Continuity of contractions in a functional Banach space

Yoshihiro Mizuta
(Received December 25, 1979)

In the Dirichlet space theory, contractions on the real line play an important role in connection with potential theoretic properties. A. Ancona [1] proved that contractions are continuous in Dirichlet space. Our aim in this note is to prove that the contractions considered in [3] are continuous in a certain functional Banach space.

Let X be a locally compact space and ξ be a positive (Radon) measure on X. For measurable functions u and v on X, we define

$$
\begin{aligned}
& u \vee v=\max \{u, v\}, \quad u \wedge v=\min \{u, v\}, \\
& u^{+}=u \vee 0 \text { and } u^{-}=-(u \wedge 0)
\end{aligned}
$$

Let $\mathscr{X}=\mathscr{X}(X ; \xi)$ be a real reflexive Banach space whose elements are measurable functions on X. We denote by $\|u\|$ the norm of $u \in \mathscr{X}$, by \mathscr{X}^{*} the dual space of \mathscr{X}, and by $\left\langle u^{*}, u\right\rangle$ the value of $u^{*} \in \mathscr{X}^{*}$ at $u \in \mathscr{X}$.

Throughout this note, let Φ be a strictly convex function on \mathscr{X} such that
(i) $\Phi(u) \geqq 0$ for all $u \in \mathscr{X}$ and $\Phi(u)=0$ if and only if $u=0$;
(ii) if $\left\{u_{n}\right\} \subset \mathscr{X}$ and $\lim _{n \rightarrow \infty} \Phi\left(u_{n}\right)=0$, then $u_{n} \rightarrow 0$ in \mathscr{X};
(iii) Φ is bounded on each bounded subset of \mathscr{X}; and
(iv) Φ is differentiable in the sense of Gâteaux, i.e., there is an operator $G: \mathscr{X} \rightarrow \mathscr{X}^{*}$ such that for any $u, v \in \mathscr{X}$,

$$
\langle G u, v\rangle=\lim _{t \not 0} \frac{\Phi(u+t v)-\Phi(u)}{t} .
$$

The operator G is called the gradient of Φ and denoted by $\nabla \Phi$.
We shall use the following elementary properties of Φ and $\nabla \Phi$ without proof:
(Φ_{1}) Let $u \in \mathscr{X}$ and $u^{*} \in \mathscr{X}^{*}$. Then $u^{*}=\nabla \Phi(u)$ if and only if

$$
\left\langle u^{*}, v-u\right\rangle \leqq \Phi(v)-\Phi(u) \quad \text { for any } \quad v \in \mathscr{X}
$$

(Φ_{2}) $\quad \nabla \Phi$ is bounded, i.e., it maps bounded sets in \mathscr{X} to bounded sets in \mathscr{X}^{*}.
For a non-negative measurable function g on X, we define an operator T_{g}^{+}by

$$
T_{g}^{+} u=u^{+} \wedge g \quad \text { for } \quad u \in \mathscr{X}
$$

The operator $T^{+}=T_{g}^{+}$with $g \equiv \infty$ will be called the positive contraction. We shall say that T_{g}^{+}operates in \mathscr{X} (with respect to Φ) if $T_{g}^{+} u \in \mathscr{X}$ and

$$
\Phi\left(u+T_{g}^{+}(v-u)\right)+\Phi\left(v-T_{g}^{+}(v-u)\right) \leqq \Phi(u)+\Phi(v)
$$

for any $u, v \in \mathscr{X}$. If T_{g}^{+}operates in \mathscr{X}, then it is continuous at $0 \in \mathscr{X}$. From this it follows that if the positive contraction T^{+}operates in \mathscr{X} and $u_{n} \rightarrow u$ in \mathscr{X}, then $u \wedge u_{n} \in \mathscr{X}$ and $u \wedge u_{n} \rightarrow u$ in \mathscr{X}.

Hereafter we assume that \mathscr{X} is a functional space, i.e., the following axiom is satisfied (cf. [2]):

Axiom a. For any compact set $K \subset X$, there exists a positive constant M such that

$$
\int_{K}|u| d \xi \leqq M\|u\| \quad \text { for all } \quad u \in \mathscr{X}
$$

Lemma 1. If T_{g}^{+}operates in \mathscr{X} and $u_{n} \rightarrow u$ in \mathscr{X}, then $T_{g}^{+} u_{n} \rightarrow T_{g}^{+} u$ weakly in \mathscr{X}.

Proof. It is easy to see that T_{g}^{+}is a bounded operator in \mathscr{X}, so that $\left\{T_{g}^{+} u_{n}\right\}$ is bounded. By using Axiom a, we see, in the same way as [2; Lemma 2.1], that $T_{g}^{+} u_{n} \rightarrow T_{g}^{+} u$ weakly in \mathscr{X}.

In the same way as [2; Proposition 2.1], we have the next lemma.
Lemma 2. The contraction T_{g}^{+}operates in \mathscr{X} if and only if $T_{g}^{+} u \in \mathscr{X}$ and

$$
\left\langle\nabla \Phi\left(u+T_{g}^{+} v\right)-\nabla \Phi(u), v-T_{g}^{+} v\right\rangle \geqq 0
$$

for any $u, v \in \mathscr{X}$.
Lemma 3. Let $\left\{u_{n}\right\} \subset \mathscr{X}$ be a sequence converging to $u \in \mathscr{X}$ and set v_{n} $=u \wedge u_{n}$. If T^{+}operates in \mathscr{X}, then $T^{+} v_{n} \rightarrow T^{+} u$ in \mathscr{X}.

Proof. By $\left(\Phi_{1}\right)$ we have

$$
\begin{aligned}
\Phi\left(u^{+}-v_{n}^{+}\right) & \leqq\left\langle\nabla \Phi\left(u^{+}-v_{n}^{+}\right), u^{+}-v_{n}^{+}\right\rangle \\
& =\left\langle\nabla \Phi\left(u^{+}-v_{n}^{+}\right), u-v_{n}\right\rangle+\left\langle\nabla \Phi\left(u^{+}-v_{n}^{+}\right), u^{-}-v_{n}^{-}\right\rangle
\end{aligned}
$$

Since $v_{n} \rightarrow u$ in \mathscr{X} and $\left\{\nabla \Phi\left(u^{+}-v_{n}^{+}\right)\right\}$is bounded in \mathscr{X}^{*} by virtue of $\left(\Phi_{2}\right)$, the first term tends to zero as $n \rightarrow \infty$. Since $v_{n}^{+} \wedge\left(v_{n}^{-}-u^{-}\right)=0,\left(u^{+}-v_{n}^{+}\right)+w^{+}=u^{+}$and $w-w^{+}=u^{-}-v_{n}^{-}$, where $w=v_{n}+u^{-}$. Hence by Lemma 2, we obtain

$$
\limsup _{n \rightarrow \infty}\left\langle\nabla \Phi\left(u^{+}-v_{n}^{+}\right), u^{-}-v_{n}^{-}\right\rangle \leqq \limsup _{n \rightarrow \infty}\left\langle\nabla \Phi\left(u^{+}\right), u^{-}-v_{n}^{-}\right\rangle=0 .
$$

It follows that $\lim \sup _{n \rightarrow \infty} \Phi\left(u^{+}-v_{n}^{+}\right) \leqq 0$, which implies that $v_{n}^{+} \rightarrow u^{+}$in \mathscr{X} on account of (ii).

Corollary. If T^{+}operates in \mathscr{X}, then T^{+}is continuous.
Proof. Let $\left\{u_{n}\right\}$ be a sequence in \mathscr{X} which converges to $u \in \mathscr{X}$. Then, by the above lemma we find that

$$
\left(u \vee u_{n}\right)^{+}=\left((-u) \wedge\left(-u_{n}\right)\right)^{+}-(-u) \wedge\left(-u_{n}\right) \longrightarrow(-u)^{+}-(-u)=u^{+}
$$

in \mathscr{X}. Hence we have again by Lemma 3 that

$$
u_{n}^{+}=\left(u \vee u_{n}\right)^{+}+\left(u \wedge u_{n}\right)^{+}-u^{+} \longrightarrow u^{+} \quad \text { in } \quad \mathscr{X},
$$

which means that T^{+}is continuous.
Now we are ready to prove our main result.
Theorem. If T^{+}and T_{g}^{+}operate in \mathscr{X}, then T_{g}^{+}is continuous.
Proof. Suppose $u_{n} \rightarrow u$ in \mathscr{X} and $u_{n} \wedge 0=0$ for each n. Set $w_{n}=u \vee u_{n}$. Then $w_{n} \rightarrow u$ in \mathscr{X}, and hence $\left(w_{n}-u\right) \wedge g \rightarrow 0$ in \mathscr{X} by the continuity of T_{g}^{+}at 0 . Using (Φ_{1}), we have

$$
\begin{aligned}
\Phi\left(u \wedge g-w_{n} \wedge g\right) & \leqq\left\langle\nabla \Phi\left(u \wedge g-w_{n} \wedge g\right), u \wedge g-w_{n} \wedge g\right\rangle \\
& =\left\langle\nabla \Phi\left(u \wedge g-w_{n} \wedge g\right),\left(u \wedge g+\left(w_{n}-u\right) \wedge g\right)-w_{n} \wedge g\right\rangle \\
& -\left\langle\nabla \Phi\left(u \wedge g-w_{n} \wedge g\right),\left(w_{n}-u\right) \wedge g\right\rangle
\end{aligned}
$$

Since $T_{g}^{+}\left(u \wedge g+\left(w_{n}-u\right) \wedge g\right)=w_{n} \wedge g=T_{g}^{+} w_{n}$, Lemma 2 yields

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\langle\nabla \Phi\left(u \wedge g-w_{n} \wedge g\right),\left(u \wedge g+\left(w_{n}-u\right) \wedge g\right)-w_{n} \wedge g\right\rangle \\
& \leqq \limsup _{n \rightarrow \infty}\left\langle\nabla \Phi(u \wedge g), u \wedge g+\left(w_{n}-u\right) \wedge g-w_{n} \wedge g\right\rangle=0
\end{aligned}
$$

with the aid of Lemma 1. Hence $\lim \sup _{n \rightarrow \infty} \Phi\left(u \wedge g-w_{n} \wedge g\right) \leqq 0$, which implies that $w_{n} \wedge g \rightarrow u \wedge g$ in \mathscr{X} by (ii). If we write

$$
u_{n} \wedge g=w_{n} \wedge g+(u \wedge g) \wedge u_{n}-u \wedge g
$$

then we see that $u_{n} \wedge g \rightarrow u \wedge g$ in \mathscr{X} by using the fact that $v \wedge u_{n} \rightarrow v \wedge u$ in \mathscr{X} for $v \in \mathscr{X}$ because T^{+}is continuous. Thus our theorem is proved.

References

[1] A. Ancona, Continuité des contractions dans les espaces de Dirichlet, Séminaire de Théorie du Potentiel, 1975-76, Paris, no. 2, 1-26.
[2] N. Kenmochi and Y. Mizuta, The gradient of a convex function on a regular functional space and its potential theoretic properties, Hiroshima Math. J. 4 (1974), 743-763.
[3] Y. Mizuta and T. Nagai, Potential theoretic properties of the subdifferential of a convex function, Hiroshima Math. J. 7 (1977), 177-182.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

