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§ 1. Introduction with problem setting

There are many sufficient conditions for duality theorems in infinite linear
programming problems. In this paper, we shall investigate sufficient conditions
for a general duality theorem due to K. S. Kretschmer by the aid of the closed-
ness of the sum of two convex cones and find some relations among well-known
sufficient conditions in [3]-[ll].

More precisely, let X and Y be real linear spaces which are in duality with
respect to the bilinear functional (( , ))ι and let Z and W be real linear spaces
which are in duality with respect to the bilinear functional (( , ))2. Throughout
this paper, we always assume that each space of the paired spaces is assigned the
weak topology which is compatible with the duality, so that every topόlogical
notion is used without any specifying adjective unless otherwise stated. Let A
be a continuous linear transformation from X into Z, P and Q be closed convex
cones in X and Z respectively and y0 e Y and z0 eZ be fixed elements. Denote
by A* the adjoint of A and by P+ and Q+ the dual cones of P and Q respectively.
Let us consider the following infinite linear programming problem (1.1) and its
dual problem (1.2):

(1.1) Find M = inf {((*,

where S = {xeP; Ax — z0eβ}.

(1.2) Find M* = sup {((z0, w))2 w 6 5*} ,

where S* = {weβ+;^0

Here we use the convention that the infimum of a real function on the empty set
φ is equal to oo. We say that problem (1.1) has an optimal solution if there exists

an xeS such that M=((x, y0))ι A result which assures the equality M=M*
is called a duality theorem.

Let R be the set of real numbers and R+ be the set of nόfi-negative real
numbers. When R is considered as a topological space, the topology is the
usual one. Product spaces ZxR and WxR are in duality with respect to the
bilinear functional [ , ] defined by [(z, r),(w, s)] — ((z, w))2 + rs for every (z, >)
e Z x R and (w, s) e W χ R.
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Let us define the following two sets :

H = {(Ax - z, r + ((x, )>o))ι); xeP, zeβ,

H* = {C4*w + j, r - ((z05 w))2); weβ+, yeP\ rεR+}.

We have by [7; Theorem 3] and [11; Theorem 8]

THEOREM 1.1. Assume that H is closed. IfM or M* is finite, then M = M*
holds and problem (1.1) has an optimal solution.

As a dual statement of this theorem, we have

COROLLARY. Assume that H* is closed. IfM or M* is finite, then M=M*
holds and problem (1.2) has an optimal solution.

In this paper, we shall be concerned with the following problems which seem
to be very important in view of several applications of the above duality theorems.
(H) When is the set H closed?
(H*) When is the set H* closed?
By the duality of our problems, we have only to study problem (H). This prob-
lem was studied so far in [4], [5], [7], [8] and [11]. To study problem (H),
we shall prepare in § 2 several main results concerning the closednesδ of the sum
of two closed convex cones by using the idea due to [2], [4] and [5]. Several
answers to problem (H) will be given in § 3 by the aid of the results in § 2 and the
following representations of the set H :

( I ) H=Fi + Gl9 where F1 = {(Ax -z, ((x, Λ>))I); *eP, ZGQ} and

(II) H=F2 + G2, where F2 = {(Ax, ((x, y^); xeP} and G2 = (-ρ)

(III) H = F3 + G3, where F3 = {(Ax, r + ((x, ^0))ι); x 6 P, r e R+} and

W. Krabs [8] showed that Theorem 1.1 still holds even if the set H is re-
placed by the set Fί in representation (I). Some superconsistency conditions will
be discussed in § 4 in connection with condition (F) in § 3.

§2. Main results

Let E and F be real linear spaces which are in duality with respect to the
bilinear functional (( , )), let U and V be real linear spaces which are in duality
with respect to the bilinear functional < , > and let T be a continuous linear
transformation from E into 17. Denote by Γ* the adjoint of Γ, i.e., <Γx, v>
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=((*, T*ι>)) for all x € E and υeV.
Let C and D be convex cones in E and U respectively. We always assume

that C and D contain 0 and that D is closed. First we shall study the closedness
of T(C) — D under some additional conditions for C and Γ.

We have

LEMMA 2.1. Assume that C is locally compact. Let {zj be a net in
Γ(C)-Z) w/iic/i converges to z. Then either (a) ze T(C)-D or (b) C n T"\D)

PROOF. In case C = {0}, our assertion is clear by the closedness of D.

Assume that C^{0}. Since zαe Γ(C)-D, there is x α eC such that TxΛ-zaeD.
We show that there is a compact subset X of C such that 0 φ K and C = {ίx; x e K

and ί e #+}. In fact, since C is locally compact, there is an open convex neighbor-
hood B of 0 in E for which C n B is compact, where B denotes the closure of B.
We may take K as the intersection of C n B and the complement of (1/2)J5.
Thus we can find uΛeK and tΛeR+ such that xΛ=tΛuΛ. First we consider the
case where there exists α0 such that {ία; α>α0} is bounded. Since K is compact,
we can find a convergent subnet of {XΛ}. Let x be the limit. Then x e C and

Tx — zeD, which shows (a). Next we consider the case where there is no α0

such that {ία; α>α0} is bounded. We may assume that {UΛ} converges to ueK
and {tΛ} converges to oo, by choosing subnets if necessary. Since D is a cone,
TuΛ - zJtΛ e D. It follows that ueC.u^Q and Tu e D9 which shows (b).

REMARK 2.1. In the above proof, we see easily that C is closed if C is locally
compact.

By the above lemma, we have

THEOREM 2.1. // C is locally compact and if C n T-1(/>) = {0}, then T(C)
— D is closed.

COROLLARY 1. // C is locally compact and if C n T~1({0}) = {0}, then

T(C) is closed.

COROLLARY 2. Let C\ and C2 be closed convex cones in E. If C^ n C2

= {0} and if at least one of C^ and C2 is locally compact, then Ct — C2 is closed.

This corollary is a special version of Dieudonnέ's result [2; Theoreme 1].

Next we shall study the case where C n T~1(Z)) = {0}. Denote by s(E, F)

the Mackey topology on E which is compatible with the duality and by C+ and

D+ the dual cones of C and D respectively, i.e., C+ = {yeF', ((x, j>))>0 for all

x e C}. For a subset B of E, denote by B1 the s(E, F)-interior of B.
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THEOREM 2.2. Assume that C is closed and that the s(F, E)-interiόr (C+)'
ofC+ is nonempty. Then C n T-1(D) = {0} if and only if (C+)'* n T*(-

PROOF. Assume that (C+)' n T*(-D+)^φ. There exists ve-D+ such
that >? = T*v e (C+)'. Let x e C n T"1^) and suppose that x^O. If j>^0, then

which is a contradiction. If j; = 0, then C+ = F and C = {0}, so that Cn Γ-1φ)
= {0}. Next assume that (C+)f n T*(-D+) = φ. Then there exists xe£ such
that x^O and ((x, -Γ*ι;))<0<((x, y)) for all ueD + and yεC+ (cf. [1]; p. 71,
Proposition 1). It follows that x e C and Tx e D, i.e., C n Γ

COROLLARY. Let Cί and C2 be closed convex cones in E such that

For a subset B of E, denote by J5° the polar of B, i.e.,

B° =* {y € F; ((x, jo) < 1 for all x e B} .

Let us recall the following fundamental result due to Fan [4; Theorem 1] :

PROPOSITION 2.1. Let B be a closed subset of E. If its polar B° has a
nonempty s(F9 E)-interior, then B is locally compact:

Noting that C+=. — Cβ, we obtain another proof of the following result due
to Kretschmer [7; Lemma 5] by Theorems 2.1 and 2.2 and Proposition 2.1:

PROPOSITION 2.2. If(C+Y n T*(D+)ϊφ, then T(C) + D is closed.

COROLLARY. Let Ct and C2 be closed convex cones in E. If (Cί)1' n C\
T^ φ, then CA -h C2 is closed.

This corollary is a special version of Fan's result [4; Theorem 2].
For later use, we further prepare

LEMMA 2.2. Let K be a compact set in E which does not contain 0. Then
the cone co(K) = {fx; xeK, teR+} generated by K is locally compact.

PROOF. Since K is compact and does not contain 0, there is a closed convex
neighborhood B of 0 such that KΓ\B=φ. Let x e B h-co (]K). Then there exist
ueK and teR+ such that x = tu. Since B is convex and contains 0, we have
*<1, so that Bnco(K)c:K = {tu; ueK, 0<ί<l}. Since K is compact, Bn
co (X) is also compact. It follows that co (X) is locally compact.

LEMMA 2.3. Let C be locally compact. If Cn T~1({0}) = {0}, then T(C)
is locally compact.
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PROOF. We may assume that C^{0}. Since C is locally compact, there
is a compact subset K of C such that QφK and C = co (K) (cf. the proof of Lemma
2.1). Then T(C) = {ίz; ze T(K\ tεR+} and T(K) is compact. Since C n
T-1({0}) = {0}, T(K) does not contain 0. Therefore T(C) is locally compact
by Lemma 2.2.

§ 3. The closedness of the set H

In order to study problem (H) in § 1, let us define conditions (K) and (F):

(K) (P+Y*Φ and yQeA*(Q+) + (P+y,

where (P+)f denotes the 5(7, Z)-interior of P+.

(F) xeP Π v4"1(β) and ((*, y^ < 0 imply x = 0.

To study problem (H*), we need their dual conditions (K*) and (F*):

(K*) Q^φ and z0eA(P)-Qi,

where Q1 denotes the s(Z, PF)-interior of Q.

(F*) we Q+ Π A*-.l(- P+) and ((z0, w))2 > 0 imply w = 0.

Conditions (K) and (K*) were called superconsistency conditions in [3].
Conditions (F) and (F*) were introduced in [4].

We have

THEOREM 3.1. Assume that P is locally compact. If condition (F) is ful-
filled, then H is closed.

PROOF. Let us take

E = X, F = 7, U = Z x R, V=WxR,
(3.1)

C = P, D = Q x (- £+), Tx = (Ax, ((x,

in §2. Then H=T(Q-D. Condition (F) is equivalent to C n Γ~1(^) = {0}.
Thus H is closed by Theorem 2.1.

Fan proved this theorem under the additional condition that Q is also locally
compact [5; Theorem 7]. We obtain another proof of the following result due

to Kretschmer [7; Corollary 3.1].

COROLLARY. If condition (K) is fulfilled, then H is closed.

PROOF. Since (P+Y^φ,P is locally compact by Proposition 2.1. With
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the setting (3.1), we have D+ = Q+x(-R+) and Γ*(w, s) = Λ*w + sj>o for (w, s)
e WxR. Condition (K) implies (P+)< n T*(-D+)^φ, so that condition (F) is

fulfilled by Theorem 2.2. Thus H is closed by Theorem 3.1.

The reasoning in the proof of Theorem 3.1 is efficient to the study of the

closedness of the sets Fl9 F2 and F3 in representations (I), (II) and (III). Let us

define convex cones in Z x R by

D! = β x {0}, D2 = {0} x {0}, D3 = {0} x (- #+).

With the setting (3.1), we have .F, = Γ(C)-/)/ for each ί. The condition C n

Γ~1(D£) = {0} is equivalent to each of the following conditions (Dt ) ( i=l, 2, 3):

(Dj) xeP Π A~l(Q) and ((x, y^ = 0 imply x = 0.

(D2) xeP n ^-'({O}) and ((x, j^ = 0 imply x = 0.

(D3) x e P n ^-KίO}) and ((x, j^ < 0 imply x = 0.

We have

THEOREM 3.2. Assume that P is locally compact. If condition (D^ is
fulfilled, then Fί is closed. If condition (Df) is fulfilled, then Ft is locally com-
pact for i = 2, 3.

PROOF. The closedness of Fx follows from Theorem 2.1. Since F2 = Γ(P)
and Pn T-1({0}) = {0}, Γ(P) is locally compact by Lemma 2.3. To prove that

F3 is locally compact, let us take

E = X x R9 F =Yx R, U = Z x R9 V=WxR,

C = P x R+, T3(x, r) = (Ax, r + ((x, j>0))ι)

Then F3 = T3(P x R+) and P x R+ is locally compact. We have (P x R+) n Tj^M)
= {0} by condition (D3), so that T3(Px#+) is locally compact by Lemma 2.3.

Notice that condition (F) implies any one of conditions (Dj), (D2) and (D3).
Any one of conditions (Dj) and (D3) implies condition (D2). If PnA~l({0})
= {0}, then conditions (D2) and (D3) are equivalent.

Theorems 3.1 and 3.2 do not hold in general if we omit the assumption that
P is locally compact. This is shown by

EXAMPLE 3.1. Let L2[0, 1] be the Hubert space of Lebesgue measurable
functions on the unit interval in R which are square integrable, andL^[0, 1] be

the subset of L2[0, 1] which consists of non-negative functions. Put
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\ u(t)v(t)dt
Jo

<w, v>

for M, reL2[0, 1]. Let us take

X = y= L2[0, 1] x JR, P = LJ[0, 1] x R+,

Z=^=L 2[0, 1], β = LJ[0, 1],

((*> y))ι = </, 0> + rs for * = (/, r) and }> = (0, 5),

(0, w»2 = <z, w > ,

(s)ds + r for x = (/,r),

It is easily seen that condition (F) is fulfilled. It is proved in [7] that M* = 1 <2

= M. We see by Theorem 1.1 that H is not closed. To prove that none of Ft

(i= 1, 2, 3) is closed, let us define fn(t) by /π(0 = 0 if 0<ί< 1 - 1/rc and fn(t) = n if

Then

= l if 0 < ί < l - l / n ,

= n(l - 0 if 1 - 1/n < t < 1,

Let xn = (/n, 0). Then xneP and (^xπ, ((xw, J0))ι) belongs to each Ff. It is
easily seen that (z0, 1) is a limit of the sequence {(Axn, ((xπ, J0))ι)} anc^ that (z0, 1)
belongs to none of Ft. Therefore none of Ff is closed. Notice that P is not

locally compact.

Next we shall apply Corollary 2 of Theorem 2.1 to our representations (I),

(II) and (III) in § 1. Notice that the condition Ff n (-Gf) = {0} is equivalent to

the following condition (Ff) for each / = !, 2, 3:

(Fj) x e P n A-\Q) and ((x, y^ < 0 imply ((x, y0))ι = 0.

(F2) xeP n A-\Q) and ((x, ^0))1 < 0 imply ((x, y^ = 0

and Ax = 0.

(F3) xeP n A-\Q} and ((x, j^ < 0 imply Ax = 0.

By Corollary 2 of Theorem 2.1 and Remark 2.1, we have
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THEOREM 3.3. The set H is closed if any one of the following conditions is

fulfilled:

(C.I) F1 is closed and condition (FJ is fulfilled.

(C.2) F2 is closed, condition (F2) is fulfilled and Q is locally compact.

(C.3) F2 is locally compact and condition (F2) is fulfilled.

(C.4) F3 is closed, condition (F3) is fulfilled and Q is locally compact.

(C.5) F3 is locally compact and condition (F3) is fulfilled.

Clearly condition (F) implies any one of conditions (FJ, (F2) and (F3).
Condition (F2) implies any one of conditions (Fj) and (F3). In case y0 e A*(Q+)
+ P+, condition (F3) implies condition (F2). By taking ^4 = 0, yQ = Q and P^{0},
we see easily that there is no relation between conditions (F;) and (Df) in general.

We can easily prove

THEOREM 3.4. Condition (F) is equivalent to the pair of conditions (Dt )
and (Fi)for each . z = l, 2, 3.

Now we shall rewrite conditions (C.I), (C.2) and (C.4) by the aid of the
corollary of Theorem 2.2. We can easily verify that the dual cones FJ" and G+
of FI and Gt can be written as follows :

F+ = {(w,5)ePΓx Ri - weβ+,

G+ = W x R+

9

FJ = {(w, s ) e W x K; sy0

FJ = {(w, s)eWx R; sεR+, sy0

Gί = (- e+) x R.
As for condition (C.I), we have

PROPOSITION 3.1. I f F ί is closed and y0εA*(Q+) + P+, then H is closed..

PROOF. .Since (G|)f ̂  φ and FΛ is closed, we see by. the corollary of Theorem
2.2 that condition (Fj) is equivalent to (GJ)* Π F} ̂  φ, which is equivalent to
y0 E A*(Q+) + P+. Thus condition (C. 1) is fulfilled.

This result was stated in [8; Theoreme 4.3.1] in case β = {0}. We show by
an example that the converse of Proposition 3.1 does not hold in general.
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EXAMPLE 3.2. Let M(0, 1) be the set of all real Radon measures of any
sign on the unit interval [0, 1] in the real line, M+(0, 1) be the subset of M(0, 1)
which consists of non-negative measures, C(0, 1) be the set of all finite real-valued
continuous functions on [0, 1] and C+(0, 1) be the subset of C(0, 1) which consists
of non-negative functions. Let us take

X = M(0, 1), y = C(0, 1), P = M+(0, 1), y0(t) = ί,

Z = W= R, Q = {0}, z0eR,

Av = \ t2dv = α(v).
Jo

Then X and Y are in duality with respect to the bilinear functional ((,))! de-
fined by

((v, y)). = (1 y(i)dv for v e X and y e 7,
Jo

and Z and W are in duality with respect to the bilinear functional (( , ))2 defined
by ((r, s))2 = rs for r € Z and s e W. Let us put b(v) = ((v, y0))ι Then

H = {(α(v), b(v) + r) v 6 M+(0, 1), r e #+}

), b(v));veM+(0, 1)}.

Denote by ε, the unit point measure at ί e [0, 1] and put vw = nε1/w. Then (1/n, 1)
=(α(vn), fcίv^eJ7!. However (0, 1) does not belong to Fl9 so that F± is not
closed. On the other hand, since (1, I) = (α(ε1), bfo)) and (0, 1) belong to H
and 0<α(v)<fc(v) for every veM+(0, 1), we have

so that H is closed.

REMARK 3.1. H=Fί if and only if (0, 1) e F±.

As for condition (C.2), we have

PROPOSITION 3.2. // F2 is closed and if there exists we(<2+)Γ such that
y0 — ̂ 4*weP+, then H is closed.

PROOF. Our assumption implies (Gty^φ and FJ Γ\(G^)l^φ. Since F2

and G2 are closed, condition (F2) is fulfilled by the corollary of Theorem 2.2.
Since (Q*)*? ,̂ β is locally compact by Proposition 2.1. Thus condition (C.2)
is fulfilled.
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Fan [4] proved this proposition under the assumption that (P+Y^φ, (Q+)

andy0εA*((Q+y) + (P+y.
As for condition (C.4), we can prove

PROPOSITION 3.3. If F3 is closed and if there exist we(β+)ί and seR+

such that syQ-A*weP+

9 then H is closed.

REMARK 3.2. Since Fί =F2 +(-β) x {0}, F^ is closed if F2 is closed and if
there exist w e (Q+Y and s e R such that sy0 -A*w e P+ . Since F3 =F2 + {0} x R+

9

F3 is closed if F2 is closed and if y0 eA*(W) + P+. These facts are proved like

Propositions 3.2 and 3.3.

In case P = X9 we have as for condition (C.2)

PROPOSITION 3.4. Assume that P = X and A(X) is closed and Q is locally
compact. If y0 e A*(Q+) and if condition (F3) is fulfilled, then H is closed.

PROOF. Since y0εA*(Q+), conditions (F2) and (F3) are equivalent. To
verify condition (C.2), we have only to prove that F2 is closed. There exists
weβ+ such that A*w = y0 by our assumption. Thus F2 = {(Ax, ((Ax, w))2);
xeX}. Since F2 is the kernel of the continuous linear functional: (z, r)->r — ((z,
w))2 defined on A(X) x R9 F2 is closed in A(X) x R. Since A(X) is closed in Z, F2

is closed.

Finally we give an improvement of [11; Proposition 6], which shows that
a condition related to condition (K*) implies the closedness of H.

THEOREM 3.5. The set H is closed if the following condition is fulfilled:

(C.6) P is locally compact, AxeQ1 for all xeP, x^O and M is finite.

PROOF. In case P={0}, H = (-Q)xR+ is closed. We consider the case
where P^{0}. Let {(zα, rα)} be a net in H which converges to (z, r). There
exists xΛeP such that AxΛ — zΛeQ and ((xα, yoJ)ι<rΛ. By Lemma 2.1 and our
representation (II), either (a) (z, r)e# or (b) there exists ueP such that w^Q,

AueQ and ((u, y0))ι^0 Since P = Pn4~1(Q) and M is finite, ^0e[Pn
A~l(QW = P+. Therefore ((w, ^0))ι=0 and rα>0, and hence r>0. Since
AueQ*, there exists f>0 such that Au-tzeQ*. Taking x = u/t, we see that
Ax - z e Q and ((x, JΌ)^ = 0 < r, and hence (z, r) e H. Therefore H is closed.

§ 4. Superconsistency conditions

We shall study some relations between condition (F) and superconsistency
conditions similar to condition (K). Let us consider the following interior
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conditions :

(G) y<>e(A*(Q+) + P+y.

(L) A*(Q+γ*φ and y0e A*(Q+V + P+.

Clearly any one of conditions (K) and (L) implies condition (G). We have

THEOREM 4.1. Assume that (Λ*(β+) + P+)'^0. Then conditions (F) and
(G) are equivalent.

PROOF. Let us take

U = K= Λ, D = - R+, Tx = ((x,

in Theorem 2.2. Then C+ is equal to the closure of A*(Q+) + P+ and
by our assumption. Condition (F) is equivalent to C n T~1(D) = {0}. Notice
that T*s = sy0 and that (C+)f n Γ*(-D+)^0 holds if and only if there exists
s 6 #+ such that SJΌ e (C+V = (A*(Q+) + P+)', which is equivalent to condition (G).

COROLLARY 1. If(P+Y^φ9 then conditions (F) and (K) are equivalent.

This was proved in [7; Corollary 7.1].

COROLLARY 2. If A*(Q+Y^φ, then conditions (F) and (L) are equivalent.

The dual statements of conditions (G) and (L) can be written as follows :

(G*) z0e(A(P)-Q)'.

(L*) A(PY * φ and z0 e A(P)1 - Q.

We can state sufficient conditions for the closedness of H* defined in § 1 by
the aid of conditions (F*), (G*), (K*) and (L*) and the condition that Q+ is

locally compact.
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