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Introduction

N. A. Baas [1] has studied a bordism theory based on manifolds with a

certain type of singularities, by reformulating a theory due to D. Sullivan.
The purpose of this paper is to study corresponding equivariant oriented

bordism theories. By the same way as [1; §2], we can define the notion of
oriented ^-manifolds for each singularity class ê

>

π = {P0 = ρt, Pl5..., PJ of
closed oriented manifolds, and those with G-actions for each finite group G while
G acts trivially on Pf. Thus we obtain naturally a bordism group Ω(S?n)%(X9 Y)
based on oriented ^-manifolds with free G-actions for each pair (X, Y) of G-
spaces. When n = 0, Ω(&Ό)%( — ) coincides with the usual equivariant bordism
group Ω%( — ), due to Conner-Floyd [3], based on (closed) oriented manifolds
with free G-actions.

We study in § 1 (and § 5) some basic properties of oriented ^-manifolds

and the above bordism group, and obtain an exact sequence in Theorem 1.16
which is similar to that in [1; Th. 3.2]. In case that G = Zp for odd prime p,
we can define in § 2 the Smith homomorphism, and extend some results on Ω %( — ),

due to P. E. Conner [2] and C. M. Wu [8], to those on Ω(^n)g(-) for each n.

Furthermore, we obtain in § 3 a theorem on the Ω^-module structure of Ω(&Ί)%.p

for an odd dimensional manifold Px of Dold type. Finally in §4, we study

oriented e9Vmanifolds with semi-free G-actions.
The author would like to express his hearty thanks to Professor N. Shimada

and Professor M. Sugawara for giving him the basic ideas and many helpful

suggestions.

§ 1. Oriented singular (G, c^

Throughout this paper, we will work in the category of compact oriented

smooth manifolds, and we allow the manifolds to have general corners, (see [4]

for manifolds with corners, whose coordinate neighborhoods are defined by

using open subsets of {(xl5..., xm)elϊm|x1^0,..., xm^0}).

DEFINITION 1.1. Let an oriented manifold V and oriented submanifolds
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30V9 c^F,..., dnVof the boundary dV(of codimension zero if ^7=^0) with induced
orientations satisfy the following conditions :

dV=d0VV ^FU ' U dnV

and dtV n δ j V i s the intersection of the boundaries of d, Kand djViί i*t j. Then

we call

V = (V;d0V,dίV,...,dnV)

a decomposed (oriented) manifold of type n.

-F=(-F; -δ0F, -c^F,..., -dΛV)

with opposite orientations is a decomposed manifold.
Each δfFis again a decomposed manifold by defining

{ dtV n djV for 7 * i,
0/W =

[ 0 for j = /.

For each closed oriented manifold P, the product manifolds V x P and P x F
with product orientations are decomposed manifolds by defining

d.(V x P) = diV x P, dt(P x F) = (- l)di«^P x dfF.

We may regard each decomposed manifold V of type n as the one of type
n + 1 by defining dn+ίV=0.

By a smooth map φ: V-+V of decomposed manifolds of type n, we mean a
smooth map ψ>: V-+V with φ^KJczd.F'. We denote simply the restriction by

Φϊ = φ|δi^ diV^dy. If φ and each φi are diίfeomorphisms, then we say that
φ: V-*V is a diffeomorphism of decomposed manifolds.

Let us now fix a class of closed oriented manifolds

& = {Λ> = Pt, ^i,..., P;,...}, Pj = dimP,.,

where P0=pt is a one-point manifold, and put

NOTATIONS. Let I(n) be the set of all finite sequences of integers in {0,1,...,
n}. For each ω=(z1,...,ifc)e/(n) and./e{0,l,...,n}, set

OX) = O',ί1,...,ijk)€/(n), (ω,;) = (iί9...,ikj)εl(n);

\ω\ = k, p(ω) = Σf-iΛ,,
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DEFINITION 1.2. A decomposed manifold^ of type n is called an (oriented)
&*n-manifold if it satisfies the following conditions (i) and (ii):

(i) With each ω e /(n), there is associated a decomposed (oriented) manifold
A(ω) of type n such that

a) A(0) = A, and A(ω) = 0 if /,- = // for somej^/ (ω = (/1,...,//c)); and
b) for each σ e Sω (the set of all permutations on ω), A(σω) = A(ω) without

considering orientations, and the identity map id: A(σω)->A(co) is a diίfeomor-
phism of decomposed manifolds of degree ε(σ) (the sign of σ), i.e., A(σώ) =
ε(σ)A(ω).

(ii) With each ωe/(n) and ΐe{0, 1,..., n}, there is associated a diffeomor-
phism of decomposed manifolds

α(i,ω): dtA(ώ) ^ A(i9ω) x Pt of degree (-

if ω consists of distinct integers and ί^ω (α(i,ω) is called a structure map), and
= 0 if i e ω, so that the diagrams

-^^ A(i9 ω) x Pi

(1.3)
id idxid

dtA(σω) a(>>σω\ A(i, σω) x Pi9

a(h°\ djA(t, ω) x Pf «^»xid > A(j, i, ω) x Py x P,

nθ,Λ((ω) idxΓ

Λ Λ J/- x α(7>ω)i Λ , x . v „ α(i,y,ω)χid ./. . , _
didjA(ω) > dtA(j9 ω) x Py — -̂̂  ^ A(ι,j, ω) x Pf x Py

of difFeomorphisms are commutative, where σeSω and Tis the twisting map.
The dimension of ^-manifold A = {A(ώ), α(i,ω)} is defined to be that of

the ambient manifold A — A(0).

We see easily the following lemma by definition:

LEMMA 1.4. Let A = {A(ω), α(ι,ω)} be an yn-manifold and Q be a closed
oriented manifold. Then we have an ^n-manifold Qx^4 = {(βx^)(ω), α;(/,ω)}

by setting

(Q x A)(ω) = (-l)Mdimβρ x A(ω\ <x'(i,ω) = id x α(i,ω),

where x is the product of decomposed manifolds. Furthermore, we have an

yn-manifold A x Q = {(A x Q)(ω), α"(i,ω)} by setting



604 Tamio KARA

(A x x β, α"(i,ω) = (id x 7>(α(ί,ω) x id).

DEFINITION 1.5. Let A={A(ω\ α(ι,ω)} and B = {B(ω), β(i,co)} be <$V
manifolds. By an &*n-map f: A-+B, we mean a system of smooth maps /(ω):
^4(ω)-^5(ω) of decomposed manifolds such that the following diagram is com-
mutative :

dtA(ω)

a,*(ω)

If each /(ω) is an orientation preserving diίfeomorphism, then we say that
/: A-*B is an ^n-isomorphism.

If A(ω)cιB(ω), diA(ω)c:diB(ω) and the inclusion map i : A<=:B, i(ω): A(ω)
c=5(ω), is an c^n-map, then we say that A is an &*n-submanίfold of B of
codimension dim B — dim A.

Now, let G be a finite group, and let (X, Y; τ) be a pair of topological
G-spaces, i.e., τ: Gx(X9 Y)->(X, Y) be a G-action.

DEFINITION 1.6. If G acts on an ^-manifold A by ^-isomorphisms,
i.e., if there is given a system φ: GxA^A of G-actions φ(ω): GxA(co)-+A(ω)
such that each

is an ^^-isomorphism, then we say that (A, φ) is a (G, &*n)-manifold. (We say
that it is (semi-)free if each G-action φ(ω) is (semi-)free.)

Furthermore, if there is given a system/: A-+X of G-equivariant (continu-
ous) maps/(ω): A(ω)-+X such that

f(ω)(A(ω)) c Y for any ω = (^,...,1^)90

(in the special case Y=0, this means that A(ω) = 0 for ωa 0) and the diagram

dιA(ω) A(ω)
id

A(σω)

f(σώ)

:/, ω) x /(*»

(σeSω) is commutative, then we say that (A, φ,/) is a singular ((semi-)free)
(G, sen)-manifold in (X, Y; τ).
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We see easily the following lemma by Lemma 1.4 and by definition:

LEMMA 1.7. Let (A,φ,f) be a singular ((semi-)free) (G, yn)-manifold

in (X, 7; τ) and Q be a closed oriented manifold. Then we have ((semi-)free)

singular (G, &* ^-manifolds

(Q x A, id x φ, /opr) and (A x g, φ x id, /°pr)

in (X, 7; τ), where QxA and AxQ are the product &*n-manifolds in Lemma

1.4 and (id x φ)(ω) = id x φ(ω), (φ x id)(ω) = φ(ω) x id, (/o pr) (ω) =/(ω>pr.

DEFINITION 1.8. For any singular (G, ̂ n)-manifolds A = (A,φ,f) and

A' = (A'9 φ', /') in (X, 7; τ), the disjoint sum A + A', the oppositely oriented

manifold —A and ̂  = (<V1, δ^, δf/) (ie{0, 1,..., n}) are defined naturally by

-A = (-A, φj)\

(δtA) (ω) = A(ω,ί)9 (δ{φ) (ω) = φ(ω,i), (δtf) (ω) = /(ω,i) .

Then δ0A is a singlular (G, ̂ π)-manifold in (7; τ) = (Γ, 0; τ) by definition,

and we say that A is closed if δQA = 0, i.e., if A(ω) = 0 for ω9θ. Further, δnv4

can be regarded naturally as a singular (G, ̂ .J-manifold in (X, 7; τ).

DEFINITION 1.9. We say that a singular ((semi-)free) (G, ^-manifold

(A, φ, /) in (X, Y τ) bords if there exists a singular ((semi-)free) (G, ̂ π)-manifold

(B, Φ, F) in (X, X τ) satisfying the following conditions (i) and (ii) :

(i) (A, φ) is an oriented (G, & ' ̂ -submanifold of (δ0B, <50Φ) of codίmension

zero except (^-boundary, i.e., for each ωe/(n) with ω^O and ΐ

A(ώ) ci (<

as oriented manifolds, and

/ί(i,ω,0) I 3,A(ω) = α(i,ω), Φ(ω,0) | G x A(ω) = φ(ω) ,

where α and jβ are the structure maps of A and B, respectively.

(ii) F(ω,0) I A(ώ) = /(ω), F(ω,0) (J?(ω,0) - Int A(ω)) a Y

for each ωe/(n) with ω^O, where Int means the interior in β(ω,0).

(In the special case 7=0, these mean that δQ(B, Φ, F) = (A9 φ, /).)

We say that A = (A, φ,/) is bordant to A' = (A'9 φ'J') if

A + (-A1) = (A + (-A'), φ + φ'J + f)

bords. We write this as A~Af.

Then we have the following basic lemma :
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LEMMA 1.10. The relation ~ of bordism between singular ((semί-)free)

(G, &* ̂ -manifolds in (X, 7; τ) is an equivalence relation.

This lemma can be proved by the same way as the proof of Baas [1 Lemma

3.1.] for the unoriented case. Especially, the transitivity can be proved by using
the following

LEMMA 1.11 (Pasting Lemma). Let (Ak, φk) (fe=l, 2) and (B, φ) be

(G, ̂ n)- manifolds, and suppose that (B9 φ) and (-B, φ) are oriented (G, &„)-
submanifolds of (dQA^ <50Φι) and (δ0A2, δ0φ2) of codίmension zero except
Q-boundary, respectively. Then, by identifying the disjoint sum Aί-{Ά2 along
B, we obtain naturally the pasted (G, &*n)-manifold

(A, φ) = (A19 (pj U (B,φ)(A2> 9 2)

of(Al9 φύ and (A2, φ2) along (B, φ).

In § 5, we will prove this lemma which may be clear intuitively.
By Lemma 1.10, we can define a bordism group as follows:

DEFINITION 1.12. We denote the bordism class of a singular free (G,
manifold (A, φ, /) in (X, Y τ) by [A, φ, /], and set

X9 Y; τ) = {[A, φ,/] I dim A = m]

which is an abelian group by the disjoint sum. Thus, we have a graded abelian

group

(X9 Y; τ) =

the bordism group of singular free (G, £fn)-manifolds in (X, 7; τ). This has a

natural left Ω^-module structure given by the product β x A in Lemma 1.7, where

Ω# is the oriented cobordism ring [7].
By replacing the term "free" by "semi-free" in the above definition, we may

define the bordism group

WJgpr, Y; τ) = Σm0(*υ£(*, Yl τ)

Now, we have the following Baas-Sullivan exact sequence in our bordism
theory. Let

(1.13) β: Q(srj$(X9 Y; τ) - > Ω(yjξ(X9 Y; τ),

β[4> 9>f] = \λ x Pn+ι> 9 x id>/°pr] (cf. Lemma 1.7),

be the homomorphism of degree pn + 1=dimPπ + 1 induced from the right multi-
plication by the closed manifold Pn+1. By regarding each singular (G, «$*„)-
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manifold (A,φ,f) naturally as a singular (G, ̂ π+1)-manifold with dn+1A(ώ)
= 0, we have the homomorphism

(1.14) y : Ω(^π)g(X, 7; τ) - > Q(*%+1)g(X, 7; τ)

of degree zero. Finally, the Bockstein homomorphism

(1.15) δ: QG9%+1)g(X, 7; τ) — Ω(«(X, 7; τ)

of degree — pn+ 1 — 1 is defined by

[Λ, φ,/] = [δn+lA9 δn+ίφ, δβ+1/] (cf. Def. 1.8).

Then we can prove the following theorem :

THEOREM 1.16 (cf. Baas [1; Th. 3.2]). We have the following Baas-
Sullivan (BS) exact sequence:

ξ(X, Y; τ) M Q(STΛ)%(X, Y; τ) _L> β(^,,+1)g(AΓ, Γ; τ)

Similarly we obtain the BS exact sequence for the bordism group
7; τ) of singular semi-free (G, &* ^-manifolds.

PROOF. This theorem can be proved by the same way as the proof of
[1; Th. 3.2]. We only give the proof of Im β = Ker γ in the absolute case 7=0.

For any singular (G, ̂ J-manifold (A, φ, /) in (X τ), we obtain a singular
(G, <^π+1)-nmnifold (J5, φ, /) in (X, X\ τ) such that

B(ω) = (-l)MJ x (A x PB+1)(ω), B(n + l,ω) = (-l)H+M(ω);

= (-l)HO x (A x P,+ 1)(ω),

(-l)l-H x (A x P.+ 1)(ω),

a,B(ω) = (>-l)l-l+1/ x 3^ x PB+1)(ω) (1 ̂  i ^ π),

dtB(n + l9ω) = (-l)l»l+1a^(ω) (0 ̂  i ^ π);

= id x (φ x

= (/opr)(ω),

where ωe/(n) and 7 = [0,1] is the unit interval. Then

= B(ω, 0) = (~l)lωl50B(ω) = (A x PB+1)(ω),

= (A x Pn+ lf φ x id, /o-pr) .
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Therefore, γ°β = Q by definition.

Conversely, assume that [A, φ,/] eί2(<^π)g(Jf; τ) belongs to Kerjβ. Then

there exists a singular (G, ̂ M+1)-manifold (B, ψ, F) in (X, X; τ) such that

and hence

n dn+1B(ω) = dn+ίd0B(ω) = dn+ίA(ω) = 0

Therefore, (B9 ψ9 F) can be considered as a singular (G, ̂ n)-manifold (£', ψ9 F)
in (X, X; τ) by setting

B'(ώ) = B(ω\ B'(0,ω) = d0B'(ω) = 50B(ω) + dn+lB(ω)9

for ω e /(n) with ω^O and 1 ̂  z ̂  n. Thus, we see easily that

(5π+1β x PB

which shows that [̂ 4, (̂ , /] = — β[δn+ X(J5, ι/^, F)] e Im β as desired. q. e. d.

For any free (G, ̂ π)-manifold (A, φ\ let

π(ω) : A(ω) - > Ά(ώ) = A(ώ)/φ(ω)

denote the orbit G-bundle. Then there exist a unique smooth structure and a
unique orientation on ,4(ω) such that π(ω) is a local diffeomorphism and preserves
orientation locally. Furthermore, A(ώ) is a decomposed manifold by defining

diA(ω) = π(ω)(diA(ωJ) and the structure map α(i,ω): diA(ώ)-j>A(iίώ) x Pf induces a

unique diffeomorphism

α(z,ω) : dιΆ(ω) - > Ά(i9ω) x Pf

so that Ά={Ά(ω), α(ί,ω)} is an ^-manifold. We call A the orbit yn-manifold

of(A,φ).
Then, by using the result of Conner-Floyd [3; (19.1)] in case rc = 0 and by

the same way as its proof, we have the following

THEOREM 1.17 (cf. [3; (19.1)]). The bordίsm group

of free closed (G, &*n)-manifolds is isomorphic to the bordism group

= Q(&Jl(BG) (e: the trivial group)
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of singular &*n-manifolds in the classifying space BG of G, i.e., there exists an
isomorphism

L : L\A9 φ] =

of degree zero, where Ά — {A(ω)/φ(ω)} is the orbit £fn-manifold of (A, φ) and
eachf(ω): Ά(co)-+BG is a classifying map of the G-bundle π(ω):

PROOF. (1) Construction of L. For each ω e /(n), we choose a classifying
map /'(ω): A(ω)^BG of the G-bundle π(ω) such that /'(σω)=/'(ω) (σeSJ.
Then, by induction on |ω|, we can construct a classifying map/(ω): Ά(ω)-+BG
such that the diagrams

Si
/(ω)i BG Λ(ω)

id

Λ(ί,ω)x/V -»Λ(/,< /4(σω)

are commutative, as follows.
If |ω|^max{|ω'| \A(ω')*0} and A(ω)±?0, then 3^4(ω)=0 and we can take

Assume inductively that we have constructed /(ω) as desired for each ω
with |ω| ̂  r. If |ω| = r — 1 and dA(ω) = 0, then we can take /(ω) =/'(ω).

Consider the case |ω| = r— 1 and cL4(ω)^0, and denote by dtf(ώ) the com-
position of

Ά(i9 ω) x (z, ω)

Then, by the inductive assumption and the pasting condition (ii) in Definition
1.2, it is not difficult to see that dίf(ω) = djf(ω) on dtΆ(ω) n djΆ(ω). Therefore,
we obtain a map

3/(ω) : dλ(ω) - > BG, df(ω) | dtλ(ω) = βJίω) .

Since dj(ώ) is a classifying map of the G-bundle π(ω)f: δί̂ (ω)^ 3ίy4(ω), δ/(ω)
is that of π(ω)\dA(ω): dA(ω)-^dΆ(ω). Thus, by the usual homotopy extension

property, there exists a classifying map

/(ω) : A(ω) , /(ω) 1 3 Jϊ(ω) = δ/(ω) ,

of π(ω), which is homotopic to /7(ω). Further, we may take as /(σω)=/(ω) by

the inductive assumption.
Therefore, the desired /(ω) is constructed for each ω with |ω| = r— 1.
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(2) L is isomorphic. It is easy to see that L is commutative with the BS

exact sequences, i.e., the diagram

is commutative. When n = 0, Lis isomorphic by [3; (19.1)]. Thus Lis isomor-
phic for each n by the five lemma. q.e.d.

By the same way, we have the following

PROPOSITION 1.18 (cf. Wu [8; Prop. 2]). There exists an isomorphism

L: Ω(Pn)ξp(X, τ)Ξ^Q(&>ύ*(X x S°°/τ x p) (p: odd prime)

of degree zero, where p = exp(2πi/p) is the standard Zp-action on the infinite
sphere S°°.

In conclusion of this section, we notice that the bordism groups

(X9 Y; τ), 0(&Ji'(X9 Ύ\ τ) (p: odd prime)

are Zp-equivariant homology theories respectively, i.e., we can prove the fol-
lowing theorem by using the results of Wu [8; Prop. 1] in case n = 0:

THEOREM 1.19 (cf. [l Th. 3.3], [8; Prop. 1]). Let p be an odd prime.
Then the bordism group Ω(£f^%p(— ) forms a homology theory on the category
of pairs of topological Zp-spaces and equiυariant maps, where the induced
homomorphism

h*: Q(srJi'(X9 Y; τ)—*Ώ(rJί>(X'9 Y'; τ')

of an equiυariant map h: (X, 7; τ)-*(X', 7'; τ') is given naturally by Λ*[/4,

<P>/] = D4» Φ? h°f] and the boundary homomorphism

δ0 : Ω(<?n)fr(X9 Y τ) — Ω&^W τ)

is given by δ0[X, φ,n = [δ0A9 δ0φ, 50/] (cf. Def. 1.8).
The same holds for

PROOF. The homotopy, excision and exactness axioms can be proved by
the entirely analogous proof to that of [1; Th. 3.3], and we only give the proof
of the excision axiom.

Let U be an invariant open subset of Y with t/clnt 7, and i: (X — 17, Y— U)
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= (X'9 Y')-+(X, 7) be the inclusion. Then, by definition, we have the com-
mutative diagram

X, 7; τ) A Ω(<?n)zP(X, 7; τ) -L+ Ω(<?n+l)fr(X9 7; τ) Λ ...

**ί z*ΐ

, r τ) A Ω(ten)l>(X' , r τ) -L* Q(*%+1)Jp(Λr', 7' τ) A ...

of the BS exact sequences. When n = 0, i^ is isomorphic by [8; Prop. 1]. Thus
i* is isomorphic for any n by the five lemma. q. e. d.

§2. The Smith homomorphisms

In this section, we study free Zp-actions on ^-manifolds, where p is an
odd prime.

DEFINITION 2.1. Let A = (A, φ , f ) be a singular free (Zp, <9%>manifold in
a Zp-space (X'9 τ) of dimension m. Then we say that an equivariant map

g = (g(ω)} : (A, φ) - > (S2fc+1, p), m < 2k + 1,

(p = exp(2πΐ/ jp) is the standard Z^-action on the (2fc+l)-sphere S2fe+1) is ί-
regular on 52*""1, if the following conditions (i) and (ii) are satisfied:

(i) B = [B(ω)9 α(z, ω) | B(ω) n dtA(ω)}, B(ω) = g(ω)-ί(S2k-1) ,

is an invariant ^-manifold of A of condimension two.
(ii) The invariant normal bundle N = {N(ώ)} of B in A is trivial, i.e., the

one of B(ώ) in A(ώ) (cf. [4; Th. 1]) is trivial and is induced from the trivial
normal bundle S2*"1 x jR2 of S2*-1 in S2k+1 by the map g(ω) \ B(ώ).

Thus, (B9φ\B9f\ B) is a singular free (Zp, ^M)-manifold in (X; τ).

THEOREM 2.2 (cf. [3; (34.7)]). Such a manifold (B,φ\B,f\B) always
exists, and the homomorphism (called the Smith homomorphism)

A : Ω(#>n)fr(X'9 τ) - > Q(<Sn)fc2(X', τ)

is well-defined by setting Δ[A, φ,/] = [5, φ\B, f\B~\. Further, A is commuta-

tive with the BS exact sequences.

PROOF. Let (A, φ, /) be a singular free (Zp, ^n)-manifold of dimension m
in (X'9 τ), and choose an equivariant map #'(ω): (A(ώ)9 φ(ω))->(S2k+1, p) for
each ω such that g'(σώ)-g'(ω) (σ e Sω). Then there exists an equivariant map

: (A(ω\ φ(ώ)) - > (S2fc+1, p) for each ω,
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satisfying the following conditions (2.3.1-3);

(2.3.1) The induced maps g(ω), g'(ω): Ά((o)-*S2k+1/ρ are homotopic.
(2.3.2) g(ώ) is t-regular on S2k~llp.
(2.3.3) The following diagrams are commutative:

M(ω) S(ω)< -S"*1

PΓ

A(i, ω) x PI- * A(ι, ω),

In fact, we can construct g inductively by the same way as the construction in
the proof of the Theorem 1.17, by using a collar system Γ(Ά) = {Γ(Ά(ώ))} of A
(cf. Th. 5.4), as follows.

If |ω|^max{|ω'| \A(ω')^0] and A(ώ)^0, then we obtain g(ω) satisfying
(2.3.1-2) by using the usual t-regularity theorem [3; (10.4)] and the homotopy

lifting property. Since dA(co) = 0, (2.3.3) is trivial. We notice that g(ω) is also
t-regular on S2*"1 by (2.3.2).

Assume inductively that #(ω) is constructed as desired for each ω with |ω| ̂  r.
If |ω| = r— 1 and dA(ω) = 0, then we can obtain g(ω) by the same way as above.

Consider the case |ω| = r—1 and dA(ω)^0. By using a collar
in Γ(Ά\ let

K(ω): U = w, t/^ίω)) > S2k+1/p

be a map whose restriction on Uι(A(ω)) is the composition of

x [0, 1)

ω) x

Then, by the inductive hypothesis, we see that Ji(ω) is t-regular on S2k~1/p.

Further, it is homotopic to g'(co) \ U. Therefore, by the t-regularity theorem and
the homotopy lifting property, there exists an equivariant map #(ω): (A(ω\ φ(ώ))
-+(S2k+1

9 p) such that g(ώ) \ U = h(ω) and it satisfies (2.3.1-3) as desired.

Thus we have a desired ^-manifold #• Further, we can prove that A is
well-defined as usual by using a similar consideration to the above construction
of g. We can also see easily that A is commutative with the BS exact sequences.

q.e.d.

We have the following exact sequence containing the Smith homomorphism
A in the above theorem.
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PROPOSITION 2.4 (cf. Wu [8; Th. 2]). The sequence

pxτ)-^ Ω(&>n)fr(X; τ) -L>

fc2(X; τ) -£H. Ω&JZLάS1 xX pxτ) - „ -

is exact, where the two homomorphisms π and & are defined by

, φ, /] = [S1 x A, p x φ, id x /] .

Further, they are commutative with the BS exact sequences.

PROOF. We can prove the proposition by the analogous proof to that of

[8 Th. 2] in case n = 0, and we only give the proof of Im & ID Ker π based on the
t-regularity theorem and the similar inductive process to the construction in the
proof of Theorem 2.2.

Assume π\_A, φ, /]=0 for [A, φ, /] eΩ^J^^S1 xX'9 pxτ), i.e., assume
that there is a singular (Zp, ^J-manifold (W, φ', /') in (X, X\ τ) with

Then we can construct a smooth approximation

of pri°f={pti°f((o)}: (A, φ)-^(S1

9 p) by the similar construction to that of /
in the proof of Theorem 1.17, by using the smooth approximation theorem and

the extension theorem [3; (10.1)].
Furthermore, we can extend FA to an equivariant smooth map

F = {F(ω)}: (W, φ'} — (D2, p)

by the same way, and it can be replaced by the one such that there exists a regular
value yeD2/p — (S1/p[) {0}) of F(ω) for each ω, by the similar construction to
that of g in the proof of Theorem 2.2. Thus, there exist p-regular values y,

pOO,. , p^GOeDMS1 U {0}) of F(ω), and

N(ώ) = F(ωri({y, POO,.., Pp-\y}}\ 3,ΛΓ(ω) = N(ώ) n d,

with natural orientation form an ^Vsubmanifold of W of codimension two.

Since F(ώ) (W(ω,G)) = FA(A(ωJ) c S1, we see that

d0N(ω) = N(ώ) n d0W(ω) = 0, N(ω) = 0 if ωa 0;

and we obtain a singular free (Zp, ^n)-manifold
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(N, φ'N, f ' N ) , φίv(ω) = φ'(ώ) \ N(ω\ f'N(ώ) = f'(ώ) \ N(ω}9

in (X; τ).
Consider a closed invariant tubular neighborhood

(D2 x N, p x φ'N) = {(D2 x N)(ω) = D2 x N(ω)9 p x (̂ω)}

of N in W [4; Th. 1], such that D2 x N(ω) Π dGW (ω)=0 -and

^(D2 x N)(ω) = D2 x δ£N(ω) (i ^ 0), = S1 x JV(ω) (i = 0).

Then, t^(ω)= W(ω)-lnt (D2 x N(ω)) satisfies the equality

30W(ω) = d0W(ω) + (-S1 x N(ώ))9

which implies (<J0 ί̂ ) (ω) = A(ω) + ( - 1) (S1 x JV) (ω). Thus

LA, φ, n = [S1 x N, p x φ{,, id x /j,] = ^[N, φ'N, /jv] ,

and [̂ , φ, /] 6 Im ̂  as desired. q. e. d.

Now, we consider the reduced group.

LEMMA 2.5. There holds the split exact sequence

0 - > Ω(<?n)zP(X;τ) -^ Ω(<?n)fr(X;τ) -UU ί2(^π)m - > 0,

where ε# is the homomorphism sending (A, φ, /) to its orbit &n-manifold A/φ

and β(^II)ί*(X;τ) = KerβJ | l. T/zι/5, ίAe reduced group Ω(srn)ξp(X 9 τ) /zαs ίίs

own B5 gxαcί sequences.

PROOF. Fix a point x e X . Then a right inverse homomorphism of ε* is

given by sending lA]εΩ(srjm to \_ZpxA, σ xid,/] eΩ(^M)^(^; τ) where

σ(fc,/) = fe + / mod p and /(ω) (Jk x l̂(ω)) = τk(x) for 0 ̂  fc,/ < p. q. e. d.

It is easy to see that the Smith homomorphism A maps Ω(&>^%p(X\ τ) to

-2(^ j τ) Thus, J is commutative with the BS exact sequences of reduced

groups.

The following theorem is well-known when n = Q by the results of Conner-
Floyd [3; Ch. VII],

THEOREM 2.6. Let yn={P0 = pt, Plv.., PJ.

(1) If each p^dimP,- is odd for ί^l, fAen ίAe Smith homomorphism

A : Ω&Jξg^ — > β(^B)ff_ , (fc ^ 1)

epimorphism, and
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(2) In particular, i/^ = 3 (mod 4) for i^l, then

A : Q(#>n)*z+3 ̂  Ω(^)*p+1 (fc £ 0) .

PROOF. (1) Since £ϊ*g = 0 (/c^O) by [3; (34.3)], we see the latter half by

the induction on H, by using the BS exact sequence. Hence, we have the com-
mutative diagram

o — > flCTV-Oί^ -^ δ(yn)
z

2ί+i -

0 —> flί^-Off.! -̂  fiί^Jfjf.! - fl(*%-l)ίf-Pn-Pn-2

of the BS exact sequences. Since zl is an epimorphism when n = 0 by [3; (34.9)],
the same holds for any n by induction.

(2) By the same way, we see (2) since A is isomorphic when n = 0 by [3;

(36.4)]. q.e.d.

§3. (G9 yO-

In this section, we study the module structure of

Ω(P)ξp = fiG*^* (̂ 1 = {pt, P}, p: odd prime).

THEOREM 3.1. Let P be a torsion element in Ω* of odd dimension m.
Then we have

(1) Ω(P)% = 0 ( fc^O),

(2)

Here βf^ = ί5(pt)fί' ί's ίfte reduced bordίsm group of oriented closed manifolds
with free Z ̂ actions.

PROOF. (1) is shown in Theorem 2.6 (1). Hence we have the BS exact
sequence

Let pu be the order of βff_m [3; (34.2)], and let ί and ί' be the integers such that

2t + put' = 1. Further, let if be an oriented manifold bounded by 2P. Then, for
each [M,φ]εΩ*p_m, we can associate a (Zp, y 1)-manifold («^Ί = {pt, P})

(M x W, φ x id) with

δ0(M x W) = 0, dt(M x Pf) = d(M x if) = (-l)2k~m2M x P,
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(M x W)(ί) = (- l)2fc-w2M, α(l, 0) = id, (cf. Lemma 1.7) .

It is easy to see that a right inverse homomorphism is given by sending [M, φ]

to (- l)2k'mt[_M x W, φ x id] e β(P)ff+1. q. e. d.

Further, we obtain some results on the Ω* -module structure of Ω(P)%p.

THEOREM 3.2. Let P be an odd dimensional closed oriented manifold of

Dold type, i.e., the kernel of the homomorphism

β: Ω* - >Ω*, /?[M] = [M x P],

is equal to 2(2*. Then we have a natural isomorphism

Θ: A* = Ω%P ®

by sending [M, φ]®A to [M x A, φxiά] given in Lemma .1.7.

PROOF. By using the BS exact sequence and the assumption on the map β,
we have the following short exact sequence of (^-modules:

0 - > Ω*/PΩ* + Ω(P)* _ 2Ω* - > 0.

Now, we consider the following commutative diagram

fif'Θofl* — > 0

0 - > Ω%? — — > Ω(P)ί> — — > Ωξp - > 0

with exact rows, where the vertical maps 0f (i = 1, 2) are defined as follows:

, φ~] ® {N}) = [M x N, φ x id] ,

= [M x 2N, φ x id] .

We notice that the image [M x N, φ x id] of θί is independent of the choice of N
in a class {N} eΩ^/PΩ*, since Ωf* is p-torsion. Further, these maps θt (ί = l, 2)
are isomorphic, because they have natural inverse ones respectively. Thus, the
middle map θ is also isomorphic by the five lemma. q.e.d.

REMARK 3.3. In general, the two modules A* and Ω(P)%p are not neces-
sarily isomorphic, as is seen from the following simple counterexample when p = 3
and P—CP(2) (the complex projective plane).

Using of the BS exact sequence :
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and βlS1, p]=CP(2) [S1, p] = 3[S5, p] [3; (46.3)], we see that Ω(CP(2))f3~Z3.

On the other hand, A5 = {xeA* |degx = 5} = Ωf3~Z3 2 by the above relation
between [S1, p] and [S5, p]. Thus, A5φΩ(CP(2))f3 as abelian groups.

§ 4. Zp-actions for an odd prime p

In this section, we study yn-manifolds with Zp-actions for an odd prime p.

We notice that every Zp-action for an odd prime p is always semi-free. Thus,

the bordism group

of singular (Zp9 <^π)-manifolds is defined in § 1.

Now, we consider another bordism group.

DEFINITION 4.1. Let A = (A9 φ,/) be an m-dimensional singular (Zp, yn)-

manifold in (X, X\ τ) such that φ(ω) is free if Oeω, i.e., δ0A = (δ0A9 δ0φ, δ0f)

is an (m — l)-dimensional singular free (Zp, ^J-manifold in (X; τ). We say

that such two manifolds A = (A,φ,f) and A' = (A',φ',f) are bordant, if

A + (-A') bords by a singular (Zp, ^manifold W = (W, Φ, F) in (X, X\ τ)

(cf. Def. 1.9) satisfying the following additional condition: For each ω, Φ(ω) is

free on

(50 W) (ω) - Int {A(ω) + ( - A'(ω))}.

Then we see that this bordism relation is an equivalence relation by the same

way as Lemma 1.10.
The set of bordism classes of such singular (Zp, ^J-manifolds is denoted

by Λ(Sfn)%p(X'9 τ) which is an abelian group by the disjoint sum. Thus we
have a bordism group

which is naturally an Ω*-module (cf. Def. 1.12). Further, the same BS exact

sequence as Theorem 1.16 holds for this bordism groups.

The following proposition can be proved by the same way as the proof of

Wu [8; Prop. 4] in case n = 0:

PROPOSITION 4.2. The diagram
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is commutative, where A is the Smith homomorphism, δ0 is a natural homomor-

phism of degree -1 given by δ0[A, <p,/] = [<5o^> <5o<P> <5o/]> and e* is defined by

<*[Λ, Φ,/] = [£>2 x A, p x φ,/opr], (Z)2 x A)(ω) = D2 x Λ(ώ)9

ί Sl x A(ω) U D2 x (M)(ω) (ί = 0)

1 D2 x 3^(ω) 0*0),

(p is the standard Zp-action on the two-disk D2).

Further, δQ and e+ are commutative with the BS exact sequences.

DEFINITION 4.3. Let (A, φ) be a (Zp9 ^J-manifold and let F2k(ώ) be the

fixed point set of codimension 2k in A(ω). F2k(ω) has a natural orientation

induced by that of Zp-invariant neighborhood of F2k(a)) [4; Th. 1]. Further,

F2k = {F2k(ω)> ocF(ΐ,ω)} has a natural ^-structure by defining

SiF2k(ω) = F2k(ω) n δί̂ (ω), αF(i,ω) = α(i,ω) | δt.F2fc(ω) .

In this sense, we call F2k the fixed point set of codimension 2k in A.

For the next theorem, we consider a homomorphism

(4.4.1) v: 0(&Jl>(X; τ) - >^(^Π)£*(X; τ)

of degree zero given as follows. Let [A, φ,f~\eΘ(^')ξίp(X\ τ), and let F2k be

the fixed point set of (A, φ) as above. We then have a normal disk bundle
V2λ(ω): D2k((o)-+A(co) (i.e., a closed Zp-invariant tubular neighborhood in
A(ώ) with natural orientation) for each ω. D2k(ω) is a decomposed manifold

by defining

dQD2k(ω): the associated sphere bundle of D2k(co),

) (i ^ 0) .

Since we may suppose that the map α(i,ω) is an isometry for the action

φ(ω), the induced one αD(i,ω) = α(i,ω) | diD2k(ω) is a diίfeomorphism

αD(i,ω): ^D2fc(ω) « D2k(i,ώ) x Pί? degαD(i,ω) = degα(/,ω).

Let φ2fc(ω) = φ(ω)|ZpxD2fc(ω) and f2k(co) =/(ω) | D2k(ω). Then the class

*, <?2fc, A*] is an element of JHpjfc(X\ τ). Put

(4.4.2) v[X, φ, /]

THEOREM 4.5. Γ/xe sequence
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*f(X; τ)

τ) -A, Ω(yn)*tl(X; τ) — ...

is exact) where i* forgets freeness and δ0 is the homomorphism treated in
Proposition 4.2. Further, these homomorphisms are commutative with the
corresponding BS exact sequences.

The proof is entirely analogous to those given by Strong [6; Prop. 2] and
Wu [8; Th. 1], so we omit the proof here.

In conclusion of this section, we study the module structure of the bordism
group Θ(P)%P = Φ(&Ί)*P, « !̂ = {pt, P}, as is done for the bordism group Ω(P)%p
in §3.

When p = 3, we have the following

THEOREM 4.6. Let P = kH (the disjoint sum of k copies of H)9 where H is
a free generator of Ω# and k is an odd integer. Then the map

, φ] ® A) = [Af x A, φ x id],

is an isomorphism.

PROOF. Because 0£3 is a free Ω^-module [8; §5] and any torsion in Ω*
has order two, we have

&(P)z*~<!)z*/PΩ*_m and Ω(P)* - Ω*/PΩ*_m

(m = dimP) by the BS exact sequences. Using these results, we obtain the result
easily. q.e.d.

REMARK 4.7. If we consider the case when k is even in the above theorem,
then the map θ is no longer isomorphic in general. For example, put P=CP(2).
By the analogous method to Remark 3.3 and the explicit abelian group structure

of 0£3[9; §3], we have

§5. Collar systems of (G, ^J-manifolds

In this section, we consider the notion of collar systems of (G, ^π)-manifolds
according to K. Janich [5; §3], and prove the pasting lemma (Lemma 1.11),
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which is used in the previous sections.

For the present, we do not consider the orientations of manifolds.

DEFINITION 5.1. Let A be a decomposed G-manifold of type n, i.e., A is

a decomposed manifold of type n and G acts on A by isomorphisms of decomposed

manifolds. A G-collar

of A is defined to be a system of open invariant neighborhoods Ut(A) of dtA in
A and G-equivariant diffeomorphisms

λi = λ^A): dtA x [0,1) « Ut(A) (G acts on [0,1) trivially)

such that λi I dtA x 0: diA-+Uj(A) is the inclusion and

frA x [0,1)) = UίA) Π djA,

OΛ (i *j, xe djdiA) .

Furthermore, Γ(A) induces a G-collar Γ(dkA) with Uk(dkA) = 09 Ui(dkA)=Ui(A)

Π dkA and

λ£dkA) = A^lδΛ^ x [0,1): dβkA x [0,1) « (7f(^) (/ ^ fe).

K. Janich has proved the following lemma by induction on the number of

corners :

LEMMA 5.2 ([5; 3.4]). Any decomposed G-manifold A has a G-collar Γ(A)
which induces the same G-collar Γ(didjA) = Γ(djdiA) of didjA = djdίA.

DEFINITION 5.3. Let (A, φ) be a (G, ̂ π)-manifold. Then we say that

is a collar system of (A9 φ), if it satisfies the following conditions (i) and (ii):

(i)

is a G-collar of the decomposed G-manifold A(ω) satisfying the condition of the

above lemma, and Γ(A(ω)) = Γ(A(σω)) (σeSω).
(ii) The structure map α(/,ω): ^ίy4(ω)»A(ϊ,ω)xPί maps Uj(dtA(ω)) onto

Uj(A(i9ωJ) x Pt and the diagram

djdtA(ω) x [0, 1) α(*>ω)'χιd

) gjA^9 ω) x p. x [0, 1) ldxΓ> 3y^(/, ω) x [0, 1) x Pf
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of diffeomorphisms is commutative, where Γ(diA(ω)) = {Uj(diA(ω)), λ^d^ω))} is
the induced G-collar of Γ(A(ω)) on d

Then we have the following theorem by using the results of Janich [5; 3.4]:

THEOREM 5.4. Any (G, £f ^-manifold (A, φ) has a G-collar system.

PROOF. For each ω with |ω|^max {|ω'| | <L4(ω')^0}, we can choose
Γ(A(ώ)} satisfying (i) by the above lemma. Then dtA(ω) Π djA(ω) = 0 if i*?j and

(ii) is trivial.
Assume inductively that we have constructed Γ(^4(ω)) as desired for each ω

with |ω|^r. Take ωel(n) with |ω| = r— 1 and dA(ω)^0. Then the inductive
assumption implies that

^j ^ n}

is a G-collar of dtA(ώ) for each i, where

l/XM(ω)) = *(i9a>ri(U{A(i9a>y) x Pj

and λj(dιA(ω)) is the diίfeomorphism defined by the commutative diagram in (ii).

Thus, by the collar germ extension lemma [5 3.4], we have a collar Γ(̂ 4(ω)) which

induces the above G-collar /"(̂ (ω)), and the construction of Γ(/l(ω)) is com-

plete by induction on |ω|. q.e.d.

Now, we prove the pasting lemma for (G, ^J-manifolds.

PROOF OF LEMMA 1.11. For fe = l, 2, we choose a G-collar system Γ(Ak)
of (Ak, φk) by the above theorem. Then Γ(Ak) induces an equi variant diίfeomor-
phism

(5.5.1) λ0(Ak(ω)): d0Ak(ω) x [0,1) * U0(Ak(ω)) (k = 1, 2).

By pasting the restrictions of λ0(Ak(ω)) on B(ω) c d0Ak(ω), we obtain an equivari-
ant homeomorphism

(5.5.2) A(ω): B(ω) x (-1,1) » V(ω)

where V(ώ)= U0(A1(ω)) U U0(A2(ω)\ such that

A(ω)(x,0) = x,

λ(ω)(x,t) = .A0(X1(ω))(x,ί) and A(ω)(x,-/) = λ0(A2(ω))(x,t)

for xeB(ώ) and 0<ί<l. Then we have the following commutative diagram of
homeomorphisms and inclusions from the property of the collar system (cf.

Def. 5.3):
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(idx7>(α(ι»xid)J

(j, ω)xPi

where α(i,ω) is a homeomorphism induced by αk(ί,ω) (fc = l, 2). We give the

smooth structure of the pasted space A(ω) = Aί(ώ) U B(ω)A2(ω) sucn tnat ^(ω) *s

smooth. Since we have the above commutative diagram, such a process makes a
well-defined smooth structure of the ambient manifold A = A(0). q.e.d.
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