:P'd,u.

@) If t—r+1<i<t, then Sq'u survives to E3'*' where q=2r+i—t—1,
Sq'd,u survives to E5t-272r+2, gnd

d,Sq'u = Sq'd,u.

If t—r+1<2i<t, then P*P'u survives to E$'*2i¢~*e where q=r+(2i—t+
r—1)(p—1)+e¢, peP'd,u survives to E5Fa-t+2ip~¥eta=1 gpd

dpfPu = (— 1)*pePid,u.

(iii) If t<i, then Sq'u survives to ES'"2' where q=2r—1, Sqidu
survives to Efl+‘1+“'-2t-2r+2’ and

d,Sq'u = Sq'd,u.

If t<2i, then B*P'u survives to ES*@i=0@=1*te.pt ywhere g=rp—p+1-+¢, f*Pidu
survives to E-}"’(zi‘t)(P—1)+2+q.p!+q—1’ and

d BPiu = (— 1)*BePid,u.

THEOREM 14. Let p: F»*=FsHs**(TK)—E$*' be the natural projection
and ue Fs*.

(i) Ifi<t, then Sq'ue F** and pSq‘u = Sq‘pu.
If 2i <t, then B*P'ueFs* and pB*P'u = B*Pipu.

(i) If t < i, then Sq'ue Fs*=%2t and pSq'u = Sq'pu.
If t < 2i, then PePlue Fs+t@i-n@-D+et-Qi=n(-1=¢ gnd pBePiu=pePipu.

Proofs of Theorems 1.2, 1.3 and 1.4 will be given in § 3.

The Eilenberg-Moore spectral sequence is a typical example of this spectral
sequence ([5], [10], [12], [13]). Let G be a connected associative H-space.
Let X be a right G-space and Y a left G-space. Then we have the Eilenberg-
Moore spectral sequence

Ez = COtOrH.(G;zp)(H*(X; Zp), H*(Y; Zp))————>H*(X XG Y; Zp)’

to which our results are applicable (see § 4).

It is known in [9], [18] that two kinds of the Steenrod operations are defined
on Cotoryug,z,(H*(X; Z,), H*(Y; Z,)) (=Cotor), that is, the vertical squaring
operations

Sq} : Cotors'* — Cotors:**i,
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the diagonal squaring operations
Sq}: Cotors:* — Cotors*i=t.2f,
for p=2, and the vertical reduced power operations
pePi : Cotors* —— Cotor®!+2i(p=1te
the diagonal reduced power operations
peP}: Cotors* —— Cotors*2i=n(p~Dte.pt,

for p an odd prime. The vertical operations are induced by the topological
Steenrod operations and the diagonal operations are algebraically defined on
Cotor. These operations satisfy the usual properties such as the Cartan formula
and the Adem relations (see § 4).

We shall always assume that the coefficient ring in Cotor is Z, when we
consider these squaring operations, and Z,, p an odd prime, when we consider
these reduced power operations.

THeOREM 1.5. Through the isomorphism
E; = Cotoryug,z,(H*X; Z,), H¥(Y; Z,))

in the Eilenberg-Moore spectral sequence, (i) the squaring operation Sq* of
type (a) coincides with the vertical squaring operation Sq} if i<t, and the
reduced power operation B°P' of type (a) coincides with the vertical reduced
power operation BeP} if 2i<t, and (ii) the squaring operation Sq' of type
(b) coincides with the diagonal squaring operation Sqi, if i>t, and the
reduced power operation PP’ of type (b) coincides with the diagonal reduced
power operation P, if 2i>t.

Since the usual properties of the Steenrod operations such as the Cartan
formula and the Adem relations hold on Cotor, these properties inherit on the
E,-term for r>2 in the Eilenberg-Moore spectral sequence by Theorems 1.2 and
1.5.

NOTATION.
Sqi, = Sqistt: Cotors* — Cotors*i»2¢,
BePi = BePitt: Cotors:2t —— Cotors+2ip—1+z,2pt,
THEOREM 1.6.
(i) Sq3°Sqbu = SqpSqpu, Sq3**'Sqhu =0,  for ueCotor*.

(i) Pp°Phu = PyPgu, Pp**iP3u =0, for ueCotors?,
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where 0<i<p.

Proofs of Theorems 1.5 and 1.6 will be given in §4.

§2. The Steenrod operations

After J. P. May [9], we introduce some categories on which the Steenrod
operations will be defined.

Let p be a prime. Let © be a cyclic group of order p with generator o« and
X, the symmetric group on p-letters. Then 7 is regarded as a subgroup of X,
by a(l,..., p)=(p, 1,..., p—1).

Let W be the standard Z,n-free resolution of Z,, which has one generator
e; in each dimension i >0 (see [9; p. 157]). Let V'be a Z,X -free resolution of Z,
and j: W=V be a morphism of Z, n-complexes over Z,. We regard W as a
cochain complex by setting dege,= —i so that the differential is of degree +1,
and also V' as a cochain complex in a similar way.

Define a category %(p) as follows. The objects of #(p) are pairs (K, 6),
where K is a homotopy associative differential Z,-algebra with differential of
degree +1 and 0: W®KP—K is a morphism of Z,n-complexes, where n acts on
Kr=K®---®K (p-times) as a permutation, on W®KP? diagonally, and on K
trivially, such that (i) the restriction of 8 to ¢,® KP is t-homotopic to the iterated
product K?— K associated in some fixed order, and (ii) 6 is n-homotopic to a
composition ¢(j®1): WR®Kr—-VQ®KP—K, where ¢ is a morphism of Z,X,-
complexes. A morphism f: (K, §)—(K’, 6') in €(p) is a morphism f: K—K’
of Z,n-complexes such that §'(1® f¥) is n-homotopic to f6.

The category %(p) is essentially the same as %(m, o, Z,) defined in [9;
p. 160]. The only difference between them is the sign convention of degree of
differentials.

A morphism f: (K, 8)—(K’, ') is said to be perfect if 0'(1® fP)=f6, and
2(p) denote the subcategory of #(p) having the same objects (K, §) and all
perfect morphisms between them. A unital object, a reduced mod p object, a
Cartan object and an Adem object in €(p) are defined in the same way as [9;
p. 161, pp. 173-4].

For a simplicial Z,-module R, let C(R) denote the normalized chain com-
plex.

LeMMA 2.1.  Let n be a cyclic group of order p and W the standard Z,n-
free resolution of Z,. Then there is a natural morphism of Z ,-complexes

¢: WR® C(RP) — W® C(R)?,

where RP=R x - x R (p-times) and C(R)?=C(R)®---®C(R) (p-times), which
satisfies the following properties:
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(i) @ is m-equivariant,

(ii) @ is the identity homomorphism on W® Cy(RP),

(i) Pleo®kyx - xk,)=e,®@&(kyx - xk,) if k;eR, where &: C(RP)—
C(R)? is the Alexander-Whitney map, and

(iv) @(W® CyRP)) © ¥ <p;W ® [C(R)],

Proor. See A. Dold [3; Satz 1.12], and J. P. May [9; Lemma 7.1].
q.e.d.

We write ¢ for the composite
¢ =(e®HP: W® C(R?) 2, W® C(R) 2L, C(R),

where e: W—Z, is an augmentation.
Let C*(R)=Hom (C(R), Z,), (C(R)*)*=Hom (C(R)*, Z,), and U: C*R)"—
(C(R)?)* be the natural shuffle map. We define a Z,n-morphism

0: W® C*R)» — C*(R)
by
0w ® x)(1) = (— DiesveesxUx)p(w @ 1),
where w € W, x € C¥(R)?, t e C(R).
LeMMA 2.2. (C*(R), 0) is a reduced mod p object of the category €(p).

ProoF. This is immediate from Lemma 2.1 (see [9; pp. 194-5]).
q.e.d.

Let K be a bisimplicial Z,-module. Let C(K) denote the normalized double
Z ,-complex and T(K) the normalized total complex, and set C*(K)=Hom (C(K),
Z,) and T*(K)=Hom(T(K), Z,).

LeEmMMA 2.3. There exists a natural morphism of Z,-complexes
¢: W T(K) — T(K)y = T(K) @ ® T(K) (p-times),
which satisfies the following properties:

(i) ¢ is m-equivariant,

(i) Pp(w®t)=tP, where t is a O-simplex and we W,

(iii) (e, ®1) =e,®E(t?), where te T(K) and & is the Alexander-Whitney
map, and

(V) HW® T(K)) © Ticp [TK)P ],

ProOOF. The map ¢ is defined componentwise as follows:
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Wk ® Cs,t(K)_m i+z' kVVi ® WI ® Cs,t(Kp)
7=

182", T W ¥ C(K)®-® (. (K)

i+j=k tytettp=ttj

—, 3 z Coit(K) ®-® C,, .(K).
i+j=k ty++tp=t+j
syte+sp=sti

Here D is the diagonal map, and ¢* and ¢"* are constructed with respect to the
vertical degree and the horizontal degree, respectively, by using Lemma 2.1.
Now the lemma is proved by using Lemma 2.1 again. q.e.d.

Let (T(K)?)*=Hom (T(K)?, Z,), and U: T*(K)> — (T(K)*)* be the natural
shuffle map. We define a Z,n-morphism

0: W® THK) — T*(K)
by
B(w @ x)(f) = (— D)¢s*ds=U(x)p(w ® 1),
where we W, x e T*(K)?, te T(K).
LeMMA 2.4. (T*(K), 0) is a reduced mod p object of the category €(p).

Proor. By Lemma 2.3, this is proved in the same way as Lemma 2.2,
g.e.d.

Now we shall introduce the Steenrod operations, following J. P. May [9].
Let (X, 6) be an object of €(p). 6 induces a morphism 6: W®,KP->K of Z,-
complexes, and we define

D}: H?(K) — HP1~(K)
by
Di(x) = 6*(e; ® xP) for xe H(K).

NoTATION. When p is an odd prime, we set
m = (p - /2,
v(—¢q)=(—1)Ji(m!)?, where q=2j—¢ e=0 or 1.
If p=2, then we define Sq*: H4(K)—H%*(K) by
Di(x) (i<9

Sqi(x) =
(i>q).
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If p>2, then we define Pi: HY(K)—H4*2i¢~1)(K) and fP!: H4(K)—Hat2i(p~D+1
(K) by

{ (= Div(— g)Dla~2Dr~1)(x) (i< q)
Pi(x) =
(2i > q),
(— Div(— q)Da=20e-D-1(x)  (2i < q)
BPi(x) =
2i > q).

By virtue of Lemmas 2.2 and 2.4, we can define, in the above way, the Steenrod
operations in H*(TK) as well as in H*(CR). Further, by [9; p. 162], the opera-
tion BPi on H¥(TK) and on H*(CR) is the composite of P* and the Bockstein
B.

PrOOF OF ProposITION 1.1.  Since ¢*: C*(R)-»T*(K) is a morphism of
differential Z,-algebras, the first half follows immediately. By the definitions of
0’s, we have the following commutative diagram

W® C*(R)P —, C*(R)

11®(5n)p lgn

W® T*K)? — T*K).

Thus the second half follows from the above definition of the Steenrod operations.
q.e.d.

§3. The Steenrod operations in the spectral sequence

Let K be a bisimplicial Z,-coalgebra. As is described in § 1, the decreasing
filtration {F*T*(K)} on the total complex T*(K)=Hom(T(K), Z,) gives rise to
a spectral sequence {E,} passing to H*(TK). In this section we shall introduce
the Steenrod operations into the spectral sequence {E,} and prove Theorems 1.2,
1.3 and 1.4.

We first define functions Sq’: T9K)—-T4*¥K) and peP': T4K)—>
Ta+2ip~D+y(K), =0, 1, after S. Araki [1] and J. P. May [9].

Let ae T9(K) and da=be T9*1(K). Assume that p>2. Define t,e T*(K)?
(I<I<p) by

ty=21( = D*(k — 1)!b4a?b*2q?---bix+142, 1<k<m,
where I=(iy,..., iy) with 3 i;=p—2k, and
tyrr = 21(— DXk \bi1g2btz2q2...bix+1q, 0<k<m,
where I =(iy,..., iy4) With 3i;=p—2k—1. Then
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degt,,=p(q + 1) — 2k, degtyry =plg +1) — 2k — 1.
Put j=(g—2i+1)(p—1). Define
c=Yro(—Dke;_ 2 ® tars1 — Zh=i(— D¥ej_gp41 @ (@71 = 1Py,
¢ = 2ho(— Drej k-1 @ toprs + Ziai(— D¥ejni ® 1y
Then
degc=q + 2i(p — 1), degc’ =q+2i(p—1)+ 1.
An easy calculation shows that
dc=e;®br, dc'= —¢;_; ® br.
Now define functions P and BP* by
Pia = (— 1)iv(— q + DO(o),
BPia = (— 1)iv(— q + 1O(c).
If p=2, we define Sq* by
Sqia = 6(c), where c=¢,_; 1 ®bR®a+e_;®a® a.
Then, we see immediately the following (see J. P. May [9])

LeMMA 3.1. These functions Sq*: TY(K)-T %K) and pB¢P': TY(K)—
Ta+2ie=D+e(K) satisfy the following properties:

(i) dSq' = Sqid, dpeP' = (— 1):fePid.

(ii) If a is a cocycle which represents x e H¥(TK), then Sq'a and p*Pia
are cocycles which represent Sq*x and BtPix, respectively.

(iii) If f:(T*K), )—(T*(K’), 0") is a morphism in 2(p), then fSq'
=Sq'f and fpP'=(—1)*B*P'f.

We now estimate the filtration degree. We define a filtration on T*(K)?
by

FTHKY = % FiTHK) @@ F*T*K).

ritetrp
Then the following lemmas and corollary follow immediately from definitions.
LemMA 3.2. If ae FsT*(K) and da=b € Fs*"T*(K), then
ty1 € For+(p=2r TH(K)p,

t2k+ LE Fept (p—2k—1)rT*(K)p_
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LemmA 3.3.
0(W, @ F*T*K)?) = F<*T*(K),
(W, @ F*T*K)?) = Flis<IPT*(K),
where lig(x) is the least integer greater than or equal to x.

COROLLARY 3.4. Let aeFs'=Fs'T*(K). Then

Sqia e Fs:t+i if i<t
Sqla e Fsti~t.2t if i>t,
pePia e Fsit+2i(p=1)+e if 2i<t,

PePia e Fst(2i=t(p=1)+e,pt if 2i>t.

27

Therefore in the E,-term of the spectral sequence passing to H*(TK), the

functions Sq* and B¢P¢ are defined as follows:
Sq'a = B(e,-; ® a?),
BPia = (= 1)'(— g + 1)8(co),
BP'a = (= 1)(— q + D)b(cp),
for a € Ey', where g=s+t and
co = (= Dmmamle, _snp-1) ® a¥,

C(,) = (""‘ 1)m+mqm!e(q_2i)(p_1)_1 ® a”.

Thus the functions Sq? and p¢P? are homomorphisms on the E,-term.

ly, recalling the usual formula
Ei,t —_ Z,s.,t/(dZ::;1-+1,t+r—-2 + Zi+1,t—1)’
25t = {x e FsT*(K)|dx € Fs**T*(K)}, r>1,

we obtain homomorphisms

Sqi: Est — Epti (i<?),
Sqil Ef" —_— E$+i—t,2t (iZt),
l;epi: E's,,t —_— Eﬁ,t+2i(p—1)+c (2i<t),

ﬁePi: E;‘,” > E5+(Zl-l)(p—1)+a.pl (2120,

General-
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for all r>0.

LeMMA 3.5. The functions Sq' and B*P* are homomorphisms on the E,-
terms for all r>0.

We now have
LeEMMA 3.6. LetacZy'. Then
SqlaeZytt if i<t—r+41,
SqlaeZ3'*' where g=i—t+2r—1 if t—r+1<i<t,
SqiaeZsti~t2 where q=2r—1 if ix>t,
pePlae Zpr+2ite~De jf 2i<t—r+1,
pePiae Zytt2ik~ e where q=r+ Qi—t+r—1(p—-1 +¢
if t—r+1<2i<t,
PePlae Zst2i-D-Dert ywhere gq=rp—p+1+¢ if 2i>t

Proor. Calculate dSqa, dfcP'a and estimate the filtration degree. Then
the lemma follows from Corollary 3.4 and the definitions. g.e.d.

ProOFs oF THROREMS 1.2, 1.3 AND 1.4. Theorem 1.2 follows immediately
from Lemmas 3.1 and 3.5; Theorem 1.3 from Lemmas 3.1 and 3.6, and Theorem
1.4 from Lemma 3.1 and Proposition 1.1. g.e.d.

§4. The Eilenberg-Moore spectral sequence

Let G be a connected associative H-space. Let X be a right G-space and
Y a left G-space. The geometric bar construction on X and Y over G, to be
denoted by G=6G(X, G, Y), is defined as follows. Put

G,=6G(X,G,Y)=XxGx--xGxY, n >0,
where the factor\ G occurs n-times. Define face operators d;: 6,—~G,_,; by
(Xg1s G252+ G V) (i=0)
0%, grses Gm ) =1 (X, 9153 ifis 100 gm ) (A <i<n—1)
(X, G150+ Gn-15 GnY) (i=n
and degeneracy operators o;: 6,—G, ., by

ai(xs G1sees Gns y) = (X, G153 Gis € Git 1525 ns y) (0 < i < n)
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where e € G is the identity. It is easy to check the simplicial identities in G(X, G,
Y).

Let S,(T) denote the singular chain complex of a space T in coefficient Z,
with all vertices at the base point and C,(T) denote the normalization of S.(T).
Let S*(T)=Hom(S«(T), Z,). The complex S,(T) is regarded as a simplicial
Z ,-coalgebra and S*(T) as a simplicial Z -algebra through the Eilenberg-Zilber
map.

We now obtain a bisimplicial Z -coalgebra K by setting K, x=S.(G,).
Here the horizontal face and degeneracy operators are d¥=(d,), and s!=(0))s,
respectively, and the vertical operators are the usual ones in S4(G,). Dualizing
this, we obtain a bicosimplicial Z ,-algebra K** =Hom (K, Z,).

Let p: Go,=X x Y- X x 5 Y be the projection. Then the map

P*: S*(X X 5Y)— S*(X) ® S*(Y),
is regarded as a map
p*: S*(X X G Y) I S*(X)Dsu(c)S*(Y),
and induces a coaugmentation
n: S¥(X xgY)— K**,
The cohomology of the bicosimplicial Z -algebra K** is, by definition, Cotorcs,

(C*(X), C*(Y)). Now J. C. Moore [10] states that the map #n induces an iso-
morphism

H*(X xY; Z,) = Cotore(C*(X), C¥Y)).

Filter the total complex T*(K) asin § 1. Then we have the Eilenberg-Moore
spectral sequence {E,} such that

E; = Cotoryegz,(HX(X; Z,), H¥(Y; Z,)))==> H*(X xgY;Z)),

into which the Steenrod operations are introduced as is discussed in §§2, 3.

We shall recall two kinds of the Steenrod operations in Cotorgs;z,(H*(X;
Z,), H«Y; Z))).

Define H,(G)=H,(X)®TH,(G)®H,(Y), where TH,(G) is the tensor
algebra of H,(G) and the coefficient ring is Z,. Then Hy(G) forms a simplicial
Z ,-coalgebra and the normalization B= CH ,(G) coincides, up to sign, with the
bar construction. The usual notation x[g,|--+|g,]y is used for an element in B.
The differential in B is given by

d(x[g:l---19a1y) = xg10921--19aly
+ Z(— D)ix[g4l--"19:9i+1]"--19ay
+ (= 1)"x[g4|-*|gn-119ny-
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(Remark that the sign convention differs from the usual one.)

LEMMA 4.1. Let n be a cyclic group of order p and let W be the standard
Z,n-free resolution of Z, such that Wo=Z,n with generator e,. Form W®B
and bigrade it by

[(W®B],=2%+;-W,®B;,.
Then there exists a morphism of bigraded Z ,n-complexes
¢ W®B—B"=B®---®B
which is natural in the B and satisfies the following properties:

(i) ¢(w®b)=0 if beB, and we W, i>0,

(ii) ¢(eo®b)=D(b) if b e B, where D is the iterated coproduct,

(iii) if X=G, then ¢ is a morphism of left H,(G)-modules, where H,(G)
operates on WQ®B by

a(w ® b) = (— 1)deswdeeay @ ab,
(iv) (W, ®B;) =0 if i>(p— Ds.
Proor. See, for example, J. P. May [9; Lemma 11.3]. q.e.d.

Define H*(G)=H*(X)@ TH*(G)® H*(Y). Then H*(G) forms a cosim-
plicial Z,-algebra and let C=CH*(G) denote the normalization of H*(G).
Apparently C is the dual to B and is a differential module over the mod p Steenrod
algebra.

DEerINITION. Let U: CP—(BP)* be the natural shuffie map and define a
Z ,n-morphism

0: wWCr — C
by
B(w ® x) (k) = (— Diee*d<sxU(x)p(w @ k),
for we W, xeCr, keB.
Using the terminology of [9], we have apparently

LemMma 4.2. (C, 0) is a reduced mod p object, a unital object, a Cartan
object and an Adem object of €(p).

Consequently we have

THEOREM 4.3. There exist natural homomorphisms Sqt, and BeP%, for
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i>0,e=0, 1, called the diagonal Steenrod operations, defined on Cotor=
Cotorye(g,z,(H¥(X 5 Z,), HX(Y ; Z,)), that is,

Sqh: Cotors* — Cotors+i~t:2¢,
BePh: Cotors:* —— Cotors*2i=n)(p=Dte.pr,
These operations satisfy the following properties:

(i) Sqgy=0 if i<t or i>s+1t,

Py=0 if 2i<t or 2i>s+t,

BPL =0 if 2i<t or 2i>s+t,
(i) Sghx=x2? if i=s+1t,

P¥x=xP if i=s+t  for xeCotorst,
(iii) the Cartan formula and the Adem relations hold.

Note that Sqp#1, Pj+#1.

NOTATION.
Sqi,=Sqitt: Cotors:* — Cotors*i:2t,
BePi = BePift: Cotor®:2t. —— Cotors*2i(p—1)+e.2pt,

On the other hand, since C is a differential module over the mod p Steenrod
algebra, the following Steenrod operations are induced on Cotor:

Sqi : Cotors:* — Cotors'*i,
BePj : Cotors:* — Cotor®:**2i(p=1)tz,

for i>0, =0, 1. These operations are called the vertical Steenrod operations
and satisfy, a priori, the usual properties such as the Cartan formula and the
Adem relations.

LemMA 4.4. Let nt be a cyclic group of order p. Then the Z,n-morphism
0: WCr» — C,

defined after Lemma 4.1, is a morphism of modules over the mod p Steenrod
algebra s ,, where o/, acts on WQCP by

a(w @ ¢) = (— 1)deswdesay @ ac,
foraesl,, weW, ceCr.

Proor oF THEOREM 1.5. Let u € E5* be represented by a e T?K such that
aeF’TK and dae Fs*2TK. Let p>2. Then BtP'u is represented by
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BePia = (— D)'v(— 9)0(e(y-2iyp-1)-: ® aP)
(see §3). Recall from Lemma 3.6 that
pePlae Zg1+2ip-te when 2i <1y,
pePiae Z5+H 2i—t)(p=1)te,pr when 2i >1.

Now we have, for ke T,(K),
(BPia) () = (= 1)¥(~ q)0(e(q- 2iy(p-1)-c @ @) (K)
= (= Di+eray(— q)U(a?)dleqq- 2iyp-1)-e @ k).

(i) Assume that 2i<t. Then estimating a filtration degree by Lemma 3.2,
we need only pick out from k the component which lies in C;,,2i,p-1y+. and
consider the composite

l/V(q-‘zi)(p—l)—s ® Cs,l+2i(p—1)+z(K)
28D, Wep-1) @ Wie-20p-1)-¢ @ Copr2ip-1)+e(KP)
8%, Wip-1) ® Co(K)P
—2* , C,(K)*.
Recall from [7; Lemma 8.2] that
PM(egp-1) @ ky ®® k,) = (= D)mv(— 5)"k; @ ® k,,

and an easy calculation shows that f¢Pia represents f¢Pu on Cotor.

(i) Assume that 2i>t. Then, estimating a filtration degree, we need only
pick out from k the component which lies in Cgy (3;—syp—1)+e,pr and consider the
composite

VV(q—Zi)(p—l)-—e ® Cs+(2i—r)(p—1)+e,pt(K)
—PBD , Wig-2iyip-1)-¢ ® Wo ® Cy(2i-typ—1)+e,p(KP)

—@i&) I/V(q—Zi)(p—l)—s ® Cs+(2i—t)(p—l)+c,t(K)p

2", C,(K)*.

Since @U(eo®k, x --- x k,)=&(ky x ---x k,) by Lemma 2.1, ¢*D is the diagonal
map. Remark that ¢* commutes with the internal differential. Then an easy
calculation shows that f*Pia represents f¢Phu on Cotor.

If p=2, then the proof is similar. q.e.d.
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ProOF OF THEOREM 1.6. Let p>2. Let u e Cotor®2* =~ E$2* be represented
by x e T*(K). Then by Lemma 4.4, P2°Phu is represented by

(#) = (= DY(= @)PP0(e-2)p-1) ® XP)
= (_ l)i,v(_ q,)a(e(s—zb)(p—l) ® (P"x)l’)
+ X 0(es-25yp-1) ® Plix @--® Pirx),

where i=b+t, g=s5+2t, i'=t+a(p—1), ¢ =s+2t+2a(p—1). Since the second
term is contained in the image of the boundary, (x) represents P4 Pgu.
If p=2, then the proof is similar. ‘ g.e.d.

§5. The Serre spectral sequence

Let f: E— B be the Serre fibration, where B is simply connected. According
to A. Dress [4], there is a bisimplicial Z -coalgebra K and an augmentation &: K
— S«(E) such that e*: H¥(E; Z,)—» H*(TK) is an isomorphism. Thus the filtration
on TK asin §1 gives rise to the Serre spectral sequence

Ey' = H¥B; H'(F,; Z,))=> H(E; Z,),  beB,

where F,=f"1(b), and Theorems 1.2, 1.3 and 1.4 recover those in [1], [6], [7]
and [19].
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