Structure of Rings Satisfying (Hm) and (Ham)

Raj Kumar Jain
(Received April 10, 1978)

All rings considered in this paper are commutative but may not have a unity. An ideal A of a ring R is said to be a multiplication ideal if for every ideal B of R, $B \subseteq A$, there is an ideal C of R such that $B = AC$. An ideal A is said to be an M-ideal if for every ideal B containing A, there is an ideal C of R such that $A = BC$. R is said to be a multiplication ring if every ideal of R is a multiplication ideal (equivalently every ideal is an M-ideal). A ring R is said to be an (AM)-ring if for any two ideals A and B of R, $A < B$, there is an ideal C of R such that $A = BC$. An ideal A is said to be simple if there is no ideal A' with $A' < A$. A ring R is said to be primary if R has at most one proper prime ideal. R is said to be a special primary ring if R has a prime ideal P such that every ideal of R is a power of P. If S is a multiplicatively closed subset of R and A is any ideal then A^e denotes the extension of A to the quotient ring R_S and A^{ec} denotes the contraction of A^e to R. R is said to satisfy (\ast)-condition if every ideal with prime radical is primary. R is said to satisfy (Hm) or (Ham) according as every proper homomorphic image of R is a multiplication ring or an (AM)-ring.

The purpose of this note is to determine the structure of rings satisfying (Hm) and (Ham) and the desired structure is given by Theorems 1.7 and 2.5.

1. Let R be a ring and N be its set of nilpotent elements. For any subset S of R, define $S_1 = (N : S) =$ set of all x in R such that $xS \subseteq N$[7, p. 434]. The following lemma is due to Griffin [7, Lemma 7].

Lemma 1.1. If for any element x of a ring R there exists an ideal D such that $(x) = D(N + (x) + x^1)$ then there is an idempotent $e \in (x^1)^1$ and a positive integer n such that $x^n = ex^n$.

Lemma 1.2. If R is a ring satisfying (Hm) and $x \in R$ such that $x^2 \neq 0$ then (x) is an M-ideal.

Proof. Suppose A is any ideal of R such that $x \in A$. Now $(x)/(x^2) \subseteq A/(x^2)$ in $R/(x^2)$ which is a multiplication ring. There is an ideal I containing x^2 such that $(x)/(x^2) = (A/(x^2))(I/(x^2))$. Thus $(x) = AI + (x^2) = A(I + (x)) + (x^2) = A(I + (x))$, since $x^2 \in A(I + (x))$. Therefore (x) is an M-ideal.

Corollary 1.3. If R is a ring satisfying (Hm) such that $\text{rad}(0) = (0)$ then R is a multiplication ring.
COROLLARY 1.4. If R is a ring satisfying (Hm) and $x \in R$ with $x^2 \neq 0$ then there are an idempotent $e \in (x^1)^1$ and an integer n such that $x^n = ex^n$.

PROOF. It follows from Lemmas 1.1 and 1.2.

LEMMA 1.5. If R is a ring satisfying (Hm) such that $x^2 \neq 0$ for some $x \in R$ then R is idempotent.

PROOF. Since $R/(x^2)$ is a multiplication ring, $(R/(x^2))^2 = R/(x^2)$. Thus $R = R^2 + (x^2) = R^2$.

THEOREM 1.6. If R is a ring satisfying (Hm) and $x \in R$ such that $x^2 \neq 0$ then there exists an idempotent e such that $x = ex$.

PROOF. Since $x^2 \neq 0$, (x) is an M-ideal. There is an ideal J of R such that $(x) = IR = IR^2 = (IR)R = xR$. Let $x = xy$, $y \in R$. Now $0 \neq x^2 = x^2y^2$ implies that $y^2 \neq 0$ and by Corollary 1.4 we get an idempotent e and an integer n such that $y^n = ey^n$. Then $x = xy = xy^2 = \cdots = xy^n = x(ey^n) = e(xy^n) = ex$.

NOTATION. Let R be a ring and x a non-zero element of R. If there exists a prime integer p such that $px = 0 = x^2$ then we denote $I^*_p = \{x, 2x, \ldots, px = 0\}$ which is isomorphic to $\mathbb{Z}/(p)$ as a \mathbb{Z}-module.

THEOREM 1.7.* A ring R satisfies (Hm) if and only if R satisfies one of the following:

I. R is a multiplication ring.
II. $x^2 = 0$ for each $x \in R$ and $R = l^p$ type.
III. R has a unity and a unique maximal ideal M such that
 (i) $M^2 = (0)$.
 (ii) If $x, y \in M$ such that $(x) \neq (y)$ and $(y) \neq (x)$ then $M = (x) + (y)$.
 (iii) There is an ideal A such that $(0) < A < M$ and every such A is principal.
 (iv) R does not contain a chain of five ideals.
 (v) R is noetherian.

PROOF. Assume R satisfies (Hm). Suppose II does not hold. Let $x \in R$ such that $x^2 \neq 0$. By Theorem 1.6 there exists an idempotent e such that $x = ex$. Let $A = eR$ and $B = \{r - er : r \in R\}$. Then A and B are ideals of R and it is easy to see that $R = A \oplus B$. Clearly $A \neq (0)$. If $A < R$ then $B \neq (0)$ and hence $A(\cong R/B)$ and $B(\cong R/A)$ are multiplication rings and consequently R is a multiplication ring. If $A = R$ then e is the unity of R and (i) to (v) of III follow from [14, Theorem 2.5 and Theorem 3.12]. Now suppose $x^2 = 0$ for each $x \in R$. If $(0) < (x) < R$,

*) I am indebted to the referee, whose comments enabled me to put Theorem 1.7 in the present form.
then $R/(x)$ is a multiplication ring. Let $\bar{e}=e+(x)$ be any non-zero idempotent in $R/(x)$. It can be easily seen that $\bar{e}^2 \neq 0$ which is impossible. Thus $R=(x)$ for every $x \neq 0$ in R. It is now plain that $R=I_p^*$ type for some prime integer p.

The converse is trivial, for if R satisfies I or II then R evidently satisfies (Hm) and if R satisfies III then R satisfies (Hm) by [14, Theorem 3.12].

Corollary 1.8. A ring satisfying (Hm) satisfies (\ast)-condition.

Proof. This follows from Theorem 1.7 and [6, Theorem 7].

2. In this section we establish the structure of rings satisfying (Ham). The structure of (AM)-rings was established by Mori [10] and Griffin [7].

Lemma 2.1. If R is an (AM)-ring then R satisfies one of the following:
I. $R=R^2$ and hence R is a multiplication ring.
II. $R \neq R^2$ and every non-zero ideal of R is principal and a power of R.

Proof. This is [7, Proposition 4].

Lemma 2.2. Let R be a ring satisfying (Ham). If $A<B$ are ideals of R such that $AB \neq (0)$ then there is an ideal C of R such that $A=CB$.

Proof. Let $a \in A$ and $b \in B$ such that $ab \neq 0$. Since $A/(a)<B/(a)$, there is an ideal I containing (a) such that $A/(a)=(I/(a))(B/(a))$. Thus $A=IB+(a)$. Again $(a)/(ab)<B/(ab)$ implies that there is an ideal J containing (ab) such that $(a)=JB+(ab)$. Thus $A=IB+JB+(ab)=(I+J)B+(ab)=(I+J)B$.

Corollary 2.3. If R is a ring satisfying (Ham) without nilpotent elements then R is an (AM)-ring.

Lemma 2.4. If A is any ideal of a ring R such that there is no ideal of R properly between A and A^2 then for every positive integer n, the only ideals between A and A^n are $A, A^2, A^3, ..., A^n$.

Proof. This is [3, Lemma 3].

Theorem 2.5. A ring R satisfies (Ham) if and only if R satisfies one of the following:
I. $R=R^2$ and R satisfies (Hm).
II. $R \neq R^2$ but $R^2=(0)$ such that every non-zero proper ideal of R is of the type I_p^* and every two proper distinct ideals I_p^* and I_q^* intersect at (0) and $R=I_p^* \oplus I_q^*$.
III. Either R is an (AM)-ring or there is a non-zero proper prime ideal P of R satisfying the following:
 (i) $P^2=(0)$ and $P=I_p^*$ type.
(ii) \(P < R^2 \) or \(R = R^2 \oplus P \).

(iii) The only ideals of \(R \) are \((0), P, R, R^2, \ldots\). Each ideal of \(R \) is generated by at most two elements.

Proof. Suppose \(R \) satisfies \((Hm)\).

Case I. \(R = R^2 \). We shall prove that \(R \) satisfies I. Let \(A \neq (0) \) be any ideal of \(R \). Since \(R/A \) is an \((AM)\)-ring and \((R/A)^2 = R/A \), we deduce from Lemma 2.1 that \(R/A \) is a multiplication ring. Thus \(R \) satisfies \((Hm)\).

Case II.* \((0) \neq R^2 < R \). In this case the ideals of \(R \) are the \(Z \)-submodules of the additive group \(R \). By Lemma 2.1, every homomorphic image of \(R \) is simple and isomorphic to \(Z/(p) \) for some prime \(p \). It follows that \(R \) is a finitely generated abelian group. By Lemma 2.1, \(R \) satisfies the condition II.

Case III. \((0) < R^2 < R \). Let \(0 \neq y \in R^2 \). Suppose there is an ideal \(I \) such that \(R^2 < I < R \). Then \(R/(y) \) is an \((AM)\)-ring and \((R/(y))^2 = R^2/(y) \leqslant R/(y) \). Lemma 2.1 implies that every non-zero ideal of \(R/(y) \) is a power of \(R/(y) \) which is impossible since \((R/(y))^2 < I/(y) < R/(y) \). Thus there is no ideal of \(R \) properly between \(R \) and \(R^2 \). Using Lemma 2.4 we deduce that the only ideals of \(R \) between \(R \) and \(R^n \) are \(R, R^2, \ldots, R^n \) for every integer \(n \). Hence every ideal of \(R \) properly containing \((y) \) is a power of \(R \). Let \(A \) be any ideal of \(R \). If \(A^2 \neq (0) \) then every ideal of \(R \) properly containing \(A^2 \) is a power of \(R \). In particular if \(A^2 < A \) then \(A \) is a power of \(R \). Hence for every ideal \(A \) of \(R \), either \(A^2 = (0) \) or \((0) \neq A = A^2 \) or \(A \) is a power of \(R \). Suppose \(A^2 \neq (0) \) and \(A \) is not a power of \(R \). Then \(A = A^2 \). Let \(0 \neq x \in A^2 \). Then every ideal of \(R \) properly containing \((x) \) is a power of \(R \). As \((x) \subseteq A \) and \(A \) is not a power of \(R \), we get \((x) = A \). Since \(A = A^2 \), \((x^2) = (x^3) = \cdots \). Let \(x = rx^2, r \in R \). Then \((rx)^2 = rx \). Denote \(e = rx \). Then \(e \) is a non-zero idempotent and \(A = (x) = (e) \). Let \(B = \{ r - er : r \in R \} \). Then \(R = A \oplus B \). \(A \cong R/B \) and \(A^2 = A \) implies that \(A \) is a multiplication ring. Since \(R \) is not a multiplication ring, \(B \) is not a multiplication ring. But \(B \cong R/A \) is an \((AM)\)-ring. Therefore \(B^2 \neq B \). Hence \(B^2 = (0) \) or \(B = R^k \) for some integer \(k > 1 \). If \(B^2 = (0) \), then \(R^2 = A^2 \oplus B^2 = A^2 = A \subseteq R \). We get that \(A = R^2 \) which is impossible. Now suppose that \(B = R^k, k > 1 \). Then \(R = A \oplus R^k = A^2 \oplus R^k \subseteq R^2 \) which is again impossible. Thus for every ideal \(A \) of \(R \), either \(A \) is a power of \(R \) or \(A^2 = (0) \). If \(A \) is any proper ideal of \(R \) such that \(A \not\subseteq R^2 \), then \(R = R^2 + A \). If there is a non-zero \(y \in R^2 \cap A \), then \(A \) is a power of \(R \) or \(A = (y) \subseteq R^2 \), a contradiction. Hence \(R = R^2 \oplus A \). Let \(0 \neq a \in A \). Then as above \(R = R^2 \oplus (a) \) and therefore \(A = (a) \). Thus every non-zero ideal \(A \) of \(R \) satisfies one of the following:

*) I am thankful to the referee for suggesting me the proof of Case II which has considerably simplified my original proof.
Structure of Rings Satisfying \((Hm)\) and \((Ham)\)

(i) \(A\) is a power of \(R\).

(ii) \(A^2=(0)\), \(A\) is a principal ideal generated by every non-zero element of \(A\) such that either \(R=R^2\oplus A\) or \(A<R^2\).

Also \(R^2\neq(0)\). Let \(a, b \in R\) such that \(ab\neq 0\). If \((ab)<(a)\) then \((a)\) is a power of \(R\) and if \((ab)<(b)\) then \((b)\) is a power of \(R\). If \((ab)\equiv(a)=(b)\) then we get \((a)\equiv(a^2)\) and such a case is impossible, as we have already proved. Thus for some \(k\), \(R^k=(x)\) is a principal ideal. If \(k=1\) then every ideal of \(R\) is principal. Suppose \(k>1\). Let \(R^t\) be any power of \(R\). We can find a least integer \(m\) such that \(t<2mk\). If \(R^t=R^{2mk}\) then \(R^t\) is a principal ideal. If \(R^t>R^{2mk}\) and \(R^{2mk}\neq(0)\) then \(R^t/R^{2mk}\) is a non-zero ideal of \(R/R^{2mk}\) which is an \((AM)\)-ring whose every ideal is principal. Since \(R^{2mk}\) and \(R^t/R^{2mk}\) are principal ideals, \(R^t\) is generated by at most two elements. If \(R^{2mk}=(0)\) then by Lemma 2.4, the only ideals of \(R\) are powers of \(R\) and hence \(R\) is an \((AM)\)-ring.

Consider now \(\text{rad}(0)\). If \(\text{rad}(0)=R\) then every element of \(R\) is nilpotent. Thus \(R^4=(x)\) is nilpotent, showing that \(R\) is an \((AM)\)-ring. If \(\text{rad}(0)\neq R\) then there is a prime ideal \(P\), \((0)<P<R\). Clearly \(P\) is not a power of \(R\). Thus \(P^2=(0)\) and \(P\) is the principal ideal generated by every non-zero element of \(P\) such that either \(R=R^2\oplus P\) or \(P<R^2\). Suppose \(A\neq(0)\) be any ideal of \(R\) which is not a power of \(R\). Then \(A^2=(0)\) and it implies that \(A\subseteq P\). Since \(P\) is generated by every non-zero element of \(P\), \(A=P\). Thus \(P\) is the only non-zero ideal of \(R\) which is not a power of \(R\). Hence either \(R\) is an \((AM)\)-ring or there is a prime ideal \(P\) of \(R\) such that \(P=I_2^t\) type, \(P<R^2\) or \(R=R^2\oplus P\).

Now assume that \(R\) satisfies any one of I, II, III. If \(R\) satisfies I then clearly \(R\) satisfies \((Ham)\). Suppose \(R\) satisfies II. If \(A\) is any non-zero proper ideal of \(R\) then \(R=A\oplus I_2^t\) type by II. Since \(I_2^t\) is an \((AM)\)-ring, \(R/A(\cong I_2^t)\) is an \((AM)\)-ring and hence \(R\) satisfies \((Ham)\). Lastly assume that \(R\) satisfies III. If \(R^k\neq(0)\) for any \(k\) then \(R/R^k\) is clearly an \((AM)\)-ring. It remains only to verify that \(R/P\) is an \((AM)\)-ring. Now any non-zero ideal of \(R/P\) is \((R^k+P)/P\) for any \(k\) an integer such that \(R^k\notin P\). Now \((R^k+P)/P=(R/P)^k\) and hence \(R/P\) is an \((AM)\)-ring.

Acknowledgement

The author expresses his gratitude to Professor Surjeet Singh, Department of Mathematics, Guru Nanak Dev University, Amritsar (India), for his kind guidance during the preparation of this manuscript.

References

Department of Mathematics,
Guru Nanak Dev University,
Amritsar–143005, India