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1. Introduction

Consider a solution u of the following Cauchy problem of the parabolic
variational inequality:

0 in * » x ] 0 , Γ[,

u(χ, 0) = uo(x) in Rn.

The support S(t) of the function x-»u(x, t) has been studied by Bensoussan
and Lions [2], Brezis and Friedman [4] and Evans and Knerr [6]. They proved
that

for sufficiently small ί>0, where + denotes the vector sum, £(p)={x| |x|^p},
and c is a positive constant.

Some results which conclude

u(x, t) = 0 for t > (some constant), xeRn,

or

u(x, 0 = 0 for |x| > (some constant), t > 0

are stated in the book by Bensoussan and Lions [3, Chapter 3, § 2.16].
In this paper we shall consider a solution u of the parabolic variational

inequality with Dirichlet boundary condition

in Ω x ] 0 , T [ ,
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u(x, t) = φ(x, t) on Γx]0, T[,

u(x9 0) = uo(x) on Ώ,

where Ω is a bounded domain in Rn with smooth boundary Γ.

We are interested to estimate the size of the set

S = {(x,ί)eQ.x]0, Γ[ | ι ι (x,0 = 0}

by the data/, φ and uo A comparison theorem which will be stated in section 2

is the main tool to prove our results.

Main results of this paper are stated in section 3. Some examples are also

given.

For elliptic variational inequalities, analogous estimates on the support of

the solution has been obtained by Bensoussan, Brezis and Friedman [1], Nagai

[8] and the author [9], [10] under various boundary conditions. It is shown

that, by a formal argument, our results for parabolic variational inequalities

imply the corresponding ones for elliptic variational inequalities.

In section 4 we treat the one phase Stefan problem of one space dimension.

It is known that the Stefan problem can be transformed into a parabolic varia-

tional inequality. However, we cannot apply our result in section 3, directly,

to this variational inequality to estimate the free boundary of the Stefan problem,

because, by the physical meaning, the data have definite signs.

Nevertheless, by using the same idea as in section 3, we can construct a

comparison function to the solution of the variational inequality and give an

estimate on the free boundary.

2. The problem and a comparison theorem

Let Ω be a bounded domain in Rn with smooth boundary Γ, and let T be

a positive number.

We consider a solution u of the following parabolic variational inequality:

(2.1) u^L-Au-f^ = O in Ox]0,Γ[,

u(x9 t) = φ(x9 t) on Γ x ]0, Γ[,

u(x, 0) = uo(x) on Ω.

Let Φ be a solution of the initial-boundary value problem

dΦ-AΦ = 0 in flx]0,Γ[,
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(2.2) Φ(x, 0) = - «0(x) on Ω,

Φ(x,ί)= -Φ(x,i) on Γ x ] 0 , Γ[ .

Then ΰ = u + Φ satisfies the following variational inequality:

(2.3) (ΰ - Φ)(^- - Aΰ - / ) = 0 in Ω x ]0, T[,

ΰ(x, ί) = 0 on Γ x

ΰ(x, 0) = 0 on Ω.

Assuming that

and

ΦeW2>p(Ω x

for some p^2, Charrier and Troianiello [5, Remark 4, p. 120] proved that there
exists a unique solution u of (2.3) and, moreover, the solution is continuous on
Ω x [0, T] if p is large enough.

In the following of this paper, we shall always assume these conditions.
Therefore, there always exists a unique continuous solution u of (2.1) as well as
a solution ύ of (2.3).

We are interested to estimate how the size of the set

S = {(x, ί ) e Ω x ] 0 , T[ | ιφc,0 = 0}

depends on the data/, φ and M0.
The next theorem is a main tool to estimate the solution u of (2.1). However,

since we already proved an analogous comparison theorem for elliptic variational
inequalities in [9, Theorem 2.1, p. 8], the proof is omitted.

THEOREM 2.1. Let u be a solution of (2.1). Suppose that weL2(0, T;
H2(Ω)) satisfies the differential inequalities

SJ^L- Aw^f, w g O in O x ] 0 , T [ ,

w(x, t)^φ(x,t) on Γ x ]0, T[,

w(x, 0) ^ uo(x) on Ω.
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Then we have u^.w a.e. in Ωx ]0, Γ[.

COROLLARY. Let ubea solution o/(2.1). Suppose that w e L2(0, T; H2(Ω))
satisfies the differential inequalities

f^<^-AWj w^o in Ω x ]0, T[,

φ(x, t) £ w(x, t) on Γ x ]0, Γ[,

u o (x) ^ vί>(x, 0) on Ω.

Then we have u^w ax. in Ωx]0, T[.

3. Main results

First, we shall give an estimate of the set S from above.

THEOREM 3.1. // there exist positive constants j> and S such that

f ( x 9 O ^ ί in Ox]0,Γ[,

uo(x) ^ - ^ on Ω,

φ(x9 t) ̂  %t - (ί/ί)) for all xeΓ,0<t< $1%

then we have, for a solution u of (2 1),

u(x, t)<0 for (x, 0 e Ω x ]0, 5/ί[.

In other words, the lower part of the cylinder does not intersect the set S.

PROOF. If we choose a comparison function w as

we have

| i - J r i > = ̂ / , w^O in flx]0,ί/ί[,

w(x, 0) = - δ ^ MO(X) on Ω.

For xeΓ and 0<t<$/% we have, from the assumption,

w(x, t)^φ(x, i).

Applying the corollary to Theorem 2.1 in Ω x ]0, δjy{_, we have

u(x, t) g w(x, ί) < 0 in Ω x ]0,
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Now we are in a position to state the main theorem of this paper.

THEOREM 3.2. Suppose that there exist positive constants y and δ such that

f(x9t)*y in Ωx]0,T[,

uo(x) ^ — δ on Ω.

Assume also that there exists tQs~\δly, T[ such that:

(3.1) There exists a continuously dijferentiable, nondecreasing function c

defined on [0, ί 0] and satisfying

0£c(/)g-i-(y—£-) for all /e[0,/0].

(3.2) There exists a nonnegative constant ε depending on t0 such that

φ(x, t) ^ - εc(t) + -j- (t - ί0) for all te [0, ί 0 ] , xeΓ.
•o

If xoe Ω satisfies

(3.3) dist(x0, Ό ^ ε 1 ' 2 ,

then we have, for a solution u o/(2.1),

Φo, t0) = 0.

PROOF. Let (x0, to)eΩx]0, T[ satisfy the assumptions of the theorem.

Choose a comparison function w as

vφc, 0 = - c(t) \x - xo |2 + -f- (ί - t0)

for x eΩ, 0 < ί < ί 0 . Then we have, from (3.1),

- ' •

By the definition of w, it is obvious that w(x, 0^0-

Again from (3.1), we have

, 0) = - c(0)\x - x0l2 - ί

Let x 6 Γ, 0 < t < t0. We have, from (3.2) and (3.3),
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w(x, t) = - c(t) \x -xo\
2 +-f-(t- t0)

Sεc(t) + (tto)^φ(x,t).

Hence, applying Theorem 2.1 in Ω x ]0, fo[, we obtain

w(x, 0 ^ u(x, t) in Ω x ] 0 , ίo[

By the continuity of u and w, we have

wθo> to) = 0

Before stating some versions of this theorem, we give two examples of the
function c(t).

EXAMPLE 3.1. If there exists to>δjy such that

for xeΓ, 0<t<to, then w(x, to) = 0 for any xeΩ.

Indeed, we may in this case choose c(ί)=0 and ε=0 in Theorem 3.1.

EXAMPLE 3.2. In the case that there exist to>δjy and εo>0 such that for

some p^ί9

(3.4) φ(x, 0 ^ - εot
p + - £ - (* - *o) f o Γ xeΓ9 0<t< tθ9

h

we have u(xθ9 to)=0 if x0 e Ω satisfies the inequality

Indeed, it is sufficient to choose

REMARK 3.1. If φ(x, t) does not depend on ί, then the compatibility
condition yields that φ(x)^ -δ for xeΓ. This is the case in (3.4) that εo=5/ίo

and p=l. Formally speaking, by letting ί0->oo in (3.5) with p = l9 we have

(3.6)
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(3.6) is the same estimate which Bensoussan, Brezis and Friedman [1, Theorem

3.1, p. 307] imposed on the point x 0 in order to conclude w(xo) = 0 for the solu-

tion u of the elliptic variational inequality

- Au + <xu^f, u <: 0,

w(- Δu + αw - /) = 0 in Ω,

u = φ on Γ,

where α is a positive constant.

In the following part of this section, we state some generalizations of Theo-

rem 3.2.

THEOREM 3.3. Suppose that there exist positive constants y and δ such that

/(x, 0 ^ 7 in Ωx]0,Γ[,

uo(x) ^ — δ on Ω.

Assume also that there exists toe~\δjy, Γ[ satisfying the following conditions:

(3.7) There exists a constant α such that

(3.8) There exists a continuously differentiate, nondecreasing function ct

defined on [0, ί 0 ] an^ satisfying

(3.9) There exists a twice continuously dijferentiable function c2 defined on

[0, diam Ω] such that

and

δlt0 g c2(p) £ α.

(3.10) There exists a nonnegative constant ε such that

φ(x, t) ;> - εciit) + c2(diamί2)(ί - ί0) for xeΓ, 0 < t < t0.

Then we have u(x0, to)=O if xoeΩ satisfies

(3.11) dist(x0, Γ J ^ β 1 / 2 .

PROOF. Let (x0, to)eΩx]0, T[ satisfy the assumptions. We choose a

comparison function w as
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w(x, 0 = -c^OIx ~ Xol2 + C2(\x - xo\){t - t0)

in Ωx]0, ίo[»
 a n d compare w with the solution u in Ωx]0, ίo[.

It is obvious that w^O. From (3.7), (3.8) and (3.9), we have

^ - Aw = - ci(0|x - xol2 + c2(|x - xol) + 2nc1(0

- xo|)(ί - ί0) " -[^Ξ^f

^ α + (y - α) = y.

By (3.8) and (3.9), we have

w(x, 0) = - cx(0) \x - x o | 2 - c2Qx - xo\)to

^ - δ.

Let x e Γ. Applying (3.9), (3.11) and (3.10), we have

w(x, 0 = - d ( 0 | x - *ol2 + c2(|x - xo\)(t - ί0)

^ - ct(t)e + c2(diam Ω)(t - t0)

Therefore, we can apply Theorem 2.1 to conclude

M(X, ί)^w(x, 0 in Ω x ] O , ί o [ ,

and by the continuity of u and w, we obtain the assertion.

REMARK 3.2. Theorem 3.2 is the special case of Theorem 3.3 where c2(p)

In [9] and [10], we proved some estimates of the set S when x 0 might be on

the boundary. In this direction, we have the following theorem.

THEOREM 3.4. Suppose that there exist positive constants y and δ such that

f(x,t)^y in flx]0, Γ[,.

uo(x) ^ — δ on Q.

Assume also that there exists (x0, ί o )eΩx]0, Γ[ such that to>δjy and

satisfying the following conditions:

(3.12) There exist a constant α and functions c^t), c2(p) which satisfies (3.7),
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(3.8) and (3.9) in Theorem 3.2, respectively.

(3.13) There exist nonnegative constants ε and r such that

φ(x, i) ̂  - εc^t) + c2(diam Ω){t - t0)

on {xeΓ| |x - xo | ^ dist(x0, Γ) + r} x ]0, ί o[,

<Kx, 0 = 0

on {x e ΓI |x - x o | < dist (x0, Γ) 4- r} x ]0, ί o[ -

If

s = r + dist(x0, Γ) - ε1 '2

is nonnegative, then we have

w(x, t0) = 0

for all xeΩ such that |x — x o | ^ s .

PROOF. Define the comparison function w by

- xol - s)2 + c2(\x - xo\)(t -

,0 = if |x - x o | ̂  s, 0 < t < t0,

{c2(s)(t-t0) if |x-x o | <s, 0< t < t0,

and compare it with u i n Ω x ] 0 , ί o[.

First, it is obvious by the definition that w^O in Ωx]0, ί o[.

In the set {xeΩ\\x-xo\^s}x]0, ί o[, we have from (3.12)

^- - Aw = - c[(t)(\x - xol - s)2 + c2{\x - xol) + 2 C l (0

^ α + (y - α) = y.

On the other hand, in the region {x e Ω | |x —xo | <s} x ]0, ίo[, we have

-—-- Δw = c2{s) S α = y.

Hence we obtain
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^ - - Aw Sf in Ω x ]0, ί o [ .

It is easy to see that

w(x, 0) g - δ on Ω

by the definition of w and (3.12).

Finally, let xeΓ and 0 < f < ί0. If | x - x01 < s, then we have from (3.13)

w(x, t) =

If s g | x — x o | < r + dist(xo, Γ), then we have

w(x, 0 = - CxίOdx - *ol - s)2 + c2(|x - xo\)(t - t0)

In the case that r + dist(x0, Γ)^\x — xo |, we have using (3.13)

w(x, 0 = - cx(t)(\x - x o | - s)2 + c2(\x - xo\)(t - t0)

^ - cx(t)(r + dist(x0, Γ) - s)2 + c2(|x - x o | )(ί - ί0)

- h)

Combining these estimates, we obtain

w(x, 0 g φ(x, t) on Γ x ]0, ίo[

Hence we can apply Theorem 2.1 to u and w, and the assertion is obtained.

4. Estimates on the free boundary arising in a Stefan problem

Let us consider the following one phase Stefan problem of one space dimen-

sion

τΓ~W = 0 0<x<y(t), 0<tίT,

v(0, 0 =

(4.1)

t>(x, 0) = t)0(x) 0 < x < £,

Kt) = - vx(y(t), t) 0<t<T,

X0) = £,
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where T>0, £>0 are given constants, g(t) and vo(x) are given functions, and
the unknowns are v(x, t) and y(t).

Under suitable assumptions, it is known that the solution of the Stefan
problem (4.1) exists and the free boundary x = y(t) is monotone increasing in t
(see, for instance, [11, Chap. 4, § 3, pp. 66-74]).

It is also known that the Stefan problem (4.1) can be represented as a vari-

ational inequality. Let L>y(T) be a constant and define

6 = [0,L] x [0, Γ] ,

Extend the solution v to Q as

( υ(x, t) if (x, t)eD,
S(x, 0 = 1

[ 0 if (x, t)φD,

and define the new unknown θ(x, t) by

(4.2) 0(x, 0 = Γ K*> s)ds.
Jo

It is shown in Lions [7, Chap. II, § 7, pp. 70-74] that 0(x, 0 satisfies the
following parabolic variational inequality:

(4.3) θ ( ^ - ^ - θ o ( x ή = o in Q,

θ(x, 0) = 0, 0(L, 0 = 0,

0(0, 0 = Γ g(s)ds.
Jo

Here we have set

ί υo(x) if 0<x<£,

θo(x) =

[ - 1 if £ ̂  x ^ L.

We are interested to estimate the size of the set

as has been studied in section 3.



348 Naoki YAMADA

By the physical meaning of the Stefan problem, it is required that

and uo(x)^0.

The variational inequality (4.3) does not satisfy the assumptions /(x, t)^y

and uo(x)^—<5 f°Γ some positive constants y and δ in Theorems 3.2-3.4. But

we can construct a comparison function to the solution of (4.3) and have the

following estimate of the set S.

THEOREM 4.1. Suppose that there exist positive constants μ and v such that

g(t)^μ Ό<t<T9

vo(x) ^ v 0 < x < £.

If a point (x0, to)eQ satisfies the inequalities

(4.4) £2 ^ 2μt0,

(4.5) x 0 ^ i + V2ίo(v + 1),

then we have

v(x9 0 = 0 for (x, 0 e [x0, L] x [0, f 0 ] .

PROOF. Let (x0, ί0) satisfy the assumptions. Define a comparison func-

tion w(x, 0 by

w(x, t) =

0

0 < x < xo,t < t0,

XQ = Xi t < *o>

and compare it with θ in ]0, L[ x ]0, ί o[
By easy calculation and (4.5), we have

δw
δί

δ2w > j

,0

f
I

~to~

~h l f x

if £ < x < x0,

if x0 ^ Λ: ,

w(L, ί) = 0 = θ(L,t).

The assumption (4.4) leads us to
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w(0, 0 = -£e_ ^ μt z f' g(s)ds.

zt0 jo

Therefore we have

w(x, t)^θ(x,t) in ]0, L[ x ]0, ί o[.

The continuity of the solution θ(x, t) and the definition of w(x, t) imply that

0(x, 0 = 0 in [xOf L] x [0, ί0]

Hence, by the definition (4.2) of 0(x, t), we obtain

v(x, 0 = 0 in [x0, L] x [0, ί 0 ] .
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