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Introduction

Maruo [4] introduced the notion of weak ideals generalizing that of

subideals to study some kind of coalescence in Lie algebras. Recently Kawamoto

[3] has considered Nk-pairs (k e N) and JV^-pairs of subalgebras to study criteria

for subideality and ascendancy in Lie algebras. For a subalgebra H of a Lie

algebra L, the fact that (H, L) is an AΓk-pair means that H is a /c-step weak ideal
of L. In this paper we shall introduce the notion of weakly ascendant subalgebras

of a Lie algebra generalizing those of weak ideals and Λ^-pairs and investigate

their properties.

The main results are as follows. If L is a hyperabelian Lie algebra of length

λ and H is a μ-step weakly ascendant subalgebra of L, then H is a μ/l-step ascendant

subalgebra of L (Theorem 1). Therefore a subalgebra of a hyperabelian Lie
algebra is weakly ascendant if and only if it is ascendant (Theorem 2). Every

finitely generated, weakly ascendant subalgebra of a Lie algebra is at most of

ω-step (Theorem 4). For a subset S of a generalized solvable Lie algebra L such

that <S> is finite-dimensional and nilpotent, 5 is a left Engel subset of L if and
only if <S> is weakly ascendant and if and only if <5> is ascendant (Theorem 5).

For subalgebras H < KI (i = 1, , n) of a finite-dimensional Lie algebra, H is

weakly ascendant of finite step in (Ki9--, Kny if and only if so is it in each Kt

(Theorem 7).

1.

Throughout the paper, let L be a not necessarily finite-dimensional Lie

algebra over a field ί of arbitrary characteristic unless otherwise specified, and

let λ and μ be arbitrary ordinals.

We write H<L when H is a subalgebra of L and H^L when H is an ideal

ofL.
A subalgebra H of L is a /L-step ascendant subalgebra of L, denoted by #o λ

L, provided there is a series (Ha)Λ^λ of subalgebras of L such that

(a) HO = H and Hλ = L,
(b) #αo HΛ+i for any ordinal α < λ,

(c) Hβ = \J Ha for any limit ordinal β < λ.
a<β



176 Shigeaki TOGO

H is an ascendant subalgebra of L, denoted by H asc L, provided #<ι AL for some
λ. Especially when λ = n < ω, H is respectively an n-step subideal and a subideal
of L, denoted by H si L.

We shall generalize these notions as follows. We say a subalgebra H of L

to be a A-ste/? weakly ascendant subalgebra of L, provided there exists an as-

cending chain (Mα)α<λ of subspaces of L such that

(a) M0 = H and Mλ = L,

(b) [Mα+1, H] c Mα for any ordinal α < λ,

(c) M0 = W Mα for any limit ordinal β < λ.
Ά<β

We then write H<λL. We simply call such a chain (Mα)α^Λ a weakly ascending

chain for H in L. We say a subalgebra H of L to be a weakly ascendant sub-
algebra of L provided H<λL for some ordinal A. We then write H wasc L.
Especially when λ < ω, we call H a weak subideal of L and write # wsi L.

We recall the definitions of some classes of Lie algebras. 2X and E$I denote
respectively the classes of abelian and solvable Lie algebras over a field f . L be-

longs to έUl provided there is an ascending abelian series (Kα)α^λ of L, that is,
a series (Kα)α<λ of subalgebras of L such that

(a) K0 = (0) and Kλ = L,
(b) Xα<] KΛ+ i and KΛ+l/KΛ e 21 for any ordinal α < A,

(c) Kβ = \J KΛ for any limit ordinal β < λ.
a<β

L belongs to έ(<α)2ί provided there is an ascending abelian series (Xα)α<λ of
ideals of L. L is called hyperabelian if L e έ(<ι )2Ϊ.

For a subalgebra H of L, we say that L belongs to έ(//)2ί provided there is
an ascending abelian series (KΛ)Λ<λ of H-invariant subalgebras of L. Obviously

When we emphasize the role of the ordinal λ in the definitions of έ$l, E(<α)2ί
and E(/f)2I, we write Eλ2ί, EΛ(<ι)$l and EA(//)2i respectively.

For subalgebras H, K of L, Kawamoto [3] has considered the following
conditions: (//, X) is an NM-pair (neN) if [K, nH~\^H, and an Λ/^-pair if for
any aeK there is an n = n(α)eN such that [α, nH]^H. These conditions for
(/f , L) are special cases of weak ascendancy, as is seen in the following

LEMMA 1. Let H be a subalgebra of a Lie algebra L.
(a) For n e N, H < n L if and only if (H, L) is an Nn-pair.
(b) H<ωL if and only if(H, L) is an N^-paίr.

PROOF, (a) If (H, L) is an JVπ-pair, put

Mt = [L, „_;#] + H ( 0 < / < n ) .

Then (Mf)f<n is a weakly ascending chain for H in L and H < nL. The converse

is evident.
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(b) If (H, L) is an N^-pair, put

M, = {a eL\ [α, f/f] <Ξ #} (0 < i < ω),

Then (Mα)α<ςω is a weakly ascending chain for H in L and H<ωL. The converse
is evident.

We begin by showing some elementary properties of weakly ascendant

subalgebras.

LEMMA 2. Let L be a Lie algebra over ϊ.
(a) IfH<λLandK<L,thenHΓιK<λK.
(b) IfH<λLandK^ιL,thenH + K<λL.

(c) Let f be a homomorphίsm of L onto a Lie algebra L. If H<λL9

thenf(H)<λL IfH<λL, then Γ

PROOF. Assume that H<λL and let (Mα)α λ̂ be a weakly ascending chain

for H in L. Then

(a) (Mα n £)α<α is a weakly ascending chain for H n ̂  in X.
(b) (Mα + K)α<ς;L is a weakly ascending chain for H + K in L.
(c) (/(Mα))α^λ is a weakly ascending chain for /(//) in L.

If (MΛ\^λ is a weakly ascending chain for H in L, then (/"1(Mα))α^A is such a
chain for/'^JB) in L.

We shall next show the following lemma, which generalizes [3, Lemma 3] as
is seen by Lemma 1.

LEMMA 3. Let L be a Lie algebra over I such that L = H + K with H<L,
K^Land KeW. Then H<λLif and only if

PROOF. Assume that H<λL and let (Mα)α λ̂ be a weakly ascending chain
for H in L. Then for any α</l [Mα, H~\ ^MΛ and

Mα = Mα n (H + X) = H + (Mα n X).

If follows that for any α<A

[Mα, Mα+1] = [ff + (Mα n X), /f + (Mα+1 n

c H2 + [H, Mα+1 n x] + [Mα n
c H + (Mα n K)
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Hence Mα<L and Mα<ιMα+1 for any α<λ Therefore H^λL. The converse

is evident.

By making use of Lemmas 2 and 3 we now show the following theorem,

where CoreL(H) denotes the largest ideal of L contained in H.

THEOREM 1. Let L be a Lie algebra over afield I and let H be a subalgebra

of L such that L/CoreL (H) e EA(Ή/CoreL (#))9I. Assume that H<^L. Then

Especially, if λ is not a limit ordinal (and even if H < μH + L2),

PROOF. We may assume that L e EA(H)9l. This can be easily seen by using
Lemma 2 (c).

If λ is not a limit ordinal, there exists an ascending abelian series (KΛ)a^λ of

H-in variant subalgebras of L such that Kλ_ι = L2. In fact, if (Lα)α<ςλ is an

ascending abelian series of H-in variant subalgebras of L, put Kα = L α nL 2 for
α < λ — 1 and Kλ = Lλ. Then each Ka is #-invariant. Since L/Lλ_ l e 91, it follows
that L 2 cL A _! and so Kλ.ί=L2. For any α<A— 1

K2

 + 1=(Lα + 1 ΓlL2)2

<=L2

+ 1 n L2

£ Lα n L2 = κα.

Therefore KΛ^KΛ+l and KΛ+1/KΛe^ί. Thus we see that (^α)α λ̂ is a desired
series.

Now let (Ka)a<a be an ascending abelian series of //-invariant subalgebras
of L such that Kλ_l =L2 if λ is a non-limit ordinal. Then for any

Assume that A is a non-limit (resp. limit) ordinal and

H<»H + L2 (resp. H<*L).

For each α < λ - 1 (resp. α < A), put Ka+^=KΛ+ljKΛ and H = (H + K^KΛ. Then

Kα+1<ιfl? + Kα+1 and Xα+16^ί. Since H<^H + KΛ+ί by Lemma 2 (a), we
have H<μH + Ka+1 by Lemma 2 (c). Hence by using Lemma 3 we see that

" H + KΛ + 1 . It follows that
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For a limit ordinal β<λ

Λ<β

Therefore

H<ι^-i)# + Kλ.ί^L (resp.

Observing that if H<»L then H<»H + L2 by Lemma 2 (a) and that μ(Λ-l)

-f 1 <> μλ, we finish the proof.

COROLLARY 1. Let L be a Lie algebra over a field I and let H be a sub-
algebra of L such that L/CoreL (H) e έλ(<ι )2I (especially, LeEA(<ι)2ί). //
H<»L, then #<ιvL where

{ μ(λ — 1) + 1 for a non-limit ordίanl λ

μλ for a limit ordinal λ.

PROOF. This is immediate from Theorem 1, since Eλ(<3)2ϊ<Eλ(#/CoreL

and EA(<])$1 is Q-closed.

Owing to Lemma 1 we furthermore have the following two corollaries, which
are [3, Theorems 4 and 12].

COROLLARY 2. Let H be a subalgebra of a Lie algebra L and assume that
L/CoreL(#) e 81*. // (H, L2) is an Nn-pair, then H^ »(»-D+IL.

PROOF. If (H, L2) is an Nπ-pair, then (H, H + L2) is also an Nn-pair. By
Lemma 1 (a) H<nH + L2. Therefore by Theorem 1 #<α/I<m-1>+1L.

COROLLARY 3. Let H be a subalgebra of a Lie algebra L and assume that
L/CoreL(#) e έ(<α)9ϊ. // (H, L) is an N^-pair, then H asc L.

PROOF. If (H, L) is an N^-pair, then by Lemma 1 (b) H<ωL. Therefore
by Theorem 1 H asc L.

It is shown by the examples in Section 5 that in Theorem 1 the assumption
L/CoTQL(H)eE(H/CoTQL(HJ)^ cannot be removed.

THEOREM 2. Let L be a Lie algebra over afield I and let H be a subalgebra
of L such that L/CoreL(H)eέ(H/CoreL(//))2I. Then the following conditions
are equivalent:

(a) H wasc L.
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(b) //ascL.
(c) There exists an ordinal λ such that H<λ(H, x> for any x e L.

(d) There exists an ordinal λ such that //o λ<// , x> for any x e L.

PROOF. (a)=>(b) follows from Theorem 1.

(b)=>(d) and (d)=>(c) are evident.

(c)=>(a): Assume that //<A<//, x> for any xeL. Then for each xeL
there exists a weakly ascending chain (Ma(x))a5a for H in <//, x>. For each

α</l denote by Mα the subspace of L spanned by {Mα(x)|xeL}. Then it is

immediate that (Mα)α<ςλ is a weakly ascending chain for H in L and H<λL. This

completes the proof.

COROLLARY. Let L be a Lie algebra over afield I and let H be a subalgebra

ofL.
(a) Let L/CoreL(//)eE(<ι)2I (especially, Leέ(<ι)9ί). Then H wasc L

// and only if H asc L.

(b) Let L/CoreL(//)eE9l (especially, LeE^I). Then H wsi L i/ and

only ifH si L.

PROOF, (a) is immediate from Theorem 2, since έ(<02l<έ(H/CoreL(#))9I
and έ(<α)$l is Q-closed. (b) follows from Theorem 1.

The statement (b) in the above corollary is contained in [3, Theorem 11], as

is seen by Lemma 1 (a).

As another consequence of Theorem 1 we have the following

THEOREM 3. Let L be a Lie algebra over afield !. Let H be a subalgebra
of L such that L/CoreL (H) e EΛ$l and <αff> is finitely generated for any aeL.

IfH<»L,

PROOF. We may assume that Leέλ2ί. Let CKα)α<ςλ be an ascending abelian
series of L. For any α < λ, let Lα be the sum of all fί-invariant subspaces of KΛ.

Then it is easy to see that each Lα is a unique maximal H-invariant subalgebra of

KΛ and (Lα)α^A is an ascending abelian series of //-invariant subalgebras of L ([3,

Lemmas 15 and 16]). Therefore LeEA(H)9I. The assertion now follows from
Theorem 1.

The following corollary is [3, Theorem 17].

COROLLARY. Under the same hypothesis as in Theorem 3, if (//, L) is an
N^-pair, then H asc L.

PROOF. If (H, L) is an Λ^-pair, by Lemma 1 (b) H<ωL. Hence the
statement follows from Theorem 3.
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3.

To show further properties of weakly ascendant subalgebras, we need the
following lemma generalizing [1, Lemma 1.2.3].

LEMMA 4. Let L be a Lie algebra over I. Let H be a finitely generated,
weakly ascendant subalgebra of L and let K be a finite-dimensional subspace
ofL. Then there exists an n = n(£)eN such that [K,

PROOF. Let (Mα)α λ̂ be a weakly ascending chain for H in L and let N be a

finite-dimensional subspace of H generating H. Take a basis {xι, , xs} of N
and a basis {0l5 , at} of K. For each n e N, let μn be the first ordinal such that

jί9 9 1 1 < i < t, 1 < jk < s} £

Then μrt is not a limit ordinal. Since [Mα+1, ΛΓ]^Mα for any α<A, we have

μn+ι<μn unless μrt = 0. Since the ordinals < λ are well-ordered, it follows that
μn = 0 for some n 6 N. Hence [K, ΠJV] c M0 = H. By the Jacobi identity we con-

clude that [K, „#]£#.

We remark that for any finitely generated, weakly ascendant subalgebra H

of L,Hω=r\ H1 and #<ω>= Λ H(l) are characteristic ideals of L. This can be
i=l i=0

shown by using Lemma 4, as in the proof of [4, Theorem 2.2].

THEOREM 4. Lei L be a Lie algebra over a field I. Then every finitely
generated, weakly ascendant subalgebra of L is at most of ω-step.

PROOF. By Lemma 4 we see that for any aeL there exists an n = n(a)εN
such that [α, nH~\^H. Hence (H, L) is an AΓ^-pair. By Lemma 1 (b) it follows

that#<ωL.

It is shown by the second example in Section 5 that in the above theorem

the index ω is best possible.
We shall here consider an application of Theorem 4. The set of left Engel

elements of L is denoted by e(L). We define e*(L) to be the family of subsets S

of L satisfying the following condition : For any a e L there exists an n = n(a, S)

eN such that [α, ΠS] = (0). We may call See*(L) a left Engel subset of L.

Now we have

LEMMA 5. Let S be a subset of a Lie algebra L such that <S> is nilpotent.

Then S e e*(L) if and only if <S> <ωL.

PROOF. Put H = <S> and let H be nilpotent of class m. If H < °>L, then for
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any α e L there is an n e N such that [α, nH~\^H. It follows that

Hence H e e*(L) and therefore S e e*(L). The converse is evident.

THEOREM 5. Let L be a Lie algebra over afield I belonging to έ2l. For

a subset S of L such that <S> is finite-dimensional and nilpotent, the following
conditions are equivalent:

(a) See*(L).
(b) <S> wasc L.

(c) <5><ωL.

(d) <S> asc L.

PROOF. (b)=>(c) follows from Theorem 4.

(c)=>(d): Put #=<S> and assume that H<<° L. Then by Lemma 5 He

e*(L). Hence for any a e L there is an n e N such that [α, nH~\ = (0). It follows

that

is finitely generated. Therefore by Theorem 3 H asc L.
(d)=>(b) is evident.
Since (a)o(c) by Lemma 5, the proof is complete.

As an immediate consequence of Theorem 5 we have the following

COROLLARY. Let L be a Lie algebra over a field ϊ belonging to έ2I. For

any ceL, the following conditions are equivalent:
(a) xee(L).
(b) <x> wasc L.
(c) <*><ωL.

(d) <x>ascL.

This corollary generalizes [1, Theorem 16.4.2 (a)], which states the equiva-
lence of (a) and (d) only for a field I of characteristic 0.

As a slight generalization of [1, Proposition 1.3.5] we show the following

THEOREM 6. Let L be a Lie algebra over a field I. Then every perfect
weakly ascendant subalgebra of L is an ideal of L.

PROOF. Assume that H<λL and H = H2. If (Mα)α λ̂ is a weakly ascending
chain for H in L, then we can show by transfinite induction that [Mα, H~\^H
for any α<A. Taking α = λ, we see that
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4.

In this section we shall observe weakly ascendant subalgebras of step < ω.

LEMMA 6. Let H<Kσ (σe/) be subalgebras of a Lie algebra L. If
H<ωKσfor any σe/, then H<ω(Kσ\σeiy.

PROOF. We may assume that L = (Kσ \ σ e />. If we put

= {a eL| [α, „#] s H for some n eN} ,

it is easy to see that N^H^^L ([3, Lemma 1 (a)]). If H<<°Kσ, then by Lemma
1 (b) (H9 Kσ) is an ΛΓ^-pair and so K^N^H). Hence L = N00(H). Therefore
(H, L) is an Λ^-pair and by Lemma 1 (b) H<ωL.

THEOREM 7. Let L be a finite-dimensional Lie algebra over a field ϊ.
Let H<Ki (ι = l, , n) be subalgebras of L. If H wsi Ktfor any ί, then H wsi

î,-,*.).

PROOF. When L is finite-dimensional, H<ωL is equivalent to H wsi L.
Hence the statement follows from Lemma 6.

By Theorem 7 we see that for any subalgebra H of a finite-dimensional Lie
algebra L there exists a unique maximal subalgebra of L which contains H as a
weak subideal.

As a consequence of Theorem 7 we have the following result ([2, Theorem 6]).

COROLLARY. Let L be a finite-dimensional solvable Lie algebra over ϊ.
Let H<Kt (f = l, , n) be subalgebras ofL. If H si Ktfor any i, then H si <K1?

-,KJ.

PROOF. When L is solvable, H wsi L is equivalent to H si L by Theorem 1.
Hence the statement follows from Theorem 7.

THEOREM 8. Let L be a Lie algebra over a field ϊ and let H be a finite-
codimensional subalgebra of L. Then H wsi L if and only if for any a E L and
any xeH there exists an n = n(a, x)eN such that [α, nx]eH.

PROOF. Assume that the condition holds. For any xeH, adLx induces
a linear transformation p(x) of the space L/H. By assumption each p(x) is nil.
Since the space L/H is finite-dimensional, p(x) is nilpotent. Therefore the
enveloping associative algebra of p(H) is nilpotent. Hence there exists a k e N
such that p(xι) p(xfc) = 0 for any Xu , xkeH. This means that [L, kH]c#.

By Lemma 1 (a) H<kL. The converse is evident.
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5.

Let S=<x, y, z> be the 3-dimensional simple Lie algebra over a field of
characteristic Φ 2 with multiplication

[jc, z] = 2x, [>, z]=-2y, [x, y] = z. (*)

Then it is known [4] that <j> <2 S, <j;> is not a subideal of S and S φ E9I =

Let Fbe the vector space over a field ! of characteristic 0 with basis {eί9 e29 }
and let x, y, z be respectively the linear transformations of V defined by

x: ei - >eί+i (ί > 1),

y: e1 - > 0, et - > i(i - I)*,-! (ί > 2),

z: ei - >2iei ( ϊ > l )

Then S = <x, y, z> is a simple Lie subalgebra of EndfcF satisfying (*). Consider
V as an abelian Lie algebra so that every element of S is a derivation of V. We
construct the split extension

L = V+S

(cf. [5, Example F]). Then it is easy to see that <j;> <ω L, <y> is not a weak
subideal of L, <y> is not an ascendant subalgebra of L, Lφ έ2ϊ and a priori
L * E«j,»2I.

References

[1] R. K. Amayo and I.Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden,

1974.
[2] C-Y. Chao and E. L. Stitzinger: Subinvariance in solvable Lie algebras, Canad. J.

Math. 28 (1976), 181-185.

[ 3 ] N. Kawamoto: Subideality and ascendancy in generalized solvable Lie algebras, Hiro-
shima Math. J. 9 (1979), 701-716.

[4] O. Maruo: Pseudo-coalescent classes of Lie algebras, Hiroshima Math. J. 2 (1972),
205-214.

[5] S. Togo: Radicals of infinite dimensional Lie algebras, Hiroshima Math. J. 2 (1972),
179-203.

Department of Mathematics,
Faculty of Science,

Hiroshima University




