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Introduction

The purpose of this paper is to show that the McKean's conjecture in [2] is

valid for the set of all equivalence classes of irreducible unitary representations of

class one.

§ 1. Spherical functions

Let JGΓ be a separable Hubert space over R (or C). In this paper, we fix,

once for all, an orthonomal basis {ξj- jeN} of H, where N is the set of all

positive integers. Let E be the space algebraically spanned by the basis {ξf,

j eN}. We denote by Em the space spanned by the set {ξj 9 j = !9...9m}. Then

we have E=\j™=iEm. Since a countable inductive limit of nuclear spaces is

nuclear, E is a nuclear space. Let G be the group of all isometrics g of H such

that gξj = ξj except finitely many j in N. We denote by Gm the group of all

elements g in G such that gξj = ξj (j = m + l9 m + 2,...). Then we have G =

^m=ι Gm. By the inductive limit topology G is a topological group. For a g

in Gm, putting gξj = Σ?=ι Qijζi 0 = !>•••> ™)> we can identify g with the matrix
(gtj) in 0(m) (or l/(m)).

We denote by E* the dual space of E, then we have a triple

E c H G E*.

By the Bochner-Minlos theorem, there exists a probability measure μ on E* such

that for any ξ in E we have

(1.1) e-imi 2/2 = ( ei<x^>dμ(x).
JE*

We use the same notation for the dual action of g on E*. Clearly μ is G-

invariant. For any g in G and /in L2(E*, μ) we define

(π*G/)/)(x) =/(όf1x) for a.e. x in E*.

Then it is easy to see that π* is a unitary representation of G on L2(E*, μ). For
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any finite dimensional unitary representation π of Gm let dn be the infinitesimal
representation of π. Then it is well known that dπ(Cm} is a symmetric operator,
where Cm denote the Casimir operator of Gm (for the definition of the Casimir
operator see § 3 and § 5).

Now we put K = {geG 9 gξί = ξί}. Let (π, §) be an irreducible unitary
representation of G on §. We call π a class one representation (with respect to
K) if the following (A.I) and (A.2) hold.

(A.I) The space of all π(K)-fixed vectors is of one dimension.
(A.2) Let v0 be a π(K)-fixed vector. Then v0 is π(Gm)-finite (meN) and

limm_>00 dπ(Cm)ι;o is convergent in §.

Let (π, §) be a class one repersentation of G. We pick a π(JC)-fixed unit
vector v0 and define a function φπ on G by φπ(g) = (vθ9 n(g)v0) (g e G). Then by
(A.I) φπ is independent of the choice of the unit vector t?0. φπ is called the spheri-
cal function on G.

PROPOSITION 1. Let (π, §) and (π;, §') be c/αss one representations. Then
π is equivalent to π' if and only if φπ = φπ,.

PROOF. Assume that π is equivalent to π', then we have an isometry U of §
onto §' such that π'(g)U=Uπ(g) (geG). As U maps the space of π(K)-fixed
vectors onto the space of π'(X)-fixed vectors, by (A.I) we have φπ = φπ,.

Conversely assume that φπ = φπ,. We define U as follows;

If we put u= Σi aiπ(9i)vo and w = Σj bjπ(hj)vθ9 then we have

= («, w) .

It follows that L7 is well-defined and preserves the inner product. From the fact
that (π, §) and (πr, $') are irreducible, 17 can be extended to an isometry of §
onto §', so that π is equivalent to π'.

§ 2. Casimir operator

Let (π, §) be a class one representation of G. Then by (A.I) there exists a
π(K)-fixed unit vector v0. We denote by §m the smallest π(Gw)-invariant subspace
of § which contains υ0. Then by (A.2) §m is finite dimensional. Clearly dπ(Cm)
is self-adjoint on §m. Let D^o denote the space of all elements v in § such that
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limm_*oo dπ(Cm)Pmί; is convergent where Pm is the orthogonal projection of § onto
§m. For any υ in Ddπm we put

dπ(Qv = Urn,,...* dπ(Cm)Pmv.

Then it is easy to see that dπ(C) defines an unbounded linear operator with domain
Aι«(C) It follows from (A.2) that v0 is contained in Ddπ(C). Since π is irreducible,
Afπ(C) is dense in §. For any v and w in Ddπ(C) we have

(Jπ(C)t , w) = lim^oo (dπ(CJPmι;, w) = lim^ (dπ(C JPMι;, Pmw)

Pmw) = (t>, Jπ(C)w).

This implies that dπ(C) c dπ(C)* where Jπ(C)* denotes the adjoint operator of
dπ(C). Now suppose that w be any element of the domian of dπ(C)*. Then
there exists a u in § such that

(dπ(C)v, w) = (ι;, M) for all v in Dd7t(cγ

For any m in ΛΓ and for any v in §m we have

(Jπ(C)t , w) = (dπCCJP^, w) = (ι;, ί/π(Cm)Pmw),

This shows that dπ(Cm)Pmw = Pmu (m e N). Thus we get

lim^oo dπ(CJPmw = lim,^^^ Pmw = w.

This implies that w e Ddπ(C). It follows that dπ(C) is self-adjoint.

PROPOSITION 2. π(g)dπ(C) = dπ(C)π(g) (geG).

PROOF. Let υ be any vector in Ddπ(cr Then by (A.2) limm_>00 dπ(Cm)Pmv is
convergent. There exists an m0 such that # e Gmo. We remark that g eGm for
any m such that m^m0. Thus we have

π(g)dπ(Qv = π(g)limm^ dn(Cm)Pmv = lim^oo dπ(Cm)π(g)Pmv.

Since §m is π(Gm)-invariant we have

π(g)dπ(C)v = lim^ dπ(CJPm(π(g)v) .

This implies that

dπ(C) = A*π(o> π(g)dπ(C) = dπ(Qπ(g) (g e G).

§3. Wiener-It6 decomposition (real case)

In § 3 and § 4 we assume that JE and H are real vector spaces. For each
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non-negative integer k we consider the Hermite polynomial

It satisfies the following equations

(3.1) H'ί(t) - 2tH'k(t) + 2kHk(t) = 0,

(3.2) H'k(t) = 2kHk-1(i),

(3.3) H^t, + ..- + Cltύ = k\ Σj k l + ...+k|=kΠy(fe/.)-1(

where cf H ----- h c? = 1.

For any non-negative integer n we put

»„ = {(Π?=ι ^!2")-1/2Π?-ι #„,«*, ί^/21/2); Σ?=ι »; = Λ, n,. £ 0} .

Then it is known that VJ£=0 ®« is an orthonomal basis of L2(E*, μ). We denote
by 2^n the closed subspace spanned by Sπ. Then we have

L2(E*, μ) = Σ£=o Θ^M (Wiener-Itό decomposition), (see [1]).

From (3.3) we see that 3?n is π*(G)-in variant so that we have the subrepresenta-
tion πn of G on Jfn. For any i in IV we put

Φf (x) = (n!2»)-1/2//n«x, O/2172) (̂  6 #*)

The following Lemma 1~ Lemma 4 are well known, but for the sake of com-
pleteness, we give a brief outline of the proof of them.

LEMMA 1. Φ? is a cyclic vector ofπn.

PROOF. Let K be a space spanned by all elements of the form πn(g)Φϊ (g e
G). Pick any w in F1 and let

w = Σ., +...-. cβl i...ΓΊj #,/<*, W1/2)
Fix any m in ΛΓ and any non-zero vector (tt,..., ίm) in Rm and put

«. = ( ί2+...+ ί2 )-l/2/. (/=l , . . . , m ) .

Then there exists a # in Gm such that gξj = Σ™=ι αi^ί βy (3-3) we have

(πΠ(5)Φϊ)(x) = n!

It follows that

0 = (w, πn

Hence we have ΣΠl +...+„„,=„ cnι ..... Bm(ί1)'" (ίJ'tm = 0
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It follows that all coefficients of w are equal to zero. This implies that V is
dense in 3F n.

LEMMA 2. Any πn(G)-fixed vector in 3?n is equal to zero ifn^Q.

PROOF. We assume that π^O. For any j in IV, there exists a g in G such
that πn(g)Φ] = Φlί. Let v be any πw(G)-fixed vector in jj?n. Then we have

(ι?, ΦJ) = (πΠ(0K πn(0)Φ3) = (ι>, ΦJ).

This implies that (u, Φϊ) = 0. Since v is a πn(G)-fixed vector, from Lemma 1 we
conclude that v = 0.

LEMMA 3. For any πn(K)-fixed vector v in <#%, there exists a constant c
such that v = cΦΊ.

PROOF. Let υ be a πn(£)-fixed vector, then v is written as follows

V = Σnί+ ..=*Cnί....ΠjHnJ«X, ίy>/21/2) = /O + Σf-l/lΦΪ,

where /, (/ = 0,..., n) are independent of <x, ξ^. As ΦJ (/=!,..., n) are πn(K)~
fixed vectors, for any /c in K, we have

/o + ΣF-iΛΦί = « = πB(fe)ι; = πΛ(fc)/0 + Σf=ι W/cXQΦΪ

This implies that /f (/ = 0,..., n) are πn(K)-fixed vectors. By Lemma 2, we have
fι = Q if /τ^n. Thus we obtain v = cΦϊ where c is a constant.

LEMMA 4. (πn, «^n) is an irreducible unitary representation of G.

PROOF. Let W be a πn(G)-invariant closed subspace in & „, and let P^ be
the orthogonal projection of 3?n onto W. Since W71 is again πn(G)-invariant
for any g in G and ι> in jfn, we have

(3.4) πn(g)Pwυ = Pwπn(g)v.

It follows that for any k in K

By Lemma 3, there exists a constant c such that PwΦ
1{ = cΦt{. From Lemma 1

and (3.4) we have Pw = cl where / is the identity operator on 3^n. Thus we
conclude that W={0} or W=&n.

Let gm be the Lie algebra of Gm, and let exp be the exponential mapping of
Qm to Gm as usual. We denote by Etj the mxm matrix with 1 in the i, jth posi-
tion and zeros elsewhere. And we put Xij = Eij — Eji. Then gm is canonically
identified with the linear Lie algebra generated by {^Γ/7 ; lgί<./:gra}. We
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define a bilinear form B: gm x gm-»/ϊ by (X, Y) — >(m — 2) trXY. Then 5 is non-
degenerate. We denote by Cm the element of the universal enveloping algebra
of gm by the formula

(3.5) Cm = -cmΣι*t<jzmXij> c-

Cm is called the Casimir operator associated to £.

PROPOSITION 3. (πn, f̂ „) /s a class one representation of G.

PROOF. From Lemma 1 ~ Lemma 4, we have only to show that Φ? satisfies

(A.2). It is clear that Φ\ is πn(Gm)-finite (meΛΓ) Put */ = <*»£/> 0' e ̂ O
Then any element of the space spanned by πΛ(Gm)Φϊ can be regarded as a function
only of x 15..., xm. Using this identification we get

As Φ\ is a function only of Xj., we have

(3.6) AiΛCJΦϊCt) = -

By the strong law of large numbers we have

(3.7) limm^x m-1 Σ7-ι <^> £;>2 = 1 a.e. x in E*.

Since Φ? does not depend on m, from (3.6) and (3.7) it follows that

Using the formulas (3.1) and (3.2) we have

lim,^ dπn(Cm)Φl =

Finally we calculate the spherical function φπn.

PROPOSITION 4. φπn(g) = <ξj, gξ^" (geG).

PROOF. Let g e G. Then there exists an m in ΛΓ such that 0 e Gm. We put

0£ι = Σ7=ι 9jι£j Using (3.3) we have

φπn(g) = (Φϊ, π
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§ 4. McKean's conjecture (real case)

We denote by A the group of all elements g in G2 such that det g = 1. Then
we have "the Cartan decomposition"; G = KAK. We can identify A with
SO(2), and we denote by aθ the element of A defined by

(4.1) aθξl = cos θξl - sin Θξ2, aθξ2 = sin θξ^ + cos Θξ2.

Let (π, §) be a class one representation of G, and let v0 be a π(K)-fixed unit
vector. As the spherical function φπ is K-biinvariant, φπ can be considered as
a function on A. We define the function Fπ on A by Fπ(θ) = φπ(aθ) (aθeA).
From Proposition 2 we can use the Schur's Lemma, and conclude that dπ(C) is
a scalar operator; dπ(C) = χπ(C)I where χπ(C) is a constant and / is the identity
operator on §.

THEOREM 1. Let (π, §) be α class one representation of G with respect to

K. Then 2χπ(C) is a non-negative integer, and (π, §) is equivalent to (πn, «#*„)
n = 2χπ(C).

PROOF. By (A.2) there exists a π(K)-fixed unit vector t>0 such that lim^oo

ί/π(Cm)ι;0 is convergent. From the above remark we have

(4.2) Xπ(QFπ(θ) = (ι;0, π(flβ)rfπ(C)ι;o) .

On the other hand we have (t;0, π(αβ)ί/π(C)ι;0) = limm_00 (t;0, π(aθ)dπ(Cm)vQ).
Using the formula (3.5) and the fact that exp tXtj e K (i = 2,..., m), we get

(4.3) (ι;0, π(α

The following formulas are easily checked.

(4.4) M(aer
lX2j = cos ΘX2j - sin ΘX.j (j = 3,..., m),

(4.5) [Ad^Γ1 ,̂ X27] = sinθX1 2 (7 =3,..., m).

Using (4.4) and (4.5) we have

(4.6) X2

υ = cosec2 θ(ΔA(A9γιχ2jγ

- cot 0 cosec θ{2(M(aθ)-ίX2j - sin ΘX12} + cot2 ΘX2j

(j = 3,...,

We note that

(4.7) Σj=2(v

= (VQ, π
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Λ2
Clearly the first term is -̂  Fπ(θ). Substituting (4.6) into the second term of (4.7),

«C7Z

and after some calculations we obtain

(4.8) (»o, π(a,)dπ(C)υ0) = -limm^ cm-Fπ(θ) + (m-2) cot θ-Fπ(

Thus by (4.2) and (4.8) we have

χπ(C)Fπ(θ) = - 2-ι cot θ ̂ 2F«(&)

Since Fπ is C°° and Fπ(0) = l, we conclude that 2χπ(C) is a non-negative integer
and that if we put 2χπ(C) = n we have

Fπ(θ) = cos" θ.

On the other hand, from Proposition 4, putting g = k'aθk we can compute

the spherical function of the representation (ππ, ̂ n) as follows

Thus we have φπ — φπn. It follows from Proposition 1 that (π, §) is equivalent

to (πB, JTB).

§ 5. Wiener-Ito decomposition (complex case)

In § 5 and § 6 we assume that E and H are complex vector spaces. For any
non-negative integers p and q, we consider the complex Hermite polynomial;

HP,q(t, ϊ) = (-

It satisfies the following equations

/, ί) + qHf<q(t, f) = 0,

**('• O-'-gf^k ° +PHP ^' f) =°

(5-0

(5.2) --#,.,(/, 0 = ̂ -ι.,(ί, 0, " ίΓ,.β(Λ 0 = ?fl,.,-ι«, 0

(5.3) If ί = Σ7=ι«Λ with |βιl2 + + |βm |2=l,then

Hpιί(f, 0 = PWΣ τijtoM-W

where X is taken over all non-negative integers py, q^ (j = 1,..., m) with
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We put

Pi + P2 + ••• = p, 4ι + <?2 + ' = 4, P, , <?/^0

Then it is known that ^J^o(^Jp+q=n^p>q) is an orthonomal basis of L2(E*, μ),
(see [1]). We denote by tf PΛ the closed subspace spanned by 23p>β. Then we
have

L2(#*, μ) = Σΐ=o® ΣP+q=n ® 3fP,q (Wiener-Itό decomposition).

From (5.3) we see that 3?p>q is π*(G)-in variant, so that we have the subrepresen-

tation πpi(} of G on 3? PΛ. For any i in N we put

Φf>«(z, z) = (p\ql

The following Lemma 5~ Lemma 8 can be proved similarly to the real case.

LEMMA 5. Φ%>q is a cyclic vector of j^p>q.

LEMMA 6. Any πpfq(G)-fixed vector in J^ptq is equal to zero if(p, 4)^(0, 0).

LEMMA 7. For any πpfq(K)-fixed vector v in Jί?p)q, there exists a constant c
such that v = cΦp

l>
q.

LEMMA 8. (πp>ί, ^Pίq) is an irreducible unitary representation of G.

Let gw be the Lie algebra of Gm, and let Ey be the m x m matrix defined in
§3. We put Xij = Eij-Eji, Yίj = i(Eίj + Ejί) for i<j and Yu = iEtt. Then gm is
canonically identified with the linear Lie algebra generated by [Xίj9 Yίj9 Ύu\
lg i<j^m}. We define a bilinear form B: gmxgm->C by (X, 7) — >2mtrXY.
Then B is non-degenerate, so we define the Casimir operator Cm associated to B

by the formula;

(5.4) Cm = -cm Σι*t<jέm(Xij + Yij) ~ 2cm ΣΓ=ι y?,, cm = l/4m.

PROPOSITION 5. (πpsίf, «^p,g) is « c/αss one representation of G.

PROOF. From Lemma 5~ Lemma 8, we have only to show that Φf β satis-
fies (A.2). It is clear that Φ^q is π^GJ-finite (me TV). Let zf = <z, ξ4> (ieΛΓ,

z e JB*). Then any element of the space spanned by πp>g(Gm)ΦJ g can be regarded
as a function only of zl5..., zm, z l5..., zm. Using this identification we get

(5.5) *,,
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(5.6) dnp

(5.7)

As Φ? »β is a function only of zί and z1? using (5.5), (5.6) and (5.7), we have

(5.8) (̂

By the strong law of large numbers we have

(5.9) limm_ m-1 Σ?=ι \<z, £;>l2 = 1 a.e. z in E*.

Since Φ?»β does not depend on m, it follows from (5.8) and (5.9) that

Using the formula (5.2) we obtain

PROPOSITION 6. Φπp>q(g) = <ξl9 gξ^ξ^ gξ^ (geG).

PROOF. Let g e G. Then we have an m in TV such that g e Gm. We put

= Σ7=ι ^ji^ Using the formula (5.3), we have

-, gξj))

where X is the same as in (5.3).

§ 6. McKean's conjecture (complex case)

We put T=G1. And we denote by aθ the element of G2 defined by (4.1).
Let A be the group of all elements aθ. Then we have "the Cartan decomposi-
tion"; G = KTAK. We note that kt = tk (teT9 keK). We denote by tφ the
element of T defined by tφξί = eί«>ξ1. Then Tis isomorphic to 17(1), so that the
character group T of T is isomorphic to Z where Z is the additive group of all
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integers. We denote by σ the canonical isomorphism of f to Z defined by

σ(ή) = I where η e f and η(tφ) = eίl(f> (tφe T).
Let (π, §) be a class one representation of G and let v0 be a π(K)-fixed unit

vector. For any tφ in T and /c in K, it follows that

Thus π(tφ)υQ is a π(X)-fixed vector. By (A.I) there exists a constant //π(ί^) such
that n(tφ)υQ = ηπ(tφ)υ0. Then we have

Thus ηn is a character of Γ.
From Proposition 2 dπ(C) is a scalar operator, so that we put dπ(C) =

THEOREM 2. Let (π, §) foe α c/αss one representation of G with respect to
K. Then 2χπ(C) is a non-negative integer, and if \σ(ηπ)\^2χπ(C) (π, §) is
equivalent to (πp>q, 3t?pt^ where p + q = 2χπ(C) and p-q = σ(χπ).

PROOF. By (A.2) there exists a π(K)-fixed unit vector v0 such that
limm_)>00 dπ(Cm)y0 is convergent. As in the real case, we denote by Fπ the func-
tion on A such that Fπ(Θ) = φπ(aθ). Since φπ is K-biinvariant, putting g = k'tφaθk,
we have

ΦJ(0) = e-»*FJiθ) where l = σ(ηπ).

Now we note that

(6.1) χπ(QFπ(θ) = (v0, π(ae)dπ(C)Ό0) = lim,^^ (ι;0, n(aθ)dn(CjΌ0) .

Using the fact that exp tXij9 exp ttj and exp tYit are in K if i^2, we have

(6.2) (ϋ0, π(αθ

As in the real case, the first term of (6.2) is

(6-3) - cm\^-2 Fπ(θ) + (m - 2) cot θ -^ Fπ(θ)}

It is easy to get the fallowings

Adfo)-^ = cos ΘY2J - sin θy^ 0 = 3, 4,...),

[AdCα,)- ,̂, yay] = sin ΘX12 0 = 3, 4,...) .

Then we have
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(6.4) Ylj = cot2 ΰY%j + cot ΘX12 - 2 cot 0 cosec 0 Ad^)-1 Y2JY2j

+ cosec2 0(Ad(αβ)-172J)
2 0 = 3, 4,...).

We substitute (6.4) into the second term of (6.2), and after some calculations we

get

(6.5) — cw{(ι?0, π(aθ)dπ(Yί2)
2v0) + (m — 2) cot Θ(v0, π(aθ)dπ(X\2)t>0)}

To calculate the first term of (6.5), we use the following formula;

Aά(aθ)~1Yίί = cos20711 + cos0sin07 1 2 + sin20722.

Then we have

72

2 = sec2 0 cosec2 0{(Ad(αθ)-1711)
2 + cos4 07?! + sin407i2

- cos20(Ad(αβ)-1711711 + 7

-sin20(Ad(αθ)-1711722+ 722

+ sin20cos20(711722+ 7227n)}

Since exp t Yί ί e T (t e K), we have

where / = σ(ηπ). It follows from these equations that the first term of (6.5) is

2 cot 20 -§U? π(0) - I2 tan2 0Fπ(θ) .
αt7

Thus the second term of (6.2) becomes

(6.6) - cm J2 cot 20 -*- Fπ(0) - /2 tan2 0Fπ(0) + (m - 2) cot 0 ± Fπ(0)} .

It is easy to see that the third term of (6.2) is

(6.7) 2cm/2Fπ(0).

Finally, substituting (6.3), (6.6) and (6.7) in (6.1), we obtain

χπ(C)Fπ(0) = - 2

Since Fπ is C°° and Fπ(0) = l, we conclude that 2χπ(C) is a non-negative integer.
Putting 2χπ(C) = n, we have Fπ(0) = cos"0. Thus we get φπ(g) = e~ilφ cos" 0
where g = k'tφaθk.

If |σ(f7π)|:g2χπ(C), then there exist non-negative integers p and g such that
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= n and p — q = l. From Proposition 6, putting g = k'tφaθk, we can compute

the spherical function of representation (πptq, 3ί?p>q) as follows;

Φπp,q(g) = <ίι, 0ίι>'<£ι, dξι>q = *-'<*-«>* cos*+«θ.

Thus we have φπ = φπpιg. From Proposition 1 we see that (π, §) is equivalent to

(*P,v *pά
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