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1. Introduction

In this paper we shall be concerned with the behavior at infinity of the Riesz

potential £7{J which is defined by

where 0<α<n and μ is a non-negative measure on Rn. The potential U% may

take the value oo on a countable dense subset of Rn, but it may occur that

Wl/£(x) tends to zero as |x|->oo except for x in a set which is thin at infinity in

a certain sense, /?g:0 being a number determined by μ.

We shall work on the case of potentials of functions which belong to the

Lebesgue class Lp(Rn), l<p<oo. In order to define the thinness at infinity of

a set in this case, we shall use the following capacity: The (α, p)-capacity of a

set E relative to an open set G is defined by

'
C.,/E;G) = infi l l

where the infimum is taken over all non-negative functions g e Lp(Rn) such that

g vanishes outside G and U%(x) ̂  1 for all x e E. We say that E is (α, p)-thin at

infinity if

where £<*> = {xe£; 2k^\x\<2k+l} and Gk = {xeR»; 2*-1<|x|<2*+2}. It will

be proved in §4 that if αprgtt and / is a non-negative function in Lp(Rn) with

ί/{^oo, then |x|(Λ"αp)/pC/{(x) tends to zero as |x|->oo except for x in a set which

is (α, p)-thin at infinity. Further it will be proved that if op < n and E is (α, p)-

thin at infinity, then there exists a non-negative function feLp(Rn) such that

oo and

lim \x\(«-*pVpUf

Λ(x) = oo.
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2. Preliminaries

Let Rtt be the n-dimensional Euclidean space. Throughout this paper, let
0<α<n and l<p<oo. The Riesz potential l/J will be decomposed as
W2, where

\X-y\<\X\/2

= ( \x-y\*-»dμ(y).
)\X-y\Z\x\/2

If μ has a density /, then we shall write l/{ , F{, ̂  for l/J, 7J, WJ respectively.
The Riesz capacity of order α of a set E is defined by

where the supremum is taken over all non-negative measures μ such that Sμ (the
support of μ)c:E and £/£(*) :g 1 for all xeSμ.

LEMMA 2.1 ([1; p. 61]). Let μ be a non-negative measure on R". In
order that ί/£^έoo, it is necessary and sufficient that

(2.1) J(l + bD'- 'dμϋO < oo,

or equivalently,

oo

some, and hence for any, open ball Bx>r with center at x and radius r.

COROLLARY 2.2. If μ satisfies (2.1), then W»(x) is finite for

LEMMA 2.3 ([2; Lemma 1]). Let μ be a non-negative measure on Rn. If
we set E={xeRn; I/;(x)^l}, then CΛ(E)^2n~*μ(Rn).

COROLLARY 2.4. For any non-negative measure μ, we have

C/{x6Λ»;7K*) = oo}) = 0.

For this it suffices to note that if x e B0)f9 then

By Corollaries 2.2 and 2.4, the following is easily established.
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COROLLARY 2.5. If μ satisfies (2.1), then

Denoting by S the boundary of B0tί9 we define for a set E and a number
r>0,

rE = {rx; xe£>, E = \J (r£) n S, E<Γ> = £ n B02r*ι - B02r.
r>0

LEMMA 2.6. i) CΛ(rE) = rπ-αCβ(E).
ii)

This follows readily from [1; Theorem 2.9].
As to the capacity Cβtp, we derive the following result.

LEMMA 2.7. i) CΛtp(rE rG) = r»-**CΛtp(E G).
ii) There is a constant M >0 SMC/I that

CΛtp(E; B0t3) ^ MCΛtp(E; B0J

whenever

The assertion!) can be proved in a way similar to [3; Lemma 4]. The
assertion ii) is nothing but [3; Lemma 5].

3. Potentials of measures

Let us begin with the definition of thinness.

DEFINITION 3.1. A set E will be called α-/Λ/Λ at infinity if

Σ 2-*<»-β>Cβ(£<*>) < oo.
*«ι

We remark here that for every subsequence {fcy } of the sequence of natural
numbers, £=WJL 1{xeRπ; 2*><|x|<2*'+1} is not α-thin at infinity.

LEMMA 3.2. Let μ be a non-negative measure such that

(3.1) (l + \y\)β-ndμ(y) < oo

for some β with αgjS^π.
i) There is a Borel set E which is a-thin at infinity and satisfies

lim \x\*-*Vl(x) = 0.
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ii) We have

( 0 in case α g β < n,

μ(Rn) in case β = n.

PROOF, i) Set

for each positive integer k. Then Σ?=ιαΛ<0° by OUΓ assumption (3.1). Hence
there is a sequence {bk} of positive numbers such that lim^^ f> f c=oo but

Σ *S= i α*A < °° Consider the set

At = {xe/*n; 2* ̂  |x| < 2*+1,

for each /c. If x e Afc, then

where μk is a non-negative measure defined by

μk(A) = bk2W-Λ)μ(A n B0)2^2 - £0s2k-ι) for a Borel set A.

Therefore it follows from Lemma 2.3 that

dμ(y)

We set £ = W?= !>4fc. Obviously £<*> = Ak and hence

f 2-fc("-β>Cα(^fc>) ^ 2"-β+2<w^> Σ «A < oo,
*=1 Λ=l

which implies that E is α-thin at infinity. Moreover we see that

lim sup \x\e-* Vί(x) ^ lim sup2^α^1 = 0.
|x|-+oo,χ^JE fc-»oo

ii) For each fixed y, |x|"-Λ|x~.y|α"n->0 (resp. 1) as |x|-»oo if κ£β<n
(resp. β=ri). Further, there is a constant M >0 such that

|x|*-α|x - y\Λ'n ^ M(l + \y\γ~n

whenever |x — y|^|x|/2^1. Hence we can apply Lebesgue's dominated con-
vergence theorem to obtain
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f 0 if α ̂  β < n,
lim \x\'- W%x) =

I'l-*00 [ μ(Rn) if β = n.

From this lemma we can derive the following theorem:

THEOREM 3.3. Let μ be a non-negative measure satisfying (3.1) for some

β with cc^β^n. Then there is a Borel set E which is a-thin at infinity and for

which

( 0 in case α ̂  β < n,

μ(Rn) in case β = n.

We state here the existence of limits of potentials along rays issuing from the

origin. Our result below is a generalization of [2; Theorem 1].

COROLLARY 3.4. Let μ be as in Theorem 3.3. 'Then there is a Borel set

EciS such that Cα(E) = 0 and

{ 0 in case α ̂  β < n

μ(Rn) in case β = n

for every ξeS — E.

This follows readily from Theorem 3.3 and the next lemma.

LEMMA 3.5. If E is a-thin at infinity, then Cα(Λ?=1£-50>k) = 0.

PROOF. Since E-B0i2J = V£=jE(k\ we have by Lemma 2.6

CΛ(E~^~B0>2J) ^ Σ CjS&>) ^ Σ 2-*(«-«>Cα(E<*>) > 0
K — J K J

as ;->oo, which yields the required equality in our lemma.

The rest of this section will be devoted to investigating the best possibility of

Theorem 3.3 as to the size of the exceptional set and the order at infinity.

PROPOSITION 3.6. Let α^jS^n and let E be a Borel set a-thin at infinity.

Then there is a non-negative measure μ satisfying (3.1) and

lim |x|'-«l7J(x) = OQ.
|jc|-+oo,χe£

PROOF. Since E is α-thin at infinity, we can find a sequence {ak} of positive

numbers such that lim^^ ak= oo and
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Σ αfc2-*<n-β>Cβ(E<*>) < oo.
*=ι

For each positive integer /c, there is a non-negative measure μk such that U*k(x)^

ak for xe£<*>, Sμk<=JS0f2k+2-J9oi2*-ι and μk(Rn)£akCa(EW)+2~k. Setting μ =

Σ£=ι2~*(/ϊ~β)μfc, we have

£ 2"-*2-*<w-«>{flfcCe(£<*>) 4- 2-*} < oo,

which implies (3.1). For x e £(fc), we have

\x\'-Uζ(x) ^ U**(x) ^ ak,

or l i m ^ β | x | ' - " U J ( j f l = o o .

PROPOSITION 3.7. Lei α^jS^n and /eί a(r) fee a non-decreasing positive

function of r>0 such that lim,.^^ a(r) = oo. Then there are a non-negative

measure μ and a Borel set A with the following properties:

i) A is not a-thin at infinity;

ii) A-B0tf=Sfor r>0;

iϋ) μ satisfies (3.1);

iv) lim|jcl^x a(M)|xΓ «Kί(x)= oo.

PROOF. Set ak=a(2k) for each positive integer k and choose a sequence

of positive integers such that kj>49 2kj<kj+ί and Σj^ιflfc//2<°o Define

/2 if 2*^1 < |y|

/GO =
I 0 otherwise

and consider the measure dμ=fdy. Then it is easy to prove that μ satisfies iii),

For x such that 2*> < |x| < 2fc>+1, we have by setting Ej = { y e Rn \x - y \ < 2kJ~1}

a(\x\)\x\β-*Vμ*(x) ^ β^2*̂  ) |x - y\~f(y)dy
JEj

= ai{2\ \z\*~ndz — > oo as j — » oo.
' J |x |<l/2

Let >4 = wyLι{xeΛΛ; 2^<|x|<2*>+1}. Then A is not α-thin at infinity and

satisfies ii).

REMARK 3.8. Proposition 3.7 shows that Corollary 3.4 is the best possible
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as to the order of zero at infinity. Corollary 3.4 is also the best possible as to
the size of the exceptional set (cf. [2; Remark 2]).

4. Potentials of functions

We recall the definition of (α, p)-thinness at infinity.

DEFINITION 4.1. A set E is called (α, p)-ίhίn at infinity if

lx-jrlfc 1*1/2

*=1

where Gk={x eRn 2*-1 < |x| <2*+2}.

REMARK 4.2. i) Let {kj} be a subsequence of the sequence of natural
numbers. Then VjjP= 1{xeRπ; 2*><|x|<2^+1} is not (α, p)-thin at infinity on
account of Lemma 2.7.

ii) If αp>n and E is (α, p)-thin at infinity, then £ is a bounded set on ac-
count of Lemma 2.7 and [3; Remark 1, ii)].

LEMMA 4.3. Let ^ + w + n<0. Then there is a constant M>0 such that

\y\y*dy£M |x|Mog|x| // m + n = 0

t |x|£ if m + n < 0

for any x with |x|>2.

PROOF. We divide the domain of integration into two parts, that is,

DI \χ — y\<= M/2, \y\ ̂  \χ\/2;

D2: \x - y\ ̂  |x|/2, |.y| > |x|/2.

Since |x|/2^|x->^|^3|x|/2 in Dί9 we have

( |x - y\>(l + \y\)mdy £ 2M\x\'( (1 -h \y\rdy
Jθι )\y\ί\x\/2

\x\m+n if m 4- n > 0

log |x| if m + n = 0

1 if m + n < 0

with some constant X! >0 independent of x with |x| >2. On the other hand, if
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yeD2 and |x|>2, then \x-y\/4^1 + \y\^4\x-y\, so that

\x - y\*(l + \y\)mdy ^ 4\m\ \x -
D2 J\χ-y\Z\x\/2

Thus we obtain the desired conclusion.

LEMMA 4.4. Let f be a non-negative function such that

(4.1) (l + \y\y~* f'(y)dy < oo, a^β/p^ n.

Then the following assertions hold:
i) There exists a Borel set E such that E is (α, p)-thin at infinity and

lim W- 'U'Vfa) = 0.
\χ\-+ao,χ$E

ii) //, in addition, U{^co9 then we have

(4.2) lim W-'M'Wttx) = 0 in case a^β/p
|x|-κ»

(4.3) lim |x|"-α(log \x\)-i/p'W{(x) = 0 in case β/p = n,
|x|->oo

where l/p + l/p' = l.

PROOF, i) Set

for each positive integer fc, and note Σ?=ιβk<°o by assumption (4.1). Hence
we can find a sequence {bk} of positive numbers such that lim^^ bk=co but

Σ?=ιfljAk<°° We set

"; 2k ^ |χ| < 2*+

for each fc, and define

ί/(x) if
ΛW =

[ 0 otherwise.

Then we have for x e Ak9

(\x - y\*~nfk(y)dy ^ V{(x) ^ bτ
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so that

C.,pG4*; Gk)

Consider the set E=V *L vAk. Since £<*>=Ak,

oo oo

£ 2-*(«-«p)£α p(£(*}; Gk) g 4l"-0l £ αA < °°>

which implies that £ is (α, p)-thin at infinity. Moreover,

lim sup |jc|^~"βp^K£(;x) ^ lim sup2^""βrp^p&^1^ = 0.

ii) If α=/?/p, then (4.2) follows from Lemma 3.2, ii), since we assumed
Uζφco (cf. Lemma 2.1). Let ot<β/p<n. Then we can find y>0 such that
β—pn + n<γ<n. By Holder's inequality,

Wί(x)

In view of Lemma 4.3, there exists M >0 such that if |x| ̂ 2, then

From Lebesgue's dominated convergence theorem it follows that the right-hand
side tends to zero as |x|->oo. Thus (4.2) holds.

To prove (4.3), given ε>0, find N>0 such that

ΰ, |>N

We define

/(x) if |x |gN,

0 otherwise,

and gN = f-fN. Then Lemma 3.2 implies that

!*!-*«>

which gives

(4.4) lim |x|"-α(log |x|)-*/*' Wp(x) = 0.
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On the other hand we have by Holder's inequality

w *(χ) z

By Lemma 4.3 there is a constant M>0 independent of x and ε such that for x

\x\n-*(log\x\)-Vp'Wg

Λ»(x) < Me.

This together with (4.4) establishes (4.3).

Lemma 4.4 yields the following main theorem :

THEOREM 4.5. Let a^β/p^n. If f is a non-negative function satisfying
(4.1) and Uζφao, then there is a Borel set E such that E is (α, p)-thin at infinity
and

lim \x\V-*rtl*>Uf

a(x) = 0 in case α <i β/p < n,
\x\-κx>,χφE

lim |x|"-α(log \x\Tl/p'Uί(x) = 0 in case β/p = n.
|jc|-*oo,jc#E

//, in addition, αp>n, then we can take E=0 (the empty set) in the above
equalities.

The last statement follows from Remark 4.2, ii).

REMARK 4.6. If α < β/p, then (4. 1) gives

(4.5) (I + \y\γ- f(y)dy < oo,

which is equivalent to [/{ φ oo by Lemma 2.1.

From Lemma 2.7 and Theorem 4.5, we obtain the following corollary, which
gives an improvement of [2; Theorem 2].

COROLLARY 4.7. Let a^β/p^n and let f be given as in Theorem 4.5.
Then there exists a Borel set EC S such that Ca>p(E; B0t3)=0 and

lim rW-'PVPUfaξ) = 0 in case α ̂  β/p < n,
r-»oo

lim r"-a(log r)-1/*' Uζ(rξ) = 0 in case β/p = n
r +oo
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for every ξeS—E.

From now on we shall deal with the best possibility of Theorem 4.5 as to

the size of the exceptional set and the order of zero at infinity.

PROPOSITION 4.8. Let up^n and let E be a set (α, p)-thin at infinity.

Then there exists a non-negative function f satisfying (4.1) and

lim \x\v- pUPVί(x) = oo.
|*l-*oo,xeE

PROOF. Since £ is (α, p)-thin at infinity, there is a sequence {ak} of positive
numbers such that lim^^ α fc= oo and

Σ fl£2-*(»-α*>Cαp(E<*>; Gfc) < oo.
k=l '̂

For each fc we can find a non-negative function fkeLp(Rn) such that /k = 0 on
Rn-Gk, Uf

Λ

k(x)^ak for xeE<*> and \\fk\\p<ap

kCΛtp(E^ 9 Gk)+2-*. Setting

/= Σk°= ιϊ~k(β~*pΉpfa we have

l Σ2~k(n"αp){^Cα)p(£(fc); Gk) + 2-*} < oo.

For x e £(k), we obtain

G2-

l/p'
z | '«-"Λ

ι<|z|<6

which tends to zero as fc-*oo because of Σ?=ι2~k(n~αp)||/J£<oo. Thus there
is a positive integer k0 such that if k^.k0 and xe£(k), then w£k(x)^ak/2 and
hence F/k^αfc/2 on E(k\ which implies that

x) ^ ak/2

for any x e £<*>. Therefore lim|3C,^βo§3e6E \X\U-*PVPV'(X) = oo.

REMARK 4.9 Proposition 4.8 shows that Lemma 4.4, i) is the best possible
as to the size of the exceptional set. In case a<β/p<n and oφ^n, the function
/ obtained above satisfies (4.5) on account of Remark 4.6, and hence Theorem
4.5 is also the best possible as to the size of the exceptional set. In case ap=β,
we do not know whether the function / satisfies (4.5) or not. However, if E
satisfies
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then we can find a non-negative function / which satisfies (4.1), (4.5) and

lira I7ί(x) = oo.
|x|-*oo,jceJE

Since the proof is similar to that of Proposition 4.8, we omit it.

PROPOSITION 4.10. Let oί^β/p^n and let a(r) be a non-decreasing positive
function of r>0 such that limr_^00 α(r) = oo. Then there are a non-negative func-
tion f and a set A with the following properties:

i) A is not (α, p)-thin at infinity;

ii) A-B0t,=Sfor r>0;
iii) (4.1) and (4.5) are satisfied;
iv) we have

(4.6) lim fl(|x|)|x|<'-«*>"Ki(x) = oo incase α ̂  β/p < n,
|αc|-»oo,jceΛ

(4.7) lim α(|x|)|x|"-α(log \x\)~i/p' W{(x) = oo in case β/p = n.
|x|-*oθ,jceX

PROOF. First we consider the case a^β/p<n. Let {kj} be a sequence of
positive integers such that fc/>4, 2kj<kj+ί and Σj^ια(2fc')~~1/p<oo, and define

7 = 1, 2,...,
/ω =

I 0 otherwise.

Then it is easy to see that / satisfies (4.1) and (4.5). As in the proof of Proposi-
tion 3.7, we obtain (4.6) with A = \Jfssi{xeRn:> 2k^|x|<2^+1}. This A is not
(α, p)-thin at infinity on account of Remark 4.2, i).

Next let β/p = n. Choose a subsequence {kj} of the sequence of natural

numbers such that 2kj<kj+1 and Σj^i^2^)"^0^ and define

Γ a(2^rί/p\y\'n(log\y\rί/p if y e EJ9 j = 1, 2,...,
/ω -

[ 0 otherwise,

where £/ = {}> e Λπ; 2fc><|.);|<22^}. Then (4.1) and (4.5) hold. If 22*>g

|x|<22*'+1, then

{\x-y\>\x\/2}r\Ej
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= const.

so that

^ const. 0(22k')1/p'.

Thus (4.7) is fulfilled with A = \jfsl{xeRn; 22fc^|x|<22fc>+1}. The proof is

now complete.

REMARK4.il. Proposition 4.10 shows that Theorem 4.5 and Corollary
4.7 are the best possible as to the order of zero at infinity. Corollary 4.7 is also
the best possible as to the size of the exceptional set.

To prove the second assertion, let EcS satisfy CΛtp(E'9 B0>2) = 0. Then
Cα>p(2*£; Gfe)=0 for each positive integer /c. Hence we can find a non-negative
function fk e !/(£") such that fk vanishes outside Gk, l/£k(x) = oo for xe2kE and

\\fk\\p is so small that l/{(0)<oo and / satisfies (4.1) with β=pn, where / =

Σf-iΛ Clearly,

lim sup ry(log r)*Uζ(rξ) = oo
r-κ»

for any numbers γ, δ and any ξ e E.

REMARK 4.12. We shall end by remarking the following two facts.
i) A set E is α-thin at infinity if and only if there is a non-negative measure

μ such that l/Jfέ oo and lim inf^.^^ t/£(x)>0.
ii) In case αp < n, E is (α, p)-thin at infinity if and only if there is a non-nega-

tive function /e £/(£«) such that l/£fέoo and lim inf|X,^00>Jce£|x|(π-αP>^C/{(x)>0.
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