Subideality and Ascendancy in Generalized Solvable Lie Algebras

Naoki KAWAMOTO (Received May 17, 1979)

Introduction

Wielandt [8] has given some criteria for a subgroup to be subnormal in a finite group. Peng [6, 7] and Hartley and Peng [3] have given similar criteria for not necessarily finite groups. Furthermore Chao and Stitzinger [2] have given conditions for a subalgebra to be a subideal in a finite-dimensional solvable Lie algebra.

In this paper we shall investigate some criteria for subideality and ascendancy in not necessarily finite-dimensional Lie algebras.

Let L be a Lie algebra over a field f and let f be a subalgebra of f. When f L/Coref (f) is solvable, f is a subideal of f if either (a) there exists some integer f such that f is a subideal of f if either (a) there exists some integer f such that f is an attention of f is 0 or f in f in any f is an attention of f is an ascendant subalgebra of f if one of the following conditions is satisfied: (c) For any f is an attention of f if one of the following conditions is satisfied: (c) For any f is solvable, and for any f is there exists f is of characteristic 0, f is solvable, and for any f is there exists f in an ascendant subalgebra of f if if the foreign f is finitely generated for any f in an accendant subalgebra of f if if the finitely generated for any f in an accendant subalgebra of f if in the finitely generated for any f in an accendant subalgebra of f in the finitely generated for any f in an accendant subalgebra of f in the finitely generated for any f in an accendant subalgebra of f in the finitely generated for any f in the orem 18).

The author would like to express his thanks to Professor S. Tôgô for his valuable comments in preparing this paper.

1. Preliminaries

Throughout the paper Lie algebras are not necessarily finite-dimensional over a field f of arbitrary characteristic unless otherwise specified. We mostly follow [1] for the use of notations and terminology.

Let L be a Lie algebra over \mathfrak{k} . L belongs to the class $\mathfrak{k}\mathfrak{A}$ if L has an ascending abelian series $(L_{\alpha})_{\alpha \leq \lambda}$. If each L_{α} $(\alpha \leq \lambda)$ is furthermore an ideal of L, then L belongs to the class $\mathfrak{k}(\lhd)\mathfrak{A}$, that is, L is hyperabelian. For an integer $n \geq 0$ and an ordinal λ , $H \leq L$, $H \lhd L$, H si L, $H \lhd n$ L, H asc L and $H \lhd n$ L mean that H is respectively a subalgebra, an ideal, a subideal, an n-step subideal, an ascendant

subalgebra and a λ -step ascendant subalgebra of L. If $H < ^n L$ then n is called the subideal index of H. For any subsets A, B of L we denote by $\langle A^B \rangle$ the smallest B-invariant subalgebra of L containing A. The core $\operatorname{Core}_L(H)$ of a subalgebra H in L is the largest ideal of L contained in H. For any x, $y \in L$ and for any subsets A, B of L we define inductively $[x, _0y] = x$ and $[x, _{i+1}y] = [[x, _iy], y]$ $(i \in \mathbb{N})$; $[A, _0B] = A$, $[A, _{i+1}B] = [[A, _iB], B]$ $(i \in \mathbb{N})$.

Let (H, K) be an ordered pair of subalgebras of L. We say (H, K) to be an N_k -pair $(k \in \mathbb{N})$ if $[K, {}_kH] \subseteq H$, and to be an N_{∞} -pair if for each $a \in K$ there exists $k = k(a) \in \mathbb{N}$ such that $[a, {}_kH] \subseteq H$. The fact that (H, L) is an N_k -pair means that H is a k-step weak ideal of L in the sense of Maruo [5]. We define

$$N_k(H) = \{ a \in L \mid [a, {}_k H] \subseteq H \} \qquad (k \in \mathbb{N}),$$

$$N_m(H) = \bigcup_{k \in \mathbb{N}} N_k(H).$$

It is then clear that (H, K) is an N_k -pair (resp. N_{∞} -pair) if and only if $K \subseteq N_k(H)$ (resp. $K \subseteq N_{\infty}(H)$). We say (H, K) to be an E_k -pair $(k \in \mathbb{N})$ if $[K, k] \subseteq H$ for any $x \in H$, and to be an E_{∞} -pair if for each $a \in K$ there exists $k = k(a) \in \mathbb{N}$ such that $[a, k] \in H$ for any $x \in H$. We define

$$E_k(H) = \{ a \in L \mid [a, k] \in H \text{ for any } x \in H \} \qquad (k \in \mathbb{N}),$$

$$E_{\infty}(H) = \bigcup_{k \in \mathbb{N}} E_k(H).$$

It is then clear that (H, K) is an E_k -pair (resp. E_{∞} -pair) if and only if $K \subseteq E_k(H)$ (resp. $K \subseteq E_{\infty}(H)$). Let n_1, \ldots, n_r be integers ≥ 0 . We say (H, K) to be an E_{n_1, \ldots, n_r} -pair if

$$[K, _{n_1}x_1, \ldots, _{n_r}x_r] \subseteq H$$

for any $x_1, ..., x_r \in H$, and we define

$$E_{n_1,...,n_r}(H) = \{ a \in L \mid [a, {}_{n_1}x_1,...,{}_{n_r}x_r] \in H \text{ for any } x_1,...,x_r \in H \}.$$

We first show the following

Lemma 1. Let L be a Lie algebra over a field $\mathfrak t$ and H be a subalgebra of L. Then

- (a) $N_{\infty}(H)$ is a subalgebra of L and $(H, N_{\infty}(H))$ is an N_{∞} -pair.
- (b) H^{ω} is an ideal of $N_{\infty}(H)$.

PROOF. (a) If $x, y \in N_{\infty}(H)$, then $x, y \in N_n(H)$ for some n > 0. Put m = 2n - 1. Then

$$[[x, y], {}_{m}H] \subseteq \sum_{i+i=m} [[x, {}_{i}H], [y, {}_{i}H]],$$

and either $i \ge n$ or $j \ge n$. If $i \ge n$, then

$$[x, {}_{i}H] = [x, {}_{n}H, {}_{i-n}H] \subseteq H^{i-n+1},$$

and therefore

$$[[x, {}_{i}H], [y, {}_{j}H]] \subseteq [[y, {}_{j}H], H^{i-n+1}]$$
$$\subseteq [y, {}_{j}H, {}_{i-n+1}H]$$
$$= [y, {}_{n}H] \subseteq H.$$

If $j \ge n$, then we similarly have

$$[[x, {}_{i}H], [y, {}_{i}H]] \subseteq H.$$

Therefore

$$[[x, y], {}_mH] \subseteq H,$$

whence $[x, y] \in N_m(H)$. Thus $N_{\infty}(H)$ is a subalgebra of L.

(b) If $x \in N_{\infty}(H)$, then $x \in N_n(H)$ for some n > 0. Hence for any m > 0

$$[x, H^{\omega}] \subseteq [x, H^{n+m-1}]$$

$$\subseteq [x, {}_{n}H, {}_{m-1}H]$$

$$\subseteq [H, {}_{m-1}H] = H^{m}.$$

It follows that

$$[x, H^{\omega}] \subseteq \bigcap_{m>0} H^m = H^{\omega}.$$

Therefore H^{ω} is an ideal of $N_{\infty}(H)$.

By the same way as in Lemma 1 of [4] we have

LEMMA 2. Let L be a Lie algebra over a field t and H be a subalgebra of L.

- (a) If the characteristic of \mathfrak{t} is either 0 or $p > \max_{1 \le i \le r} n_i$, then $E_{n_1,\ldots,n_r}(H)$ is an H-invariant subspace of L.
- (b) If the characteristic of $\mathfrak t$ is 0, then $E_\infty(H)$ is an H-invariant subspace of L.

PROOF. (a) Put
$$x^* = \operatorname{ad}_L x$$
 for any $x \in H$. Let $a \in E_{n_1, \dots, n_r}(H)$. Then
$$ax_r^{*n_1} \cdots x_r^{*n_r} \in H$$

for any $x_1, ..., x_r \in H$. Replace each x_i by $x_i + ty_i$ where $t \in \mathbb{T}$ and $y_1, ..., y_r \in H$,

and take the coefficient of t. Then by the argument similar to the linearization in [4] we have

$$a \sum_{i=1}^{r} f_i(x_1^*, \dots, x_r^*; y_i^*) \in H \tag{*}$$

for any $y_1, ..., y_r \in H$, where

$$f_i(x_1^*,...,x_r^*;y_i^*)$$

$$= x_1^{*n_1} \cdots x_{i-1}^{*n_{i-1}} (\sum_{i=0}^{n_{i-1}} x_i^{*n_{i-j-1}} y_i^* x_i^{*j}) x_{i+1}^{*n_{i+1}} \cdots x_r^{*n_r}.$$

Let $z \in H$ and substitute $[x_i, z]$ for y_i (i = 1, ..., r). Then

$$f_{i}(x_{1}^{*},...,x_{r}^{*};[x_{i},z]^{*})$$

$$= x_{1}^{*n_{1}}...x_{i-1}^{*n_{i-1}}(\sum_{j=0}^{n_{i-1}} x_{i}^{*n_{i}-j-1}(x_{i}^{*}z^{*}-z^{*}x_{i}^{*})x_{i}^{*j})x_{i+1}^{*n_{i+1}}...x_{r}^{*n_{r}}$$

$$= x_{1}^{*n_{1}}...x_{i-1}^{*n_{i-1}}(x_{i}^{*n_{i}}z^{*}-z^{*}x_{i}^{*n_{i}})x_{i+1}^{*n_{i+1}}...x_{r}^{*n_{r}},$$

and therefore

$$a \sum_{i=1}^{r} f_i(x_1^*, ..., x_r^*; [x_i, z]^*)$$

= $a(x_1^{*n_1} ... x_r^{*n_r} z^* - z^* x_1^{*n_1} ... x_r^{*n_r}).$

By (*) we have

$$[a, z]x_1^{*n_1} \cdots x_r^{*n_r}$$

$$= ax_1^{*n_1} \cdots x_r^{*n_r} z^* - a\sum_{i=1}^r f_i(x_1^*, \dots, x_r^*; [x_i, z]^*) \in H.$$

It follows that for any $z \in H$

$$[a, z] \in E_{n_1,\ldots,n_r}(H)$$
.

Thus $E_{n_1,\ldots,n_r}(H)$ is H-invariant.

(b) is immediately obtained from (a), since $E_{\infty}(H) = \bigcup_{n \in \mathbb{N}} E_n(H)$.

2. Criteria for subideality

In this section we investigate some conditions for a subalgebra to be a subideal. We need the following simple and useful

LEMMA 3. Let L be a Lie algebra over a field \mathfrak{t} . Let H be a subalgebra of L and A be an abelian ideal of L.

- (a) If (H, A) is an N_n -pair for some $n \in \mathbb{N}$, then $H \triangleleft^n A + H$.
- (b) If (H, A) is an N_{∞} -pair, then $H \triangleleft {}^{\omega}A + H$.

PROOF. Put $A_i = A \cap N_i(H)$ for any $i \in \mathbb{N}$. By the definition of $N_i(H)$ it is clear that $[A_i, H] \subseteq A_{i-1}$ and so A_i is H-invariant. Therefore

$$A_i + H \triangleleft A_{i+1} + H \quad (i \in \mathbb{N}).$$

If (H, A) is an N_n -pair, then $A \subseteq N_n(H)$. Hence $A_n = A$. It follows that

$$H = A_0 + H \triangleleft^n A + H.$$

If (H, A) is an N_{∞} -pair, then $A \subseteq N_{\infty}(H)$. Hence

$$A = A \cap (\bigcup_{i \in \mathbb{N}} N_i(H)) = \bigcup_{i \in \mathbb{N}} A_i.$$

It follows that

$$\bigcup_{i\in\mathbb{N}}(A_i+H)=\bigcup_{i\in\mathbb{N}}A_i+H=A+H.$$

Thus we have

$$H = A_0 + H \triangleleft^{\omega} A + H.$$

THEOREM 4. Let L be a Lie algebra over a field $\mathfrak t$ and H be a subalgebra of L. If $L/\mathrm{Core}_L(H) \in \mathfrak A^m$ and $(H, L^{(1)})$ is an N_n -pair for some m, n > 0, then $H \lhd^{n(m-1)+1} L$. In particular, if L is solvable and (H, L) is an N_n -pair for some $n \in \mathbb N$, then H is a subideal of L.

PROOF. For i>1, put $\overline{L}=L/L^{(i)}$ and $\overline{H}=(H+L^{(i)})/L^{(i)}$. Then $\overline{L}^{(i-1)}$ is an abelian ideal of \overline{L} and $(\overline{H}, \overline{L}^{(i-1)})$ is an N_n -pair. By Lemma 3

$$\overline{H} \lhd^n \overline{L}^{(i-1)} + \overline{H},$$

whence

$$L^{(i)} + H \triangleleft^n L^{(i-1)} + H$$
.

Therefore

$$H = L^{(m)} + H \triangleleft^{n(m-1)} L^{(1)} + H \triangleleft L.$$

If m=2 in Theorem 4, then the subideal index of H becomes n+1. It will be shown by Example 1 in Section 4 that this bound is best possible.

To consider E_n -pair we modify Theorem 1 in [4] and obtain the following

LEMMA 5. Let L be a Lie algebra over a field \mathfrak{t} . Let H be a solvable subalgebra of L of derived length $\leq m$ and A be an ideal of L. Let n>0 be an integer such that $[A, {}_{n}x]=0$ for any $x\in H$. If the characteristic of \mathfrak{t} is either 0 or p>n, then $[A, {}_{k}H]=0$ with $k=n^{m}$.

PROOF. We use induction on m. The case m=0 being trivial, let m>0 and assume that the result holds for m-1. Then we have

$$[A, H^{(1)}] = 0$$

with $r=n^{m-1}$. Put $A_i=[A, {}_iH^{(1)}]$ for i=0,...,r. Then $A_0=A$ and $A_r=0$. It suffices to show that

$$[A_i, H] \subseteq A_{i+1} \tag{*}$$

for i=0,...,r-1. In fact, we then have

$$[A_0, {}_{nr}H] \subseteq A_r,$$

that is,

$$[A, {}_{k}H] = 0$$
 for $k = n^{m}$,

as required.

To show (*) we claim that A_i is *H*-invariant for any *i*. It is obvious for i=0. Assume inductively that A_i is *H*-invariant. Then

$$[A_{i+1}, H] = [A_i, H^{(1)}, H]$$

$$\subseteq [A_i, H, H^{(1)}] + [A_i, [H^{(1)}, H]]$$

$$\subseteq [A_i, H^{(1)}] = A_{i+1},$$

whence A_{i+1} is H-invariant. Now we show (*). Put $x^* = ad_A x$ for any $x \in H$. Then by the hypothesis of the lemma

$$x^{*n} = 0.$$

By repeated use of the linearization we have

$$\sum_{\pi \in S_n} x_{\pi(1)}^* \cdots x_{\pi(n)}^* = 0$$

for any $x_1, ..., x_n \in H$. Now $x_i^* x_i^* = x_i^* x_i^* + [x_i, x_i]^*$. Therefore

$$n! x_1^* \cdots x_n^* + f = 0, \tag{**}$$

where f is a linear combination of the element of form

$$x_{\pi(1)}^* \cdots x_{\pi(i-1)}^* [x_{\pi(i)}, x_{\pi(i+1)}]^* x_{\pi(i+2)}^* \cdots x_{\pi(n)}^*.$$

Since A_i is H-invariant,

$$A_i x_{\pi(1)}^* \cdots x_{\pi(i-1)}^* [x_{\pi(i)}, x_{\pi(i+1)}]^* x_{\pi(i+2)}^* \cdots x_{\pi(n)}^*$$

$$\subseteq A_{i}[x_{\pi(i)}, x_{\pi(i+1)}]^{*}x_{\pi(i+2)}^{*}\cdots x_{\pi(n)}^{*}$$

$$\subseteq A_{i+1}x_{\pi(i+2)}^{*}\cdots x_{\pi(n)}^{*}$$

$$\subseteq A_{i+1}.$$

By (**) it follows that

$$A_i x_1^* \cdots x_n^* \subseteq A_i f \subseteq A_{i+1}$$

which is to be shown.

REMARK. In the above lemma the assumption that A is an ideal of L can be replaced by the assumption that A is an H-invariant subspace of L.

We can now state a relation between E_n -pairs and N_k -pairs in the following

LEMMA 6. Let L be a Lie algebra over a field \mathfrak{t} . Let H be a solvable subalgebra of L of derived length $\leq m$ and A be an abelian ideal of L. Let (H, A) be an E_n -pair for some n>0. If the characteristic of k is either 0 or p>n, then (H, A) is an N_k -pair with $k=n^m$.

PROOF. Since $A \cap H \triangleleft A + H$, we take $\overline{A + H} = (A + H)/A \cap H$. Then for any $\overline{x} \in \overline{H}$

$$[\bar{A}, \bar{x}] \subseteq \bar{A} \cap \bar{H} = \bar{0}.$$

By Lemma 5 we have

$$\lceil \overline{A}, \mu \overline{H} \rceil = \overline{0}$$

with $k = n^m$. Therefore (H, A) is an N_k -pair.

By making use of Lemma 6 we can prove the following

THEOREM 7. Let L be a Lie algebra over a field \mathfrak{k} . Let H be a subalgebra of L such that $L/\mathrm{Core}_L(H) \in \mathfrak{A}^m$ and $(H, L^{(1)})$ is an E_n -pair for some m, n > 0. If the characteristic of \mathfrak{k} is either 0 or p > n, then H is an h-step subideal of L, where $h = \sum_{i=0}^{m-1} n^i$. In particular, if L is solvable and (H, L) is an E_n -pair for some $n \in \mathbb{N}$, then H is a subideal of L.

PROOF. We use induction on m. The assertion is clear for m=1. Let m>1 and assume that the assertion holds for m-1. Put $\overline{L}=L/L^{(m-1)}$. Then $\overline{L}^{(m-1)}\subseteq \overline{H}$. Clearly $(\overline{H}, \overline{L}^{(1)})$ is an E_n -pair. By the inductive hypothesis

with $r = \sum_{i=0}^{m-2} n^i$, and so

$$L^{(m-1)} + H \triangleleft^r L$$

We may assume that $L^{(m)}=0$ by considering $L/\operatorname{Core}_L(H)$. Hence $A=L^{(m-1)}$ is an abelian ideal of L. It is clear that $A\cap H\lhd A+H$. Put $\overline{A+H}=(A+H)/A\cap H$. Then $(\overline{H},\overline{A})$ is an E_n -pair and $\overline{H}^{(m-1)}=0$ since $H^{(m-1)}\subseteq A\cap H$. By Lemma 6 $(\overline{H},\overline{A})$ is an N_k -pair for $k=n^{m-1}$. Therefore by Lemma 3

$$\overline{H} \triangleleft^k \overline{A + H}$$
.

whence

$$H \triangleleft^k A + H$$
.

Thus we obtain

$$H \triangleleft^h L$$
,

where $h = k + r = \sum_{i=0}^{m-1} n^i$.

If m=2 in the above theorem, then the subideal index $\sum_{i=0}^{m-1} n^i$ of H becomes n+1. It will be shown by Example 1 in Section 4 that this bound is best possible. In the case that n=2, the subideal index can be improved in the following

THEOREM 8. Let L be a Lie algebra over a field $\mathfrak k$ of characteristic $\neq 2$ and H be a subalgebra of L. If $(H, L^{(1)})$ is an E_2 -pair and $L/\operatorname{Core}_L(H) \in \mathfrak A^m$ for some m > 1, then H is a 3(m-1)-step subideal of L.

PROOF. We use induction on m. If m=2 then H < 3L by Theorem 7. Let m>2 and assume that the assertion holds for m-1. Put $\overline{L}=L/L^{(m-1)}$. Then by the inductive hypothesis

$$\overline{H} \lhd^{3(m-2)} \overline{L}$$

and so

$$L^{(m-1)} + H \triangleleft^{3(m-2)} L.$$

Now $(H, L^{(m-1)})$ is an E_2 -pair. By the argument similar to the proof of Theorem 7.3.2 in [1] it is easily seen that $(H, L^{(m-1)})$ is an N_3 -pair. By using Lemma 3 we obtain

$$H \triangleleft^3 L^{(m-1)} + H.$$

Therefore H is a 3(m-1)-step subideal of L.

We generalize Theorem 7 by using the following

LEMMA 9. Let L be a Lie algebra over a field \(\mathbf{t} \). Let H be a solvable

subalgebra of L of derived length $\leq m$ and A be an abelian ideal of L. Let (H, A) be an E_{n_1, \dots, n_r} -pair. If the characteristic of \mathfrak{k} is either 0 or $p > \max_{1 \leq i \leq r} n_i^m$, then (H, A) is an N_k -pair with $k = \sum_{i=1}^r n_i^m$.

PROOF. We use induction on r. For r=1 the assertion holds by Lemma 6. Let r>1 and assume the assertion holds for r-1. By definition

$$[A, _{n_1}x_1, _{n_2}x_2, ..., _{n_n}x_r] \subseteq H$$

for any $x_1, x_2, ..., x_r \in H$. Put $B = A \cap E_{n_2,...,n_r}(H)$. Then B is H-invariant by Lemma 2. Thus B is an ideal of A + H. Clearly (H, B) is an $E_{n_2,...,n_r}$ -pair. By the inductive hypothesis we obtain that (H, B) is an N_h -pair for $h = \sum_{i=2}^r n_i^m$. Hence

$$[B, {}_{h}H] \subseteq H.$$

In $\overline{A+H} = (A+H)/B$ we have

$$[\bar{A}, n, \bar{x}] = \bar{0}$$

for any $x \in H$. By Lemma 5

$$[\bar{A}, {}_{nm}\bar{H}] = \bar{0}$$

and so

$$[A, {}_{n^m}H] \subseteq B.$$

It follows that

$$[A, {}_{n^m+h}H] \subseteq [B, {}_{h}H] \subseteq H.$$

Therefore (H, A) is an N_k -pair, where

$$k = n_1^m + h = \sum_{i=1}^r n_i^m$$
.

THEOREM 10. Let L be a Lie algebra over a field \mathfrak{t} and H be a subalgebra of L. Let $L/\mathrm{Core}_L(H) \in \mathfrak{A}^m$ and $(H, L^{(1)})$ be an E_{n_1,\dots,n_r} -pair for some $m, n_1,\dots,n_r>0$. If the characteristic of \mathfrak{t} is either 0 or $p>\max_{1\leq i\leq r}n_i$, then H is an h-step subideal of L where $h=\sum_{j=0}^{m-1}\sum_{i=1}^{r}n_i^j$. In particular, if L is solvable and (H,L) is an E_{n_1,\dots,n_r} -pair, then H is a subideal of L.

This theorem will be proved in the same way as in Theorem 7, by using Lemma 9 instead of Lemma 6. Hence we omit the proof.

We combine some of the above results in the following theorem, generalizing a result [2, Theorem 1] for finite-dimensional case.

THEOREM 11. Let L be a Lie algebra over a field \mathfrak{t} . Let H be a subalgebra of L such that $L/\operatorname{Core}_L(H)$ is solvable. Then the following conditions are equivalent:

- (a) H is a subideal of L.
- (b) There exists $n \in \mathbb{N}$ such that $H \triangleleft n \langle H, x \rangle$ for any $x \in L$.
- (c) (H, L) is an N_n -pair for some $n \in \mathbb{N}$.

If the field t is of characteristic 0, then the above conditions are equivalent to each of the following:

- (d) There exist r, n = n(r) > 0 such that $[L, {}_{n}K] \subseteq H$ for any r-generated subalgebra K of H.
 - (e) (H, L) is an E_n -pair for some $n \in \mathbb{N}$.
 - (f) (H, L) is an $E_{n_1,...,n_r}$ -pair for some $n_1,...,n_r \in \mathbb{N}$.

PROOF. It is clear that $(a)\Rightarrow(b)\Rightarrow(c)$ and $(a)\Rightarrow(d)\Rightarrow(e)\Rightarrow(f)$. $(c)\Rightarrow(a)$ and $(f)\Rightarrow(a)$ follow from Theorem 4 and Theorem 10 respectively.

3. Criteria for ascendancy

In this section we investigate some conditions for a subalgebra to be an ascendant subalgebra for a Lie algebra in the classes $\acute{E}(\triangleleft)\mathfrak{A}$ and $\acute{E}\mathfrak{A}$ of generalized solvable Lie algebras.

Theorem 12. Let L be a Lie algebra over a field \mathfrak{k} . Let H be a subalgebra of L such that $L/\operatorname{Core}_L(H) \in \acute{E}(\lhd)\mathfrak{A}$. If (H, L) is an N_{∞} -pair, then H is an ascendant subalgebra of L.

PROOF. We may assume that $L \in \acute{E}(\lhd)\mathfrak{A}$. Let $(L_{\alpha})_{\alpha \leq \lambda}$ be an ascending abelian series of ideals of L. For any $\alpha < \lambda$ put $\overline{L} = L/L_{\alpha}$. Then $\overline{L}_{\alpha+1}$ is an abelian ideal of \overline{L} and $(\overline{H}, \overline{L}_{\alpha+1})$ is an N_{∞} -pair. By Lemma 3

$$\overline{H} \triangleleft^{\omega} \overline{L}_{n+1} + \overline{H}$$

so that

$$L_{\alpha} + H \triangleleft^{\omega} L_{\alpha+1} + H.$$

If $\mu \leq \lambda$ is a limit ordinal, then

$$\bigcup_{\beta<\mu}(L_{\beta}+H)=\bigcup_{\beta<\mu}L_{\beta}+H=L_{\mu}+H.$$

Thus we have

$$H = L_0 + H$$
 asc $L_{\lambda} + H = L$.

REMARK. Let L be a Lie algebra over f and H be a subalgebra of L. If

 $L/\mathrm{Core}_L(H) \in \acute{\mathrm{E}}(\lhd)\mathfrak{A}$, then H asc $N_\infty(H)$. In fact, by Lemma 1 $N_\infty(H)$ is a subalgebra of L and $(H, N_\infty(H))$ is an N_∞ -pair. Hence the assertion follows from Theorem 12.

We here state a relation between E_{∞} -pairs and N_{∞} -pairs in the following

Lemma 13. Let L be a Lie algebra over a field $\mathfrak t$ of characteristic 0. Let H be a solvable subalgebra of L and A be an abelian ideal of L. If (H,A) is an E_{∞} -pair, then (H,A) is an N_{∞} -pair.

PROOF. For any $n \in \mathbb{N}$ put

$$A_n = A \cap E_n(H)$$
.

By Lemma 2 A_n is an *H*-invariant subalgebra of *L*. Clearly (H, A_n) is an E_n -pair. By Lemma 6 it follows that (H, A_n) is an N_k -pair for some k, so that $A_n \subseteq N_k(H)$. Therefore

$$A = \bigcup_{n \in \mathbb{N}} A_n \subseteq \bigcup_{k \in \mathbb{N}} N_k(H) = N_{\infty}(H).$$

Thus (H, A) is an N_{∞} -pair.

Theorem 14. Let L be a Lie algebra over a field \mathfrak{t} of characteristic 0. Let H be a solvable subalgebra of L such that $L/\operatorname{Core}_L(H) \in \acute{E}(\lhd)\mathfrak{A}$. If (H, L) is an E_{∞} -pair, then H is an ascendant subalgebra of L.

PROOF. We may assume that $L \in \not \in (\prec)\mathfrak{A}$. Let $(L_{\alpha})_{\alpha \leq \lambda}$ be an ascending abelian series of ideals of L. For any $\alpha < \lambda$ put $\overline{L} = L/L_{\alpha}$. Then $\overline{L}_{\alpha+1}$ is an abelian ideal of \overline{L} and $(\overline{H}, \overline{L}_{\alpha+1})$ is an E_{∞} -pair. By Lemma 13 $(\overline{H}, \overline{L}_{\alpha+1})$ is an N_{∞} -pair, and by Lemma 3

$$\overline{H} \triangleleft^{\omega} \overline{L}_{\alpha+1} + \overline{H}.$$

Therefore

$$L_{\alpha}+H \lhd^{\omega} L_{\alpha+1}+H.$$

If $\mu \leq \lambda$ is a limit ordinal, then

$$\bigcup_{\beta<\mu}(L_{\beta}+H)=L_{\mu}+H.$$

Thus we obtain

$$H = L_0 + H$$
 asc L.

Finally we give some criteria for ascendancy in the case that $L/\text{Core}_L(H) \in \mathfrak{L}$. To this end we show the following

LEMMA 15. Let L be a Lie algebra over a field f. Let H, K be subalgebras of L. Then there exists the largest H-invariant subalgebra of K.

PROOF. Let M be the sum of H-invariant subspaces of K. Then it is clear that M is the largest H-invariant subspace of K. M^2 is also H-invariant since

$$[M^2, H] \subseteq [[M, H], M] \subseteq M^2.$$

By the definition of M

$$M^2 \subseteq M$$
.

Hence M is a subalgebra of K and therefore the largest H-invariant subalgebra of K.

Lemma 16. Let L be an \mathfrak{M} -algebra over a field \mathfrak{k} . Let H be a subalgebra of L such that $\langle a^H \rangle$ is finitely generated for any $a \in L$. Then there exists an ascending abelian series of H-invariant subalgebras of L.

PROOF. Let $(L_{\alpha})_{\alpha \leq \lambda}$ be an ascending abelian series of L. By Lemma 15 there exists the largest H-invariant subalgebra K_{α} of L_{α} for any $\alpha \leq \lambda$. Clearly $K_0 = 0$ and $K_{\lambda} = L$. For any $\alpha < \lambda$

$$K_{\alpha+1}^2 \leq L_{\alpha+1}^2 \leq L_{\alpha}$$

and $K_{\alpha+1}^2$ is an H-invariant subalgebra of L_{α} . Hence by the definition of K_{α}

$$K_{\alpha+1}^2 \leq K_{\alpha}$$

Therefore we have

$$K_{\alpha} \lhd K_{\alpha+1}, \quad K_{\alpha+1}/K_{\alpha} \in \mathfrak{A}.$$

Let $\mu \leq \lambda$ be a limit ordinal. Then clearly $K_{\mu} \geq \bigcup_{\beta < \mu} K_{\beta}$. For any $a \in K_{\mu} \langle a^H \rangle$ is a finitely generated subalgebra of L_{μ} , and hence there exists an ordinal $\beta < \mu$ such that

$$\langle a^H \rangle \leq L_{\theta}$$
.

Since $\langle a^H \rangle$ is *H*-invariant,

$$\langle a^H \rangle \leq K_{\beta}$$

and hence

$$K_{\mu} = \bigcup_{\beta < \mu} K_{\beta}.$$

Therefore $(K_{\alpha})_{\alpha \leq \lambda}$ is an ascending abelian series of H-invariant subalgebras of L.

Theorem 17. Let L be a Lie algebra over a field \mathfrak{k} . Let H be a subalgebra of L such that $L/\operatorname{Core}_L(H) \in \mathfrak{M}$ and that $\langle a^H \rangle$ is finitely generated for any $a \in L$. If (H, L) is an N_{∞} -pair, then H is an ascendant subalgebra of L.

PROOF. We may assume that $L \in \mathfrak{M}$. Then by Lemma 16 there exists an ascending abelian series $(L_{\alpha})_{\alpha \leq \lambda}$ of *H*-invariant subalgebras of *L*. We claim that for any $\alpha < \lambda$

$$L_{\alpha} + H \triangleleft^{\omega} L_{\alpha+1} + H. \tag{*}$$

Clearly $L_{\alpha+1}+H$ is a subalgebra of L, and L_{α} is an ideal of $L_{\alpha+1}+H$. Furthermore $\overline{L}_{\alpha+1}$ is an abelian ideal of $\overline{L}_{\alpha+1}+\overline{H}=(L_{\alpha+1}+H)/L_{\alpha}$ and $(\overline{H},\overline{L}_{\alpha+1})$ is an N_{∞} -pair. Hence by Lemma 3

$$\overline{H} \triangleleft^{\omega} \overline{L}_{\alpha+1} + \overline{H},$$

and we have (*). It is now easy to see that

$$H = L_0 + H$$
 asc $L_{\lambda} + H = L$.

By the same argument as in the proof of Theorem 17 and by using Lemma 13 we can show the following

Theorem 18. Let L be a Lie algebra over a field $\mathfrak k$ of characteristic 0. Let H be a solvable subalgebra of L such that $L/\mathrm{Core}_L(H) \in \mathfrak k \mathfrak A$ and that $\langle a^H \rangle$ is finitely generated for any $a \in L$. If (H, L) is an E_∞ -pair, then H is an ascendant subalgebra of L.

Remark. Let L be a Lie algebra over a field \mathfrak{k} (resp. a field \mathfrak{k} of characteristic 0). Let H be a subalgebra of L such that (H, L) is an N_{∞} -pair (resp. E_{∞} -pair). If $H \in \mathfrak{F}_{\omega}$ (resp. $H \in \mathfrak{F}_{\omega} \cap \mathrm{E}\mathfrak{A}$), then $(\langle a^H \rangle + H^{\omega})/H^{\omega}$ is finitely generated for any $a \in L$.

We shall give the proof only for an N_{∞} -pair and omit the proof of the other case. By Lemma 1 $H^{\omega} \lhd N_{\infty}(H) = L$, so that we can consider the quotient algebra L/H^{ω} . Since $H/H^{\omega} \in \mathfrak{F}$, we may assume that H is finite-dimensional and nilpotent. Let X be a basis of H. Then for any $a \in L$ there exists n = n(a) such that

$$[a, {}_{n}X] \subseteq H.$$

Since H is nilpotent,

$$[a, {}_{n+m}X] \subseteq H^{m+1} = 0$$

for a sufficiently large m. Therefore

$$\langle a^H \rangle = \langle [a, {}_i X] | 0 \le i < n + m \rangle$$

is finitely generated.

4. Examples

In Theorems 4 and 7 we observe the case where m=2. In this case the assertions become H < n+1. The subideal index n+1 of H is best possible for n>1.

In Theorem 7 (resp. Theorem 8) we assumed that the characteristic of the basic field \mathfrak{k} is either 0 or p > n (resp. is not 2). These restrictions cannot be removed.

We shall show these facts in the following examples.

EXAMPLE 1. Let \mathfrak{k} be any field and n be an integer > 1. Define V to be the vector space over \mathfrak{k} with basis $\{e_i | i=1, 2, ..., 3n\}$, and define endomorphisms f and g of V by

$$e_{i}f = \begin{cases} e_{i+1} & \text{if} \quad i \neq n, 2n, 3n, \\ 0 & \text{if} \quad i = n, 2n, 3n; \end{cases}$$

$$e_{i}g = \begin{cases} e_{n+i} & \text{if} \quad i = 1, 2, ..., 2n, \\ 0 & \text{if} \quad i = 2n + 1, 2n + 2, ..., 3n. \end{cases}$$

Clearly f and g are commutative. Consider V as an abelian Lie algebra so that f and g are derivations of V. Define

$$L = V \dotplus (f, g),$$

and put

$$H = (e_1, e_2, ..., e_n, e_{2n}) + (f).$$

It is clear that H is a subalgebra of L. It is easy to see that for $1 \le i \le n-1$

$$[L, {}_{i}H] = (e_{i+1}, e_{i+2}, ..., e_{n}, e_{n+i}, e_{n+i+1}, ..., e_{2n}, e_{2n+i+1}, e_{2n+i+2}, ..., e_{3n})$$

and

$$\lceil L, H \rceil = (e_{2n}) \subseteq H.$$

Let H_i be an *i*-th ideal closure of H in L for $i=1, 2, 3, \ldots$. Then we easily see that

$$H_1 = \langle H^L \rangle = V + (f),$$

$$H_i = \langle H^{H_{i-1}} \rangle$$

$$= (e_1, e_2, ..., e_n, e_{n+i}, e_{n+i+1}, ..., e_{2n}, e_{2n+i}, e_{2n+i+1}, ..., e_{3n}) + (f)$$
for $2 \le i \le n$,

and

$$H_{n+1} = \langle H^{H_n} \rangle = (e_1, e_2, ..., e_n, e_{2n}) + (f) = H.$$

Therefore (H, L) is both an N_n -pair and E_n -pair. But $H \triangleleft^{n+1} L$ and H is not an n-step subideal of L.

EXAMPLE 2. Let f be a field of characteristic p>0, and let $\mathbb{Z}[t]$ be a polynomial ring. Define V to be the vector space over f with basis $\{e_a \mid a \in S\}$, where

$$S = \{ \sum_{i} a_i t^i \in \mathbb{Z}[t] \mid 0 \le a_i$$

For each $n \in \mathbb{N}$ define an endomorphism f_n of V as follows: For any $a = \sum_i a_i t^i \in S$

$$e_a f_n = \begin{cases} e_{a+t^n} & \text{if } a_n \neq p-1, \\ 0 & \text{if } a_n = p-1. \end{cases}$$

Then for any $n, m \in \mathbb{N}$

$$f_n^p = 0$$
, $f_n f_m = f_m f_n$,

and for any $\alpha_r \in \mathfrak{k}$ $(r \in \mathbb{N})$

$$(\sum_{r} \alpha_{r} f_{r})^{p} = \sum_{r} \alpha_{r}^{p} f_{r}^{p} = 0. \tag{*}$$

Put $H = (f_n | n \in \mathbb{N})$. Then H is an abelian Lie subalgebra of $\operatorname{End}_k(V)$. Consider V as an abelian Lie algebra so that each of the elements in H is a derivation of V. Define

$$L = V + H$$
.

Then L is a solvable Lie algebra of derived length 2, and H is a subalgebra of L. By (*)

$$[L, {}_{n}x] = [V, {}_{n}x] = Vx^{p} = 0$$

for any $x \in H$. Therefore (H, L) is an E_n -pair for any $n \ge p$. However, since

$$I_L(H) = H,$$

H is neither a subideal nor an ascendant subalgebra of L.

References

- [1] R. K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] C.-Y. Chao and E. L. Stitzinger, Subinvariance in solvable Lie algebras, Canad. J. Math. 28 (1976), 181–185.
- [3] B. Hartley and T. A. Peng, Subnormality, ascendancy, and the minimal condition on subgroups, J. Algebra 41 (1976), 58-78.
- [4] P. J. Higgins, Lie rings satisfying the Engel condition, Proc. Cambridge Philos. Soc. 50 (1954), 8-15.
- [5] O. Maruo, Pseudo-coalescent classes of Lie algebras, Hiroshima Math. J. 2 (1972), 205–214.
- [6] T. A. Peng, A criterion for subnormality, Arch. Math. 26 (1975), 225-230.
- [7] T. A. Peng, A note on subnormality, Bull. Austral. Math. Soc. 15 (1976), 59-64.
- [8] H. Wielandt, Kriterien für Subnormalität in endlichen Gruppen, Math. Z. 138 (1974), 199–203.

Department of Mathematics, Faculty of Science, Hiroshima University