Weakly ascendant subalgebras of Lie algebras

Shigeaki TôGô

(Received September 4, 1979)

Introduction

Maruo [4] introduced the notion of weak ideals generalizing that of subideals to study some kind of coalescence in Lie algebras. Recently Kawamoto [3] has considered N_k -pairs ($k \in \mathbb{N}$) and N_{∞} -pairs of subalgebras to study criteria for subideality and ascendancy in Lie algebras. For a subalgebra H of a Lie algebra L, the fact that (H, L) is an N_k -pair means that H is a k-step weak ideal of L. In this paper we shall introduce the notion of weakly ascendant subalgebras of a Lie algebra generalizing those of weak ideals and N_{∞} -pairs and investigate their properties.

The main results are as follows. If L is a hyperabelian Lie algebra of length λ and H is a μ -step weakly ascendant subalgebra of L, then H is a $\mu\lambda$ -step ascendant subalgebra of L (Theorem 1). Therefore a subalgebra of a hyperabelian Lie algebra is weakly ascendant if and only if it is ascendant (Theorem 2). Every finitely generated, weakly ascendant subalgebra of a Lie algebra is at most of ω -step (Theorem 4). For a subset S of a generalized solvable Lie algebra L such that $\langle S \rangle$ is finite-dimensional and nilpotent, S is a left Engel subset of L if and only if $\langle S \rangle$ is weakly ascendant and if and only if $\langle S \rangle$ is ascendant (Theorem 5). For subalgebras $H \leq K_i$ ($i = 1, \dots, n$) of a finite-dimensional Lie algebra, H is weakly ascendant of finite step in $\langle K_1, \dots, K_n \rangle$ if and only if so is it in each K_i (Theorem 7).

1.

Throughout the paper, let L be a not necessarily finite-dimensional Lie algebra over a field \mathfrak{k} of arbitrary characteristic unless otherwise specified, and let λ and μ be arbitrary ordinals.

We write $H \leq L$ when H is a subalgebra of L and $H \triangleleft L$ when H is an ideal of L.

A subalgebra H of L is a λ -step ascendant subalgebra of L, denoted by $H \triangleleft^{\lambda} L$, provided there is a series $(H_{\alpha})_{\alpha \leq \lambda}$ of subalgebras of L such that

- (a) $H_0 = H$ and $H_{\lambda} = L$,
- (b) $H_{\alpha} \lhd H_{\alpha+1}$ for any ordinal $\alpha < \lambda$,
- (c) $H_{\beta} = \bigcup_{\alpha < \beta} H_{\alpha}$ for any limit ordinal $\beta \le \lambda$.

H is an ascendant subalgebra of *L*, denoted by *H* asc *L*, provided $H \triangleleft^{\lambda} L$ for some λ . Especially when $\lambda = n < \omega$, *H* is respectively an *n*-step subideal and a subideal of *L*, denoted by *H* si *L*.

We shall generalize these notions as follows. We say a subalgebra H of L to be a λ -step weakly ascendant subalgebra of L, provided there exists an ascending chain $(M_{\alpha})_{\alpha \leq \lambda}$ of subspaces of L such that

- (a) $M_0 = H$ and $M_{\lambda} = L$,
- (b) $[M_{\alpha+1}, H] \subseteq M_{\alpha}$ for any ordinal $\alpha < \lambda$,
- (c) $M_{\beta} = \bigcup_{\alpha} M_{\alpha}$ for any limit ordinal $\beta \leq \lambda$.

We then write $H \leq {}^{\lambda}L$. We simply call such a chain $(M_{\alpha})_{\alpha \leq \lambda}$ a weakly ascending chain for H in L. We say a subalgebra H of L to be a *weakly ascendant sub-algebra* of L provided $H \leq {}^{\lambda}L$ for some ordinal λ . We then write H wasc L. Especially when $\lambda < \omega$, we call H a weak subideal of L and write H wsi L.

We recall the definitions of some classes of Lie algebras. A and EM denote respectively the classes of abelian and solvable Lie algebras over a field \mathfrak{k} . L belongs to $\mathfrak{k}\mathfrak{A}$ provided there is an ascending abelian series $(K_{\alpha})_{\alpha \leq \lambda}$ of L, that is, a series $(K_{\alpha})_{\alpha \leq \lambda}$ of subalgebras of L such that

- (a) $K_0 = (0)$ and $K_{\lambda} = L$,
- (b) $K_{\alpha} \lhd K_{\alpha+1}$ and $K_{\alpha+1}/K_{\alpha} \in \mathfrak{A}$ for any ordinal $\alpha < \lambda$,
- (c) $K_{\beta} = \bigcup_{\alpha < \beta} K_{\alpha}$ for any limit ordinal $\beta \le \lambda$.

L belongs to $\acute{E}(\checkmark)\mathfrak{A}$ provided there is an ascending abelian series $(K_{\alpha})_{\alpha \leq \lambda}$ of ideals of L. L is called hyperabelian if $L \in \acute{E}(\lhd)\mathfrak{A}$.

For a subalgebra H of L, we say that L belongs to $\acute{e}(H)\mathfrak{A}$ provided there is an ascending abelian series $(K_{\alpha})_{\alpha \leq \lambda}$ of H-invariant subalgebras of L. Obviously $\acute{e}(\lhd)\mathfrak{A} \leq \acute{e}(H)\mathfrak{A} \leq \acute{e}\mathfrak{A}$.

When we emphasize the role of the ordinal λ in the definitions of $\notin \mathfrak{A}$, $\notin (\triangleleft) \mathfrak{A}$ and $\notin (H)\mathfrak{A}$, we write $\notin_{\lambda}\mathfrak{A}$, $\notin_{\lambda}(\triangleleft)\mathfrak{A}$ and $\notin_{\lambda}(H)\mathfrak{A}$ respectively.

For subalgebras H, K of L, Kawamoto [3] has considered the following conditions: (H, K) is an N_n -pair $(n \in \mathbb{N})$ if $[K, {}_nH] \subseteq H$, and an N_{∞} -pair if for any $a \in K$ there is an $n = n(a) \in \mathbb{N}$ such that $[a, {}_nH] \subseteq H$. These conditions for (H, L) are special cases of weak ascendancy, as is seen in the following

LEMMA 1. Let H be a subalgebra of a Lie algebra L.

- (a) For $n \in \mathbb{N}$, $H \leq {}^{n}L$ if and only if (H, L) is an N_{n} -pair.
- (b) $H \leq {}^{\omega}L$ if and only if (H, L) is an N_{∞} -pair.

PROOF. (a) If (H, L) is an N_n -pair, put

$$M_i = [L, n_i H] + H$$
 $(0 \le i \le n).$

Then $(M_i)_{i \le n}$ is a weakly ascending chain for H in L and $H \le {}^nL$. The converse is evident.

(b) If (H, L) is an N_{∞} -pair, put

$$M_i = \{a \in L | [a, _iH] \subseteq H\} \qquad (0 \le i < \omega),$$
$$M_{\omega} = L.$$

Then $(M_{\alpha})_{\alpha \leq \omega}$ is a weakly ascending chain for H in L and $H \leq \omega L$. The converse is evident.

2.

We begin by showing some elementary properties of weakly ascendant subalgebras.

LEMMA 2. Let L be a Lie algebra over \mathfrak{k} .

- (a) If $H \leq {}^{\lambda}L$ and $K \leq L$, then $H \cap K \leq {}^{\lambda}K$.
- (b) If $H \leq {}^{\lambda}L$ and $K \lhd L$, then $H + K \leq {}^{\lambda}L$.

(c) Let f be a homomorphism of L onto a Lie algebra \overline{L} . If $H \leq {}^{\lambda}L$, then $f(H) \leq {}^{\lambda}\overline{L}$. If $\overline{H} \leq {}^{\lambda}\overline{L}$, then $f^{-1}(\overline{H}) \leq {}^{\lambda}L$.

PROOF. Assume that $H \leq {}^{\lambda}L$ and let $(M_{\alpha})_{\alpha \leq \lambda}$ be a weakly ascending chain for H in L. Then

(a) $(M_{\alpha} \cap K)_{\alpha \leq \lambda}$ is a weakly ascending chain for $H \cap K$ in K.

(b) $(M_{\alpha} + K)_{\alpha \leq \lambda}$ is a weakly ascending chain for H + K in L.

(c) $(f(M_{\alpha}))_{\alpha \leq \lambda}$ is a weakly ascending chain for f(H) in \overline{L} .

If $(\overline{M}_{\alpha})_{\alpha \leq \lambda}$ is a weakly ascending chain for \overline{H} in \overline{L} , then $(f^{-1}(M_{\alpha}))_{\alpha \leq \lambda}$ is such a chain for $f^{-1}(\overline{H})$ in L.

We shall next show the following lemma, which generalizes [3, Lemma 3] as is seen by Lemma 1.

LEMMA 3. Let L be a Lie algebra over \mathfrak{t} such that L=H+K with $H\leq L$, $K \lhd L$ and $K \in \mathfrak{A}$. Then $H \leq {}^{\lambda}L$ if and only if $H \lhd {}^{\lambda}L$.

PROOF. Assume that $H \leq {}^{\lambda}L$ and let $(M_{\alpha})_{\alpha \leq \lambda}$ be a weakly ascending chain for H in L. Then for any $\alpha \leq \lambda [M_{\alpha}, H] \subseteq M_{\alpha}$ and

$$M_{\alpha} = M_{\alpha} \cap (H + K) = H + (M_{\alpha} \cap K).$$

If follows that for any $\alpha < \lambda$

$$[M_{\alpha}, M_{\alpha+1}] = [H + (M_{\alpha} \cap K), H + (M_{\alpha+1} \cap K)]$$
$$\subseteq H^{2} + [H, M_{\alpha+1} \cap K] + [M_{\alpha} \cap K, H] + K^{2}$$
$$\subseteq H + (M_{\alpha} \cap K)$$
$$= M_{\alpha}.$$

Hence $M_{\alpha} \leq L$ and $M_{\alpha} \triangleleft M_{\alpha+1}$ for any $\alpha < \lambda$. Therefore $H \triangleleft^{\lambda} L$. The converse is evident.

By making use of Lemmas 2 and 3 we now show the following theorem, where $\operatorname{Core}_{L}(H)$ denotes the largest ideal of L contained in H.

THEOREM 1. Let L be a Lie algebra over a field \mathfrak{t} and let H be a subalgebra of L such that $L/\operatorname{Core}_{L}(H) \in \acute{E}_{\lambda}(H/\operatorname{Core}_{L}(H))\mathfrak{A}$. Assume that $H \leq {}^{\mu}L$. Then

 $H \lhd^{\mu\lambda} L.$

Especially, if λ is not a limit ordinal (and even if $H \leq {}^{\mu}H + L^2$),

$$H \lhd^{\mu(\lambda-1)+1} L.$$

PROOF. We may assume that $L \in \acute{E}_{\lambda}(H)\mathfrak{A}$. This can be easily seen by using Lemma 2 (c).

If λ is not a limit ordinal, there exists an ascending abelian series $(K_{\alpha})_{\alpha \leq \lambda}$ of *H*-invariant subalgebras of *L* such that $K_{\lambda-1} = L^2$. In fact, if $(L_{\alpha})_{\alpha \leq \lambda}$ is an ascending abelian series of *H*-invariant subalgebras of *L*, put $K_{\alpha} = L_{\alpha} \cap L^2$ for $\alpha \leq \lambda - 1$ and $K_{\lambda} = L_{\lambda}$. Then each K_{α} is *H*-invariant. Since $L/L_{\lambda-1} \in \mathfrak{A}$, it follows that $L^2 \subseteq L_{\lambda-1}$ and so $K_{\lambda-1} = L^2$. For any $\alpha < \lambda - 1$

$$K_{\alpha+1}^2 = (L_{\alpha+1} \cap L^2)^2$$
$$\subseteq L_{\alpha+1}^2 \cap L^2$$
$$\subseteq L_{\alpha} \cap L^2 = K_{\alpha}.$$

Therefore $K_{\alpha} \triangleleft K_{\alpha+1}$ and $K_{\alpha+1}/K_{\alpha} \in \mathfrak{A}$. Thus we see that $(K_{\alpha})_{\alpha \leq \lambda}$ is a desired series.

Now let $(K_{\alpha})_{\alpha \leq \lambda}$ be an ascending abelian series of *H*-invariant subalgebras of *L* such that $K_{\lambda-1} = L^2$ if λ is a non-limit ordinal. Then for any $\alpha \leq \lambda$

$$K_{\alpha} \lhd H + K_{\alpha} \leq L.$$

Assume that λ is a non-limit (resp. limit) ordinal and

$$H \leq^{\mu} H + L^2 \qquad (\text{resp. } H \leq^{\mu} L).$$

For each $\alpha < \lambda - 1$ (resp. $\alpha < \lambda$), put $\overline{K}_{\alpha+1} = K_{\alpha+1}/K_{\alpha}$ and $\overline{H} = (H+K_{\alpha})/K_{\alpha}$. Then $\overline{K}_{\alpha+1} \lhd \overline{H} + \overline{K}_{\alpha+1}$ and $\overline{K}_{\alpha+1} \in \mathfrak{A}$. Since $H \leq^{\mu} H + K_{\alpha+1}$ by Lemma 2 (a), we have $\overline{H} \leq^{\mu} \overline{H} + \overline{K}_{\alpha+1}$ by Lemma 2 (c). Hence by using Lemma 3 we see that $\overline{H} \lhd^{\mu} \overline{H} + \overline{K}_{\alpha+1}$. It follows that

$$H + K_{\alpha} \triangleleft^{\mu} H + K_{\alpha+1}.$$

For a limit ordinal $\beta \leq \lambda$

$$H + K_{\beta} = H + (\bigcup_{\alpha < \beta} K_{\alpha})$$
$$= \bigcup_{\alpha < \beta} (H + K_{\alpha}).$$

Therefore

$$H \triangleleft^{\mu(\lambda-1)} H + K_{\lambda-1} \triangleleft L \quad (\text{resp. } H \triangleleft^{\mu\lambda} L).$$

Observing that if $H \leq {}^{\mu}L$ then $H \leq {}^{\mu}H + L^2$ by Lemma 2 (a) and that $\mu(\lambda - 1) + 1 \leq \mu\lambda$, we finish the proof.

COROLLARY 1. Let L be a Lie algebra over a field \mathfrak{t} and let H be a subalgebra of L such that $L/\operatorname{Core}_{L}(H) \in \acute{\mathrm{E}}_{\lambda}(\lhd)\mathfrak{A}$ (especially, $L \in \acute{\mathrm{E}}_{\lambda}(\lhd)\mathfrak{A}$). If $H \leq {}^{\mu}L$, then $H \lhd {}^{\nu}L$ where

 $v = \begin{cases} \mu(\lambda - 1) + 1 & \text{for a non-limit ordianl } \lambda \\ \mu\lambda & \text{for a limit ordinal } \lambda. \end{cases}$

PROOF. This is immediate from Theorem 1, since $\dot{\mathbf{E}}_{\lambda}(\lhd)\mathfrak{A} \leq \dot{\mathbf{E}}_{\lambda}(H/\operatorname{Core}_{L}(H))\mathfrak{A}$ and $\dot{\mathbf{E}}_{\lambda}(\lhd)\mathfrak{A}$ is q-closed.

Owing to Lemma 1 we furthermore have the following two corollaries, which are [3, Theorems 4 and 12].

COROLLARY 2. Let H be a subalgebra of a Lie algebra L and assume that $L/Core_L(H) \in \mathfrak{A}^m$. If (H, L^2) is an N_n -pair, then $H \triangleleft^{n(m-1)+1}L$.

PROOF. If (H, L^2) is an N_n -pair, then $(H, H+L^2)$ is also an N_n -pair. By Lemma 1 (a) $H \leq {}^nH+L^2$. Therefore by Theorem 1 $H \triangleleft {}^{n(m-1)+1}L$.

COROLLARY 3. Let H be a subalgebra of a Lie algebra L and assume that $L/Core_L(H) \in \acute{E}(\lhd) \mathfrak{A}$. If (H, L) is an N_{∞} -pair, then H asc L.

PROOF. If (H, L) is an N_{∞} -pair, then by Lemma 1 (b) $H \leq {}^{\omega}L$. Therefore by Theorem 1 H asc L.

It is shown by the examples in Section 5 that in Theorem 1 the assumption $L/\text{Core}_L(H) \in \acute{E}(H/\text{Core}_L(H))\mathfrak{A}$ cannot be removed.

THEOREM 2. Let L be a Lie algebra over a field \mathfrak{t} and let H be a subalgebra of L such that $L/\operatorname{Core}_{L}(H) \in \acute{\mathrm{E}}(H/\operatorname{Core}_{L}(H))\mathfrak{A}$. Then the following conditions are equivalent:

(a) H wasc L.

Shigeaki TôGô

- (b) H asc L.
- (c) There exists an ordinal λ such that $H \leq \lambda \langle H, x \rangle$ for any $x \in L$.
- (d) There exists an ordinal λ such that $H \triangleleft^{\lambda} \langle H, x \rangle$ for any $x \in L$.

PROOF. (a) \Rightarrow (b) follows from Theorem 1.

 $(b) \Rightarrow (d) \text{ and } (d) \Rightarrow (c) \text{ are evident.}$

(c) \Rightarrow (a): Assume that $H \leq {}^{\lambda}\langle H, x \rangle$ for any $x \in L$. Then for each $x \in L$ there exists a weakly ascending chain $(M_{\alpha}(x))_{\alpha \leq \lambda}$ for H in $\langle H, x \rangle$. For each $\alpha \leq \lambda$ denote by M_{α} the subspace of L spanned by $\{M_{\alpha}(x) \mid x \in L\}$. Then it is immediate that $(M_{\alpha})_{\alpha \leq \lambda}$ is a weakly ascending chain for H in L and $H \leq {}^{\lambda}L$. This completes the proof.

COROLLARY. Let L be a Lie algebra over a field \mathfrak{k} and let H be a subalgebra of L.

(a) Let $L/\operatorname{Core}_{L}(H) \in \acute{E}(\lhd)\mathfrak{A}$ (especially, $L \in \acute{E}(\lhd)\mathfrak{A}$). Then H wasc L if and only if H asc L.

(b) Let $L/\text{Core}_L(H) \in \mathbb{E}\mathfrak{A}$ (especially, $L \in \mathbb{E}\mathfrak{A}$). Then H wsi L if and only if H si L.

PROOF. (a) is immediate from Theorem 2, since $\acute{E}(\lhd)\mathfrak{A} \leq \acute{E}(H/\operatorname{Core}_{L}(H))\mathfrak{A}$ and $\acute{E}(\lhd)\mathfrak{A}$ is q-closed. (b) follows from Theorem 1.

The statement (b) in the above corollary is contained in [3, Theorem 11], as is seen by Lemma 1 (a).

As another consequence of Theorem 1 we have the following

THEOREM 3. Let L be a Lie algebra over a field \mathfrak{k} . Let H be a subalgebra of L such that $L/\operatorname{Core}_{L}(H) \in \mathfrak{k}_{\lambda}\mathfrak{A}$ and $\langle a^{H} \rangle$ is finitely generated for any $a \in L$. If $H \leq {}^{\mu}L$, then $H \triangleleft {}^{\mu\lambda}L$.

PROOF. We may assume that $L \in \acute{E}_{\lambda}\mathfrak{A}$. Let $(K_{\alpha})_{\alpha \leq \lambda}$ be an ascending abelian series of L. For any $\alpha \leq \lambda$, let L_{α} be the sum of all H-invariant subspaces of K_{α} . Then it is easy to see that each L_{α} is a unique maximal H-invariant subalgebra of K_{α} and $(L_{\alpha})_{\alpha \leq \lambda}$ is an ascending abelian series of H-invariant subalgebras of L ([3, Lemmas 15 and 16]). Therefore $L \in \acute{E}_{\lambda}(H)\mathfrak{A}$. The assertion now follows from Theorem 1.

The following corollary is [3, Theorem 17].

COROLLARY. Under the same hypothesis as in Theorem 3, if (H, L) is an N_{∞} -pair, then H asc L.

PROOF. If (H, L) is an N_{∞} -pair, by Lemma 1 (b) $H \leq \omega L$. Hence the statement follows from Theorem 3.

To show further properties of weakly ascendant subalgebras, we need the following lemma generalizing [1, Lemma 1.2.3].

LEMMA 4. Let L be a Lie algebra over \mathfrak{k} . Let H be a finitely generated, weakly ascendant subalgebra of L and let K be a finite-dimensional subspace of L. Then there exists an $n=n(K) \in \mathbb{N}$ such that $[K, {}_{n}H] \subseteq H$.

PROOF. Let $(M_{\alpha})_{\alpha \leq \lambda}$ be a weakly ascending chain for H in L and let N be a finite-dimensional subspace of H generating H. Take a basis $\{x_1, \dots, x_s\}$ of N and a basis $\{a_1, \dots, a_t\}$ of K. For each $n \in \mathbb{N}$, let μ_n be the first ordinal such that

$$\{[a_i, x_{j_1}, \cdots, x_{j_k}] | 1 \le i \le t, 1 \le j_k \le s\} \subseteq M_{\mu_k}.$$

Then μ_n is not a limit ordinal. Since $[M_{\alpha+1}, N] \subseteq M_{\alpha}$ for any $\alpha < \lambda$, we have $\mu_{n+1} < \mu_n$ unless $\mu_n = 0$. Since the ordinals $\leq \lambda$ are well-ordered, it follows that $\mu_n = 0$ for some $n \in \mathbb{N}$. Hence $[K, {}_nN] \subseteq M_0 = H$. By the Jacobi identity we conclude that $[K, {}_nH] \subseteq H$.

We remark that for any finitely generated, weakly ascendant subalgebra H of L, $H^{\omega} = \bigcap_{i=1}^{\infty} H^i$ and $H^{(\omega)} = \bigcap_{i=0}^{\infty} H^{(i)}$ are characteristic ideals of L. This can be shown by using Lemma 4, as in the proof of [4, Theorem 2.2].

THEOREM 4. Let L be a Lie algebra over a field \mathfrak{k} . Then every finitely generated, weakly ascendant subalgebra of L is at most of ω -step.

PROOF. By Lemma 4 we see that for any $a \in L$ there exists an $n=n(a) \in \mathbb{N}$ such that $[a, {}_{n}H] \subseteq H$. Hence (H, L) is an N_{∞} -pair. By Lemma 1 (b) it follows that $H \leq {}^{\infty}L$.

It is shown by the second example in Section 5 that in the above theorem the index ω is best possible.

We shall here consider an application of Theorem 4. The set of left Engel elements of L is denoted by e(L). We define $e^*(L)$ to be the family of subsets S of L satisfying the following condition: For any $a \in L$ there exists an $n = n(a, S) \in \mathbb{N}$ such that $[a, {}_{n}S] = (0)$. We may call $S \in e^*(L)$ a left Engel subset of L. Now we have

LEMMA 5. Let S be a subset of a Lie algebra L such that $\langle S \rangle$ is nilpotent. Then $S \in e^*(L)$ if and only if $\langle S \rangle \leq {}^{\omega}L$.

PROOF. Put $H = \langle S \rangle$ and let H be nilpotent of class m. If $H \leq {}^{\omega}L$, then for

any $a \in L$ there is an $n \in \mathbb{N}$ such that $[a, H] \subseteq H$. It follows that

$$[a, _{n+m}H] \subseteq H^{m+1} = (0).$$

Hence $H \in e^*(L)$ and therefore $S \in e^*(L)$. The converse is evident.

THEOREM 5. Let L be a Lie algebra over a field \mathfrak{k} belonging to $\mathfrak{k}\mathfrak{A}$. For a subset S of L such that $\langle S \rangle$ is finite-dimensional and nilpotent, the following conditions are equivalent:

- (a) $S \in \mathfrak{e}^*(L)$.
- (b) $\langle S \rangle$ wasc L.
- (c) $\langle S \rangle \leq {}^{\omega} L.$
- (d) $\langle S \rangle$ asc L.

PROOF. (b) \Rightarrow (c) follows from Theorem 4.

(c) \Rightarrow (d): Put $H = \langle S \rangle$ and assume that $H \leq \omega L$. Then by Lemma 5 $H \in e^*(L)$. Hence for any $a \in L$ there is an $n \in \mathbb{N}$ such that $[a, {}_nH] = (0)$. It follows that

$$\langle a^H \rangle = \langle a, [a, H], \cdots, [a, {n-1}H] \rangle$$

is finitely generated. Therefore by Theorem 3 H asc L.

 $(d) \Rightarrow (b)$ is evident.

Since (a) \Leftrightarrow (c) by Lemma 5, the proof is complete.

As an immediate consequence of Theorem 5 we have the following

COROLLARY. Let L be a Lie algebra over a field t belonging to $i \mathfrak{A}$. For any $x \in L$, the following conditions are equivalent:

- (a) $x \in e(L)$.
- (b) $\langle x \rangle$ wasc L.
- (c) $\langle x \rangle \leq^{\omega} L.$
- (d) $\langle x \rangle$ asc L.

This corollary generalizes [1, Theorem 16.4.2 (a)], which states the equivalence of (a) and (d) only for a field \mathfrak{k} of characteristic 0.

As a slight generalization of [1, Proposition 1.3.5] we show the following

THEOREM 6. Let L be a Lie algebra over a field \mathfrak{k} . Then every perfect weakly ascendant subalgebra of L is an ideal of L.

PROOF. Assume that $H \leq^{\lambda} L$ and $H = H^2$. If $(M_{\alpha})_{\alpha \leq \lambda}$ is a weakly ascending chain for H in L, then we can show by transfinite induction that $[M_{\alpha}, H] \subseteq H$ for any $\alpha \leq \lambda$. Taking $\alpha = \lambda$, we see that $H \triangleleft L$.

Weakly ascendant subalgebras of Lie algebras

In this section we shall observe weakly ascendant subalgebras of step $\leq \omega$.

LEMMA 6. Let $H \leq K_{\sigma}$ ($\sigma \in I$) be subalgebras of a Lie algebra L. If $H \leq {}^{\omega}K_{\sigma}$ for any $\sigma \in I$, then $H \leq {}^{\omega}\langle K_{\sigma} | \sigma \in I \rangle$.

PROOF. We may assume that $L = \langle K_{\sigma} | \sigma \in I \rangle$. If we put

 $N_{\infty}(H) = \{a \in L \mid [a, {}_{n}H] \subseteq H \text{ for some } n \in \mathbb{N}\},\$

it is easy to see that $N_{\infty}(H) \le L$ ([3, Lemma 1 (a)]). If $H \le {}^{\omega}K_{\sigma}$, then by Lemma 1 (b) (H, K_{σ}) is an N_{∞} -pair and so $K_{\sigma} \le N_{\infty}(H)$. Hence $L = N_{\infty}(H)$. Therefore (H, L) is an N_{∞} -pair and by Lemma 1 (b) $H \le {}^{\omega}L$.

THEOREM 7. Let L be a finite-dimensional Lie algebra over a field \mathfrak{k} . Let $H \leq K_i$ $(i=1,\dots,n)$ be subalgebras of L. If H wsi K_i for any i, then H wsi $\langle K_1,\dots,K_n \rangle$.

PROOF. When L is finite-dimensional, $H \le \omega L$ is equivalent to H wsi L. Hence the statement follows from Lemma 6.

By Theorem 7 we see that for any subalgebra H of a finite-dimensional Lie algebra L there exists a unique maximal subalgebra of L which contains H as a weak subideal.

As a consequence of Theorem 7 we have the following result ([2, Theorem 6]).

COROLLARY. Let L be a finite-dimensional solvable Lie algebra over \mathfrak{k} . Let $H \leq K_i$ $(i=1,\dots,n)$ be subalgebras of L. If H si K_i for any i, then H si $\langle K_1, \dots, K_n \rangle$.

PROOF. When L is solvable, H wsi L is equivalent to H si L by Theorem 1. Hence the statement follows from Theorem 7.

THEOREM 8. Let L be a Lie algebra over a field \mathfrak{t} and let H be a finitecodimensional subalgebra of L. Then H wsi L if and only if for any $a \in L$ and any $x \in H$ there exists an $n=n(a, x) \in \mathbb{N}$ such that $[a, {}_{n}x] \in H$.

PROOF. Assume that the condition holds. For any $x \in H$, $ad_L x$ induces a linear transformation $\rho(x)$ of the space L/H. By assumption each $\rho(x)$ is nil. Since the space L/H is finite-dimensional, $\rho(x)$ is nilpotent. Therefore the enveloping associative algebra of $\rho(H)$ is nilpotent. Hence there exists a $k \in \mathbb{N}$ such that $\rho(x_1) \cdots \rho(x_k) = 0$ for any $x_1, \cdots, x_k \in H$. This means that $[L, {}_kH] \subseteq H$. By Lemma 1 (a) $H \leq {}^kL$. The converse is evident. 5.

Let $S = \langle x, y, z \rangle$ be the 3-dimensional simple Lie algebra over a field of characteristic $\neq 2$ with multiplication

$$[x, z] = 2x, [y, z] = -2y, [x, y] = z.$$
 (*)

Then it is known [4] that $\langle y \rangle \leq {}^2 S$, $\langle y \rangle$ is not a subideal of S and $S \notin \mathbb{E}\mathfrak{A} = \mathbb{E}(\langle y \rangle)\mathfrak{A}$.

Let V be the vector space over a field f of characteristic 0 with basis $\{e_1, e_2, \dots\}$ and let x, y, z be respectively the linear transformations of V defined by

$$\begin{aligned} x: & e_i \longrightarrow e_{i+1} & (i \ge 1), \\ y: & e_1 \longrightarrow 0, \quad e_i \longrightarrow i(i-1)e_{i-1} & (i \ge 2), \\ z: & e_i \longrightarrow 2ie_i & (i \ge 1). \end{aligned}$$

Then $S = \langle x, y, z \rangle$ is a simple Lie subalgebra of $\operatorname{End}_k V$ satisfying (*). Consider V as an abelian Lie algebra so that every element of S is a derivation of V. We construct the split extension

$$L = V \neq S$$

(cf. [5, Example F]). Then it is easy to see that $\langle y \rangle \leq {}^{\omega} L$, $\langle y \rangle$ is not a weak subideal of L, $\langle y \rangle$ is not an ascendant subalgebra of L, $L \notin \pounds \mathfrak{A}$ and a priori $L \notin \pounds \langle y \rangle \mathfrak{A}$.

References

- [1] R.K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] C-Y. Chao and E. L. Stitzinger: Subinvariance in solvable Lie algebras, Canad. J. Math. 28 (1976), 181-185.
- [3] N. Kawamoto: Subideality and ascendancy in generalized solvable Lie algebras, Hiroshima Math. J. 9 (1979), 701-716.
- [4] O. Maruo: Pseudo-coalescent classes of Lie algebras, Hiroshima Math. J. 2 (1972), 205-214.
- [5] S. Tôgô: Radicals of infinite dimensional Lie algebras, Hiroshima Math. J. 2 (1972), 179-203.

Department of Mathematics, Faculty of Science, Hiroshima University