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§1. Introduction with problem setting

There are many sufficient conditions for duality theorems in infinite linear
programming problems. In this paper, we shall investigate sufficient conditions
for a general duality theorem due to K. S. Kretschmer by the aid of the closed-
ness of the sum of two convex cones and find some relations among well-known
sufficient conditions in [3]-[11].

More precisely, let X and Y be real linear spaces which are in duality with
respect to the bilinear functional (( , )); and let Z and W be real linear spaces
which are in duality with respect to the bilinear functional (( , D) Throughout
this papet, we always assume that each space of the paired spaces is assigned the
weak topology which is compatible with the duality, so that every topologlcal
notlon is used without any spe01fy1ng adJectlve unless otherw1se stated. Let A
be a contmuous linear transformation from X into Z, P and Q be closed convex
cones in X and Z respectively and y,e Y and z, € Z be fixed clements Denote
by A* the adjoint of 4 and by P* and Q* the dual cones of P and Q respectively.
Let us consider the following infinite linear programming problem (1.1) and its
dual problem (1.2):

(1.1) Find M = inf {((x, yo)):; X€ S},
where S={xeP; Ax—z,€Q}.
(L.2) Find M* = sup {((zg, W)),; We S*},

where S*={we Q*; yo—A*we P*}.

Here we use the convention that the infimum of a real function on the empty set
¢ is equal to 0. We say that problem (1.1) has an optimal solution if there exists
an xe S such that M=((x, y,));. A result which assures the equality M=M*
is called a duality theorem.

Let R be the set of real numbers and R* be the set’ of non-negative real
numbers.. When R ‘is ‘considered as a topological space, thé topology'is the
usual one.  Product spaces Zx R and W xR are in:duality with respect to the
bilinear functional [ , ] defined by [(z, r), (w, s)]=((z, w)),+rs for every (z, r)
€Z xR and (w, s)e WxR. -
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Let us define the following two sets:
H={(Ax —z, r + ((x, yo))1); xXeP, zeQ, reR*},
H* = {(A*w + y, r — ((zo, W)),); we @', ye P*, re R*}.
We have by [7; Theorem 3] and [11; Theorem §]

THEOREM 1.1. Assume that H is closed. If M or M* is finite, then M = M*
holds and problem (1.1) has an optimal solution.

As a dual statement of this theorem, we have

COROLLARY. Assume that H* is closed. If M or M* is finite, then M =M*
holds and problem (1.2) has an optimal solution.

In this paper, we shall be concerned with the following problems which seem
to be very important in view of several applications of the above duality theorems.
(H) When is the set H closed?

(H*) When is the set H* closed?

By the duality of our problems, we have only to study problem (H). This prob-
lem was studied so far in [4], [5], [7], [8] and [11]. To study problem (H),
we shall prepare in §2 several main results concerning the closedness of the sum
of two closed convex cones by using the idea due to [2], [4] and [5]. Several
answers to problem (H) will be given in § 3 by the aid of the results in §2 and the
following representations of the set H:

(1) H=F,;+G,, where F,={(4dx—z, ((x, ¥0))1); X€ P, ze Q} and
G,={0} xR*.

(II) H=F,+G,, where F,={(A4x, ((x, ¥o));); x€ P} and G,=(—Q)x R*.

(IIl) H=F;+G;, where F3={(Ax, r+((x, y0))1); x€ P, re R*} and
Gy=(-0) x {0}.

W. Krabs [8] showed that Theorem 1.1 still holds even if the set H is re-
placed by the set F, in representation (I). Some superconsistency conditions will
be discussed in §4 in connection with condition (F) in § 3.

§2. Main results

Let E and F be real linear spaces which are in duality with respect to the
bilinear functional (( , )), let U and V be real linear spaces which are in duality
with respect to the bilinear functional < , > and let T be a continuous linear
transformation from E into U. Denote by T* the adjoint of T, i.e., <Tx, v>
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=((x, T*v)) for all xe E and ve V.

Let C and D be convex cones in E and U respectively. We always assume
that C and D contain 0 and that D is closed. First we shall study the closedness
of T(C)— D under some additional conditions for C and T.

We have

LEMMA 2.1. Assume that C is locally compact. Let {z,} be a net in
T(C)—D which converges to z. Then either (a) ze T(C)—D or (b) Cn T-Y(D)
#{0}.

Proor. In case C={0}, our assertion is clear by the closedness of D.
Assume that C#{0}. Since z,€ T(C)— D, there is x, € C such that Tx,—z,€D.
We show that there is a compact subset K of C such that 0 ¢ K and C={tx; xe K
and te€ R*}. In fact, since C is locally compact, there is an open convex neighbor-
hood B of 0 in E for which C n B is compact, where B denotes the closure of B.
We may take K as the intersection of Cn B and the complement of (1/2)B.
Thus we can find u,€ K and t,e R* such that x,=tu, First we consider the
case where there exists «, such that {t,; a>a,} is bounded. Since K is compact,
we can find a convergent subnet of {x,}. Let x be the limit. Then xe C and
Tx—ze D, which shows (a). Next we consider the case where there is no o,
such that {t,; a>a,} is bounded. We may assume that {u,} converges to ue K
and {t,} converges to oo, by choosing subnets if necessary. Since D is a cone,
Tu,—z,/t,e D. It follows that u e C, u#0 and Tu € D, which shows (b).

ReMARK 2.1. In the above proof, we see easily that C is closed if C is locally
compact.

By the above lemma, we have

THeOREM 2.1. If C is locally compact and if Cn T-1(D)={0}, then T(C)
—D is closed.

CoroOLLARY 1. If C is locally compact and if Cn T~1({0})={0}, then
T(C) is closed.

COROLLARY 2. Let C, and C, be closed convex cones in E. If C;nC,
={0} and if at least one of C, and C, is locally compact, then C,—C, is closed.

This corollary is a special version of Dieudonné’s result [2; Théoréme 1].

Next we shall study the case where Cn T-!(D)={0}. Denote by s(E, F)
the Mackey topology on E which is compatible with the duality and by C* and
D* the dual cones of C and D respectively, i.e., Ct={yeF; ((x, y))=>0 for all
xe C}. For a subset B of E, denote by B! the s(E, F)-interior of B.
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THEOREM 2.2. Assume that C is closed and that the s(F, E)-interior (C*)!
of C* is nonempty. Then Cn T-1(D)={0} if and only if (C*)'n T*(—D*)#¢.

ProoF. Assume that (C*)'n T*(—D*)#¢. There exists 7€ —D* such
that y=T*5e(C*)!.. Let xe Cn T-Y(D) and suppose that x#0. If j#0, then
0<((x, )= <Tx, 9> <0,

which is a contradiction. If y=0, then C*=F and C={0}, so that Cn T~1(D)
={0}. Next assume that (C*)'n T*(—D*)=¢. Then there exists x€ E such
that x#0 and ((x, — T*v))<0<((x, y)) for all ve D* and ye C* (cf. [1]; p. 71,
Proposition 1). It follows that xe C and Txe D, i.e., Cn T~}(D)# {0}.

CoroLLARY. Let C, and C, be closed convex cones in E such that (C})}
#¢. Then C;nC,={0} if and only if (CT)'n(—C3)#¢.

For a subset B of E, denote by B° the polar of B, i.e.,
B° = {yeF;((x, y)) <l forall xeB}.
Let us recall the following fuhdarriental result due to Fan [4; Theorem 1]:

'PROPOSITION 2.1. Let B be a closed subset of E. If its polar B° has a
nonempty s(F, E)-interior, then B is locally compact: '

Noting that C*= — C°, we obtain another proof of the following result due
to Kretschmer [7; Lemma 5] by Theorems 2.1 and 2.2 and Proposition 2.1:

ProprosITION 2.2. If (C*)in T*(D*)# ¢, then T(C)+D is closed.

CorOLLARY. Let C, and C, be closed convex cones in E. If (C})'nC3
#¢, then C,+C, is closed.

This corollary is a special version of Fan’s result [4; Theorem 2].
For later use, we further prepare

LeMMA 2.2. Let K be a compact set in E which does not contain 0. ' Then
the cone co (K)={tx; xe K, te R*} generated by K is locally compact.

Proor. Since K is compact and does not contain 0, there is a closed convex
neighborhood- B of 0 such that K n B=¢. Let xe Bn.co(K). ' Then there exist
ueK and teR* such that x=tu. Since B is convex and contains 0, we have
t<1, so that Bnco(K)cK={tu;ueK,0<t<1}. Since K is compact, Bn
co (K) is also compact. It follows that co (K) is locally compact.

LemMMA 2.3. Let C be locally compact. If Cn T-1({0})={0}, then T(C)
is locally compact. ' ’ '
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Proor. We may assume that C#{0}. Since C is locally compact, there
is a compact subset K of C such that 0¢ K and C=co (K) (cf. the proof of Lemma
2.1). Then T(C)={tz;zeT(K),teR*} and T(K) is compact. Since Cn
T-1({0})={0}, T(K) does not contain 0. Therefore T(C) is locally compact
by Lemma 2.2.

§3. The closedness of the set H
In order to study problem (H) in § 1, let us define conditions (K) and (F):
(K) (PY)' # ¢ and yoeA%(QY) + (P*)},
where (P*)? denotes the s(Y, X)-interior of P*.
(F) xePn AY(Q) and ((x, y9)); <0 imply x = 0.
To study problem (H*), we need their dual conditions (K*) and (F*):
(K*) Qi#¢ and zoeA(P)— Q,
where QF denotes the s(Z, W)-interior of Q.
(F*) weQt n A*7Y(— P*) and ((ze, W), > 0 imply w = 0.

Conditions (K) and (K*) were called superconsistency conditions in [3].
Conditions (F) and (F*) were introduced in [4].
We have

THEOREM 3.1. Assume that P is locally compact. If condition (F) is ful-
filled, then H is closed.

Proor. Let us take
E=X,F=Y, U=Z xR, V=WxR,
3.1
C=P, D=Q x (= R*), Tx = (4x, ((x, yo)1)

in §2. Then H=T(C)—D. Condition (F) is equivalent to Cn T-1(D)={0}.
Thus H is closed by Theorem 2.1.

Fan proved this theorem under the additional condition that Q is also locally
compact [5; Theorem 7]. We obtain another proof of the following result due
to Kretschmer [7; Corollary 3.1].

CoroLLARY. If condition (K) is fulfilled, then H is closed.

Proor. Since (P*)'#¢, P is locally compact by Proposition 2.1. With
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the setting (3.1), we have D*=Q*x(—R*) and T*(w, s)=A*w+sy, for (w, s)
€ Wx R. Condition (K) implies (P*)!n T*(—D*)# ¢, so that condition (F) is
fulfilled by Theorem 2.2. Thus H is closed by Theorem 3.1.

The reasoning in the proof of Theorem 3.1 is efficient to the study of the
closedness of the sets F,, F, and F; in representations (I), (II) and (III). Let us
define convex cones in Z x R by

D, =@ x {0}, D, = {0} x {0}, Dy = {0} x (= RY).

With the setting (3.1), we have F;=T(C)—D; for each i. The condition Cn
T-Y(D;)={0} is equivalent to each of the following conditions (D;) (i=1, 2, 3):

(D) xeP n A=(Q) and ((x, yo)); = 0 imply x = 0.

(D,) xeP n A"1({0}) and ((x, yo)); = O imply x = 0.

(Ds) xeP n A~4({0}) and ((x, yo)); <0 imply x = 0.
We have

THEOREM 3.2. Assume that P is locally compact. If condition (D,) is
Sfulfilled, then F | is closed. If condition (D;) is fulfilled, then F; is locally com-
pact for i=2, 3.

Proof. The closedness of F, follows from Theorem 2.1. Since F,=T(P)
and Pn T-'({0})={0}, T(P) is locally compact by Lemma 2.3. To prove that
F, is locally compact, let us take

E=XxR F=YxXxR, U=Z xR, V=WxR,
C=P><R+’ T3(X, r)=(Ax,r+((x, yO))l)

Then F3;=T3(P x R*) and P x R* is locally compact. We have (P x R*) n T51({0})
={0} by condition (D), so that T;(P x R") is locally compact by Lemma 2.3.

Notice that condition (F) implies any one of conditions (D,), (D,) and (D).
Any one of conditions (D,) and (D;) implies condition (D,). If Pn A~'({0})
= {0}, then conditions (D,) and (D,) are equivalent.

. Theorems 3.1 and 3.2 do not hold in general if we omit the assumption that
P is locally compact. This is shown by

ExampLE 3.1. Let L,[0, 1] be the Hilbert space of Lebesgue measurable
functions on the unit interval in R which are square integrable, and L3[0, 1] be
the subset of L,[0, 1] which consists of non-negative functions. Put
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<u, o> =g: u(tye(t)dt
for u, ve L,[0, 1]. Let us take
X = Y=1L,[0,1] x R, P = Li[0, 1] x R*,
Z=W=L,[0, 1], Q = L3[0, 1],
) =<fig>+rs for x=(f,r) and y=(g,5),

((29 W))Z = <Z, w> )
(A%) (1) = Slf(s)ds +r  for x=(f,r),

ZO(Z) = 1! yO(t) = (t9 2)

It is easily seen that condition (F) is fulfilled. It is proved in [7] that M*=1<2
=M. We see by Theorem 1.1 that H is not closed. To prove that none of F;
(i=1, 2, 3) is closed, let us define f,(f) by f,(f)=0if 0<t<1—1/n and f(t)=n if
1-1/n<t<1. Then

Slf,,(s)ds=1 if 0<t<1—1n,
le,,(s)ds =n(l—1) if 1—1ln<t<l,

S: tf(dt = 1 — 1/2n).

Let x,=(f,, 0). Then x,eP and (Ax,, ((x, Yo));) belongs to each F, It is
easily seen that (z,, 1) is a limit of the sequence {(4x,, ((x,, ¥o));)} and that (z,, 1)
belongs to none of F;. Therefore none of F; is closed. Notice that P is not
locally compact.

Next we shall apply Corollary 2 of Theorem 2.1 to our representations (I),
(I) and (IIT) in §1. Notice that the condition F; n (— G,)={0} is equivalent to
the following condition (F;) for each i=1, 2, 3:

(Fy) xeP n A7Y(Q) and ((x, yo)); < 0 imply ((x, yo)); = 0.

(F2) xeP n A7Y(Q) and ((x, yo)); < 0 imply ((x, yo)); =0
and Ax = 0.

(F3) xeP n A7Y(Q) and ((x, yo)); <0 imply Ax = 0.

By Corollary 2 of Theorem 2.1 and Remark 2.1, we have
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THEOREM 3.3. The set H is closed if any one of the following conditions is
fulfilled:

(C.1) F, is closed and condition (F,) is fulfilled.

(C.2) F, is closed, condition (F,) is fulfilled and Q is locally compact.
(C.3) F, is locally compact and condition (F,) is fulfilled.

(C.4) F; is closed, condition (F5) is fulfilled and Q is locally compact.
(C.5) F;is locally compact and condition (F5) is fulfilled.

Clearly condition (F) implies any one of conditions (F;), (F,) and (F5).
Condition (F,) implies any one of conditions (F,) and (F;). In case y,€ A*(Q%)
+ P*, condition (F,) implies condition (F,). By taking A=0, y,=0 and P# {0},
we see easily that there is no relation between conditions (F;) and (D;) in general.

We can easily prove ' '

THEOREM 3.4. Condition (F) is equivalent to the pair of conditions (D;)
and (F)) for each i=1, 2, 3.

Now we shall rewrite .conditions (C.1), (C.2) and (C.4) by the aid of the
corollary of Theorem 2.2. We can easily verify that the dual cones Ff and G}
of F; and G; can be written as follows:

Ff ={(w,s)e Wx R; —weQ", sy, + A¥we P},
Gt = W x R*,
Fi ={(w,s)e W x R; sy, + A*we P*},
G3 = (- Q% x R*,
F{ = {(w, s)e W x R; seR*, sy, + A*we P*},
Gy =(- Q") xR.
As for condition (C.1), we have
ProposiTION 3.1.  If F, is closed and y, e A¥(Q*)+ P*, then H is closed.

ProoF. .Since (G])’# ¢ and F, is closed, we see by. the corollary of Theorem
2.2 that condition (F,) is equivalent to (G})in Fi#¢@, which is equivalent to
Yo € A¥(Q*)+P*. Thus condition (C.1) is fulfilled.

This result was stated in [8; Théoréme 4.3.1] in case Q={0}. We show by
an example that the converse of Proposition 3.1 does not hold in general.
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ExampLE 3.2. Let M(0, 1) be the set of all real Radon measures of any
sign on the unit interval [0, 1] in the real line, M*(0, 1) be the subset of M(0, 1)
which consists of non-negative measures, C(0, 1) be the set of all finite real-valued
continuous functions on [0, 1] and C*(0, 1) be the subset of C(0, 1) which consists
of non-negative functions. Let us take

X =M@, 1), Y=C0, 1), P = M*0, 1), yo(t) =1,
Z=W=R, Q=1{0}, z,€R,

Av = Sl 2dv = a(v).
0

Then X and Y are in duality with respect to the bilinear functional (( , )), de-
fined by

(v, V), = Sly(t)dv for veX and yeY,
0

and Z and W are in duality with respect to the bilinear functional (( , )), defined
by ((r, s)),=rsfor reZ and se W. Let us put b(v)=((v, y9));. Then

H = {(a(v), b(v) + r); ve M*(0, 1), reR*}

Fy = {(a(), b(v)); ve M*(0, 1)}.

Denote by ¢, the unit point measure at t € [0, 1] and put v,=ne,,,. Then (1/n, 1)
=(a(v,), b(v,)) e F;. However (0, 1) does not belong to F,, so that F; is not
closed. On the other hand, since (1, 1)=(a(e,), b(e,)) and (0, 1) belong to H
and 0<a(v)< b(v) for every ve M*(0, 1), we have

H = {(rla r2)ER2; 0 S rl S r2},
so that H is closed.
ReMARK 3.1. H=F, if and only if (0, 1) e F,.

As for condition (C.2), we have

PropoSITION 3.2. If F, is closed and ‘if there exists we(Q*) such that
yo—A*we P*, then H is closed. '

Proor. Our assumption implies (G})i#¢ and Fin(G3)i#¢. Since F,
and G, are closed, condition (F,) is fulfilled by the corollary of Theorem 2.2.
Since (Q*)'# ¢, Q is locally compact by Proposition 2.1. Thus condition (C.2)
is fulfilled.
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Fan [4] proved this proposition under the assumption that (P*)!#¢, (Q*)!
#¢ and yo € A¥(Q1))+ (P
As for condition (C.4), we can prove

PROPOSITION 3.3. If F4 is closed and if there exist we(Q*)! and seR*
such that sy,— A*w e P*, then H is closed.

REMARK 3.2. Since F;=F,+(—Q)x {0}, F, is closed if F, is closed and if
there exist w e (Q*) and s € R such that sy,— A*we P*. Since F;=F,+ {0} x R*,
F, is closed if F, is closed and if y,e A*(W)+ P*. These facts are proved like
Propositions 3.2 and 3.3.

In case P=X, we have as for condition (C.2)

ProrosITION 3.4. Assume that P=X and A(X) is closed and Q is locally
compact. If yoe A¥(Q") and if condition (F;) is fulfilled, then H is closed.

Proor. Since y,€ A*(Q*), conditions (F,) and (F;) are equivalent. To
verify condition (C.2), we have only to prove that F, is closed. There exists
we Q* such that A*w=y, by our assumption. Thus F,={(Ax, ((4x, w)),);
x € X}. Since F, is the kernel of the continuous linear functional: (z, r)—»r—((z,
w)), defined on A(X) xR, F, is closed in A(X)x R. Since A(X) isclosed in Z, F,
is closed.

Finally we give an improvement of [11; Proposition 6], which shows that
a condition related to condition (K*) implies the closedness of H.

THEOREM 3.5. The set H is closed if the following condition is fulfilled:
(C.6) P islocally compact, Ax € Q! for all xe P, x#0 and M is finite.

ProoF. In case P={0}, H=(—Q)x R* is closed. We consider the case
where P#{0}. Let {(z,, r,)} be a net in H which converges to (z, r). There
exists x,€ P such that Ax,—z,€Q and ((X,, Vo)1 <r,. By Lemma 2.1 and our
representation (II), either (a) (z, r)e H or (b) there exists u € P such that u#0,
AueQ and ((u, yo));<0. Since P=PnAYQ) and M is finite, yo,e[Pn
A~Y(Q)]*=P*. Therefore ((u, y,));=0 and r,>0, and hence r>0. Since
Au € Q' there exists t>0 such that Au—tzeQ!. Taking x=u/t, we see that
Ax—z€Q and ((x, y9)); =0<r, and hence (z, r)e H. Therefore H is closed.

§4. Superconsistency conditions

We shall study some relations between condition (F) and superconsistency
conditions similar to condition (K). Let us consider the following interior
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conditions:
()] Yo €(A¥(Q*) + P*)i.
(L) A¥Q*)Y # ¢ and yoe AXQY) + P,

Clearly any one of conditions (K) and (L) implies condition (G). We have

THEOREM 4.1. Assume that (A*(Q*)+P*)'#¢. Then conditions (F) and
(G) are equivalent.

Proor. Let us take
E=X,F=Y,C=Pn A" (Q),
U=V=R, D= —R* Tx =((x, yo)

in Theorem 2.2. Then C* is equal to the closure of A*(Q*)+ P* and (C*)i#¢
by our assumption. Condition (F) is equivalent to Cn T-(D)={0}. Notice
that T*s=sy, and that (C*)in T*(—D*)#¢ holds if and only if there exists
s € R* such that sy, € (C*)'=(4*(Q*)+ P*)!, which is equivalent to condition (G).

COROLLARY 1. If (P*)is£ ¢, then conditions (F) and (K) are equivalent.

This was proved in [7; Corollary 7.1].

COROLLARY 2. If A*(Q*)'# ¢, then conditions (F) and (L) are equivalent.

The dual statements of conditions (G) and (L) can be written as follows:
(G*) zo € (A(P) — Q).
(L*) AP)! # ¢ and zye A(P)' - Q.

We can state sufficient conditions for the closedness of H* defined in §1 by
the aid of conditions (F*), (G*), (K*) and (L*) and the condition that Q% is
locally compact.
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