On Fitting's Lemma

Yasuyuki HIRANO (Received March 15, 1979)

We assume throughout the paper that R is a ring with identity and that all the R-modules are unital. Given a right ideal K of R, $I_R(K)$ will denote the idealizer of K in R: $I_R(K) = \{x \in R \mid xK \subseteq K\}$.

Let M be a right R-module. The intersection of maximal submodules of M_R is denoted by $J(M_R)$, and M_R is said to be *semisimple* if $J(M_R)=0$. If for each $f \in \text{End}(M_R)$ there exists a positive integer n such that $M = \text{Ker} f^n \oplus \text{Im} f^n$, then M_R is said to satisfy *Fitting's lemma*. In this paper, we consider the following properties:

(I) Every injective endomorphism of any finitely generated right *R*-module is an isomorphism.

(S) Every surjective endomorphism of any finitely generated right *R*-module is an isomorphism.

(F) Every finitely generated right R-module satisfies Fitting's lemma.

In [1, Proposition 2.3], E. P. Armendariz, J. W. Fisher and R. L. Snider proved that M_R satisfies Fitting's lemma if and only if End (M_R) is strongly π regular. They also proved that R possesses the property (I) if and only if $(R)_n$ is strongly π -regular for each positive integer n (see [1, Theorem 1.1]).

In what follows, we shall prove first that R possesses the property (F) if and only if R does (I) and (S) (Theorem 1). Next, we shall prove that any right V-ring with primitive factor rings Noetherian possesses the property (S) (Corollary 3). As a combination of Theorem 1 and Corollary 3, we shall give an alternative proof of [1, Theorem 2.5]. Finally, we shall show that the property (F) is Morita invariant.

Now, we begin with the following theorem.

THEOREM 1. A ring R possesses the property (F) if and only if R possesses the properties (I) and (S).

PROOF. It suffices to prove that (I) and (S) imply (F). Suppose R possesses the properties (I) and (S). Let M be a finitely generated right R-module. Then we have an exact sequence $R_R^{(n)} \xrightarrow{h} M_R \longrightarrow 0$ for some positive integer n. Let f be an arbitrary endomorphism of M_R . Since $R_R^{(n)}$ is projective there exists some $\overline{f} \in \text{End}(R_R^{(n)})$ such that $h\overline{f} = fh$. Since $\text{End}(R_R^{(n)})$ is strongly π -regular by [1, Theorem 1.1], there exists $g \in \text{End}(R_R^{(n)})$ such that $\overline{f} = \overline{f}^{m+1}g$ with some positive integer *m*. Then, $f^m(M) = f^m h(R^{(n)}) = h\overline{f}^{m+1}g(R^{(n)}) \subseteq h\overline{f}^{m+1}(R^{(n)}) = f^{m+1}h(R^{(n)}) =$ $f^{m+1}(M)$, which proves $f^m(M) = f^{m+1}(M)$. We consider the finitely generated right *R*-module $M' = f^m(M)$. Since $(f^m | M') : M'_R \to M'_R$ is surjective, Ker $(f^m | M')$ = 0 by hypothesis. This implies $f^m(M) \cap \text{Ker} f^m = 0$. Now, it is easy to see that $M = f^m(M) \oplus \text{Ker} f^m$.

The next was announced in [1].

COROLLARY 1. If R is a strongly π -regular PI-ring which is an integral extension of its center, then R possesses the property (F). In particular, every commutative π -regular ring possesses the property (F).

PROOF. R possesses (I) and (S) by [1, Theorem 1.1 and Theorem 2.2].

COROLLARY 2 ([1, Proposition 2.7]). Let $\{R_d | d \in D\}$ be a directed set of rings with the property (F). If $R = \lim_{d \to \infty} R_d$, then R possesses (F).

PROOF. By [2, Theorem 2], R possesses (S). On the other hand, R does (I) by [1, Theorem 1.1].

THEOREM 2. If R is a ring with primitive factor rings Noetherian and M is a finitely generated semisimple right R-module, then every surjective endomorphism of M_R is an isomorphism.

PROOF. Let $\{a_1,...,a_n\}$ be a generating system of M_R . Writing the elements of $M^{(n)}$ as $(x_1, x_2,..., x_n)$, we can regard $M^{(n)}$ as a right $(R)_n$ -module. Then $M^{(n)}$ is a cyclic $(R)_n$ -module generated by $(a_1, a_2,..., a_n)$. Since $J(M^{(n)}_{(R)n}) = J(M_R)^{(n)} = 0$, $M^{(n)}$ is a semisimple $(R)_n$ -module. As usual, End (M_R) and End $(M^{(n)}_{(R)n})$ may be identified. So, to our end, it suffices to prove our theorem for cyclic M_R . Then we can assume that M = R/A with some right ideal A of R. First, we shall show that $\bigcap_P MP = 0$ where P runs over all the primitive ideals of R. Let K be an arbitrary maximal right ideal of R containing A. If we set $Q = \{r \in R | Rr \subseteq K\}$, then Q is a primitive ideal of R. Since $MQ = Q/A \subseteq K/A$, it follows that $\bigcap_P MP$ $\subseteq J(M_R) = 0$. Now, we can prove that any surjective endomorphism f of M_R is injective. If not, there exists a non-zero x in M such that f(x)=0. Then, by the last formula, there exists a primitive ideal P of R such that $x \notin MP$. If we set $\overline{M} = M/MP$, then f induces an epimorphism $\overline{f} : \overline{M}_{R/P} \to \overline{M}_{R/P}$ whose kernel contains a non-zero x + MP. Since R/P is Noetherian, the endomorphism \overline{f} is an isomorphism, a contradiction.

COROLLARY 3. If R is a right V-ring with primitive factor rings Noetherian, then R possesses the property (S).

624

PROOF. Note that every right module over a right V-ring R is semisimple by [5, Theorem 2.1] or [6, Theorem 4].

COROLLARY 4 ([1, Theorem 2.5]). If R is a regular ring with primitive factor rings Artinian, then R possesses the property (F).

PROOF. Since R is a right V-ring by [6, Theorem 5], R possesses (S) by Corollary 3. Now, let \overline{R} be an arbitrary prime factor ring of R. If \overline{R} is not simple, then by [4, Theorem X.11.3] \overline{R} contains a nontrivial central idempotent, a contradiction. Hence, by [3, Theorem 2.1] $(R)_n$ is strongly π -regular (n=1, 2,...), and then R possesses the property (I) by [1, Theorem 1.1]. Consequently, R does (F) by Theorem 1.

PROPOSITION 1. The following are equivalent:

1) R possesses the property (S).

2) Every right ideal K of $(R)_n$ (n=1, 2,...) possesses the following property: If $xy-1 \in K$ with $x \in I_{(R)_n}(K)$ and $y \in (R)_n$, then y is in $I_{(R)_n}(K)$ and $yx-1 \in K$.

PROOF. 2)=1) Let M be a right R-module generated by $a_1,..., a_n$, and $K = \{z \in (R)_n | (a_1,..., a_n)z = (0,..., 0)\}$. Given $g \in \text{End}(M_R)$, we can write $g(a_1,..., a_n) = (a_1,..., a_n)(r_{ij})$ with some $(r_{ij}) \in I_{(R)_n}(K)$. Then, the map $\phi \colon \text{End}(M_R) \to I_{(R)_n}(K)/K$ defined by $\phi(g) = (r_{ij}) + K$ is a ring isomorphism. If f is a surjective endomorphism of M_R and $\phi(f) = x + K$ then $(a_1,..., a_n)xy = (a_1,..., a_n)$ with some $y \in (R)_n$. Since $xy - 1 \in K$, we then have $y \in I_{(R)_n}(K)$ and $yx - 1 \in K$ by hypothesis. Obviously, fg = gf = 1 for $g = \phi^{-1}(x + K)$.

1)⇒2) Let K be a right ideal of $(R)_n$. Then, End $((R^{(n)}/e_{11}K)_R)$ is ring isomorphic to $I_{(R)_n}(K)/K$ as above, and the reverse process in 2)⇒1) enables us to see that 1)⇒2).

COROLLARY 5. If $(R)_n$ is integral over the center of R for each positive integer n, then R possesses the property (S).

PROOF. Let K be an arbitrary right ideal of $(R)_n$. Assume that $xy-1 \in K$ with $x \in I_{(R)_n}(K)$ and $y \in (R)_n$. Since $(R)_n$ is integral over its center C, we can write $y^{m+1} = \sum_{i=0}^{m} c_i y^i$ with some $c_i \in C$ and some non-negative integer m. Then, it is easy to see that $y \equiv x^m y^{m+1} \equiv \sum_{i=0}^{m} c_i x^{m-i} \pmod{K}$. Hence, y is in $I_{(R)_n}(K)$ and $yx-1 \in K$. According to Proposition 1, this means that R possesses the property (S).

COROLLARY 6. Every algebraic algebra R over a non-denumerable field K possesses the property (F).

PROOF. It is known that $(R)_n$ is algebraic over K for any positive integer

Yasuyuki HIRANO

n (see [4, Theorem X.14.2]). Then, by Corollary 5, *R* possesses the property (S). Furthermore, $(R)_n$ is strongly π -regular. Hence, by [1, Theorem 1.1] and Theorem 1, *R* possesses the property (F).

THEOREM 3. The property (F) is Morita invariant.

PROOF. According to Theorem 1, it suffices to prove that the properties (I) and (S) are Morita invariant. First, if R possesses the property (I) (resp. (S)), then so does $(R)_n$ by [1, Theorem 1.1] (resp. Proposition 1). Now, let e be an arbitrary non-zero idempotent of R. If $(R)_n$ is strongly π -regular, then so is $(eRe)_n = e(R)_n e$. Hence, again by [1, Theorem 1.1], eRe possesses the property (I) when R does. Finally, assume that R possesses the property (S). Let K be an arbitrary right ideal of $(eRe)_n$, and $xy - e \in K$ with $x \in I_{(eRe)_n}(K)$ and $y \in (eRe)_n$. Since $x \in I_{(R)_n}(K(R)_n + (1-e)(R)_n)$ and $xy - 1 \in K(R)_n + (1-e)(R)_n$, by Proposition 1 it follows that $y \in I_{(R)_n}(K(R)_n + (1-e)(R)_n)$ and $yx - 1 \in K(R)_n + (1-e)(R)_n$. Recalling that x and y are in $(eRe)_n$, we can easily see that $y \in I_{(eRe)_n}(K)$ and $yx - 1 \in K$. Therefore, again by Proposition 1, eRe possesses the property (S).

References

- [1] E. P. Armendariz, J. W. Fisher and R. L. Snider: On injective and surjective endomorphisms of finitely generated modules, Comm. Algebra 6 (1978), 659–672.
- F. Djokovic: Endomorphisms of modules which must be isomorphisms, Canad. Math. Bull. 16 (1973), 513-515.
- [3] J. W. Fisher and R. L. Snider: On the von Neumann regularity of rings with regular prime factor rings, Pacific J. Math. 54 (1974), 135-144.
- [4] N. Jacobson: Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, Amer. Math. Soc., Providence, 1956.
- [5] G. Michler and O. Villamayor: On rings whose simple modules are injective, J. Algebra 25 (1973), 185–201.
- [6] H. Tominaga: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

Department of Mathematics, Faculty of Science, Hiroshima University

626