On a certain class of irreducible unitary representations of the infinite dimensional rotation group I

Dedicated to Professor Y. Matsushima for his 60th birthday

Hiroshi MATSUSHIMA, Kiyosato OKAMOTO and Takatoshi SAKURAI (Received September 12, 1980)

Introduction

The purpose of this paper is to show that the McKean's conjecture in [2] is valid for the set of all equivalence classes of irreducible unitary representations of class one.

§1. Spherical functions

Let **H** be a separable Hilbert space over **R** (or **C**). In this paper, we fix, once for all, an orthonomal basis $\{\xi_j; j \in N\}$ of **H**, where **N** is the set of all positive integers. Let **E** be the space algebraically spanned by the basis $\{\xi_j; j \in N\}$. We denote by E_m the space spanned by the set $\{\xi_j; j=1,...,m\}$. Then we have $E = \bigcup_{m=1}^{\infty} E_m$. Since a countable inductive limit of nuclear spaces is nuclear, **E** is a nuclear space. Let G be the group of all isometries g of **H** such that $g\xi_j = \xi_j$ except finitely many j in **N**. We denote by G_m the group of all elements g in G such that $g\xi_j = \xi_j (j=m+1, m+2,...)$. Then we have G = $\bigcup_{m=1}^{\infty} G_m$. By the inductive limit topology G is a topological group. For a g in G_m , putting $g\xi_j = \sum_{i=1}^{m} g_{ij}\xi_i (j=1,...,m)$, we can identify g with the matrix (g_{ij}) in O(m) (or U(m)).

We denote by E^* the dual space of E, then we have a triple

$$\boldsymbol{E} \subset \boldsymbol{H} \subset \boldsymbol{E^*}.$$

By the Bochner-Minlos theorem, there exists a probability measure μ on E^* such that for any ξ in E we have

(1.1)
$$e^{-\|\xi\|^2/2} = \int_{E^*} e^{i\langle x,\xi\rangle} d\mu(x).$$

We use the same notation for the dual action of g on E^* . Clearly μ is G-invariant. For any g in G and f in $L^2(E^*, \mu)$ we define

$$(\pi_*(g)f)(x) = f(g^{-1}x)$$
 for a.e. x in E^* .

Then it is easy to see that π_* is a unitary representation of G on $L^2(E^*, \mu)$. For

any finite dimensional unitary representation π of G_m let $d\pi$ be the infinitesimal representation of π . Then it is well known that $d\pi(C_m)$ is a symmetric operator, where C_m denote the Casimir operator of G_m (for the definition of the Casimir operator see § 3 and § 5).

Now we put $K = \{g \in G; g\xi_1 = \xi_1\}$. Let (π, \mathfrak{H}) be an irreducible unitary representation of G on \mathfrak{H} . We call π a class one representation (with respect to K) if the following (A.1) and (A.2) hold.

(A.1) The space of all $\pi(K)$ -fixed vectors is of one dimension.

(A.2) Let v_0 be a $\pi(K)$ -fixed vector. Then v_0 is $\pi(G_m)$ -finite $(m \in \mathbb{N})$ and $\lim_{m\to\infty} d\pi(C_m)v_0$ is convergent in \mathfrak{H} .

Let (π, \mathfrak{H}) be a class one repersentation of G. We pick a $\pi(K)$ -fixed unit vector v_0 and define a function ϕ_{π} on G by $\phi_{\pi}(g) = (v_0, \pi(g)v_0)$ $(g \in G)$. Then by (A.1) ϕ_{π} is independent of the choice of the unit vector v_0 . ϕ_{π} is called the spherical function on G.

PROPOSITION 1. Let (π, \mathfrak{H}) and (π', \mathfrak{H}') be class one representations. Then π is equivalent to π' if and only if $\phi_{\pi} = \phi_{\pi'}$.

PROOF. Assume that π is equivalent to π' , then we have an isometry U of \mathfrak{H} onto \mathfrak{H}' such that $\pi'(g)U = U\pi(g)$ $(g \in G)$. As U maps the space of $\pi(K)$ -fixed vectors onto the space of $\pi'(K)$ -fixed vectors, by (A.1) we have $\phi_{\pi} = \phi_{\pi'}$.

Conversely assume that $\phi_{\pi} = \phi_{\pi'}$. We define U as follows;

$$U(\sum_{i} c_i \pi(g_i) v_0) = \sum_{i} c_i \pi'(g_i) v'_0.$$

If we put $v = \sum_i a_i \pi(g_i) v_0$ and $w = \sum_i b_i \pi(h_i) v_0$, then we have

$$(Uv, Uw) = (\sum_{i} a_{i}\pi'(g_{i})v'_{0}, \sum_{j} b_{j}\pi'(h_{j})v'_{0})$$
$$= \sum_{i,j} a_{i}\overline{b}_{j}\phi_{\pi'}(g_{i}^{-1}h_{j}) = \sum_{i,j} a_{i}\overline{b}_{j}\phi_{\pi}(g_{i}^{-1}h_{j})$$
$$= (v, w).$$

It follows that U is well-defined and preserves the inner product. From the fact that (π, \mathfrak{H}) and (π', \mathfrak{H}') are irreducible, U can be extended to an isometry of \mathfrak{H} onto \mathfrak{H}' , so that π is equivalent to π' .

§2. Casimir operator

Let (π, \mathfrak{H}) be a class one representation of G. Then by (A.1) there exists a $\pi(K)$ -fixed unit vector v_0 . We denote by \mathfrak{H}_m the smallest $\pi(G_m)$ -invariant subspace of \mathfrak{H} which contains v_0 . Then by (A.2) \mathfrak{H}_m is finite dimensional. Clearly $d\pi(C_m)$ is self-adjoint on \mathfrak{H}_m . Let $D_{d\pi(C)}$ denote the space of all elements v in \mathfrak{H} such that

 $\lim_{m\to\infty} d\pi(C_m)P_m v$ is convergent where P_m is the orthogonal projection of \mathfrak{H} onto \mathfrak{H}_m . For any v in $D_{d\pi(C)}$ we put

$$d\pi(C)v = \lim_{m \to \infty} d\pi(C_m)P_mv.$$

Then it is easy to see that $d\pi(C)$ defines an unbounded linear operator with domain $D_{d\pi(C)}$. It follows from (A.2) that v_0 is contained in $D_{d\pi(C)}$. Since π is irreducible, $D_{d\pi(C)}$ is dense in \mathfrak{H} . For any v and w in $D_{d\pi(C)}$ we have

$$(d\pi(C)v, w) = \lim_{m \to \infty} (d\pi(C_m)P_m v, w) = \lim_{m \to \infty} (d\pi(C_m)P_m v, P_m w)$$
$$= \lim_{m \to \infty} (P_m v, d\pi(C_m)P_m w) = (v, d\pi(C)w).$$

This implies that $d\pi(C) \subset d\pi(C)^*$ where $d\pi(C)^*$ denotes the adjoint operator of $d\pi(C)$. Now suppose that w be any element of the domian of $d\pi(C)^*$. Then there exists a u in \mathfrak{H} such that

$$(d\pi(C)v, w) = (v, u)$$
 for all v in $D_{d\pi(C)}$.

For any m in N and for any v in \mathfrak{H}_m we have

$$(d\pi(C)v, w) = (d\pi(C_m)P_m v, w) = (v, d\pi(C_m)P_m w),$$

(v, u) = (v, P_m u).

This shows that $d\pi(C_m)P_mw = P_mu$ ($m \in N$). Thus we get

$$\lim_{m\to\infty} d\pi(C_m) P_m w = \lim_{m\to\infty} P_m u = u$$

This implies that $w \in D_{d\pi(C)}$. It follows that $d\pi(C)$ is self-adjoint.

PROPOSITION 2. $\pi(g)d\pi(C) = d\pi(C)\pi(g) \quad (g \in G).$

PROOF. Let v be any vector in $D_{d\pi(C)}$. Then by (A.2) $\lim_{m\to\infty} d\pi(C_m)P_m v$ is convergent. There exists an m_0 such that $g \in G_{m_0}$. We remark that $g \in G_m$ for any m such that $m \ge m_0$. Thus we have

$$\pi(g)d\pi(C)v = \pi(g)\lim_{m\to\infty} d\pi(C_m)P_mv = \lim_{m\to\infty} d\pi(C_m)\pi(g)P_mv.$$

Since \mathfrak{H}_m is $\pi(G_m)$ -invariant we have

$$\pi(g)d\pi(C)v = \lim_{m\to\infty} d\pi(C_m)P_m(\pi(g)v).$$

This implies that

$$\pi(g)D_{d\pi(C)} = D_{d\pi(C)}, \quad \pi(g)d\pi(C) = d\pi(C)\pi(g) \qquad (g \in G).$$

§3. Wiener-Itô decomposition (real case)

In §3 and §4 we assume that E and H are real vector spaces. For each

non-negative integer k we consider the Hermite polynomial;

$$H_k(t) = (-1)^k e^{t^2} \frac{d^k}{dt^k} e^{-t^2} \qquad (t \in \mathbf{R}).$$

It satisfies the following equations;

(3.1) $H_k''(t) - 2tH_k'(t) + 2kH_k(t) = 0,$

(3.2) $H'_{k}(t) = 2kH_{k-1}(t),$

(3.3) $H_k(c_1t_1 + \dots + c_it_i) = k! \sum_{k_1 + \dots + k_i = k} \prod_j (k_j!)^{-1} (c_j)^{k_j} H_{k_j}(t_j),$

where $c_1^2 + \dots + c_i^2 = 1$.

For any non-negative integer n we put

$$\mathfrak{B}_{n} = \{ (\prod_{j=1}^{\infty} n_{j}! 2^{n_{j}})^{-1/2} \prod_{j=1}^{\infty} H_{n_{j}}(\langle x, \xi_{j} \rangle / 2^{1/2}); \sum_{j=1}^{\infty} n_{j} = n, n_{j} \ge 0 \}.$$

Then it is known that $\bigcup_{n=0}^{\infty} \mathfrak{B}_n$ is an orthonomal basis of $L^2(\mathbf{E}^*, \mu)$. We denote by \mathscr{H}_n the closed subspace spanned by \mathfrak{B}_n . Then we have

$$L^{2}(\mathbf{E}^{*}, \mu) = \sum_{n=0}^{\infty} \bigoplus \mathscr{H}_{n}$$
 (Wiener-Itô decomposition), (see [1]).

From (3.3) we see that \mathscr{H}_n is $\pi_*(G)$ -invariant so that we have the subrepresentation π_n of G on \mathscr{H}_n . For any *i* in **N** we put

$$\Phi_i^n(x) = (n!2^n)^{-1/2} H_n(\langle x, \xi_i \rangle / 2^{1/2}) \qquad (x \in E^*).$$

The following Lemma $1 \sim \text{Lemma 4}$ are well known, but for the sake of completeness, we give a brief outline of the proof of them.

LEMMA 1. Φ_1^n is a cyclic vector of π_n .

PROOF. Let V be a space spanned by all elements of the form $\pi_n(g)\Phi_1^n$ $(g \in G)$. Pick any w in V^{\perp} and let

$$w = \sum_{n_1 + \dots = n} c_{n_1, \dots} \prod_j H_{n_j}(\langle x, \xi_j \rangle / 2^{1/2}).$$

Fix any m in N and any non-zero vector (t_1, \ldots, t_m) in \mathbf{R}^m and put

$$a_i = (t_1^2 + \dots + t_m^2)^{-1/2} t_i$$
 $(i = 1, \dots, m).$

Then there exists a g in G_m such that $g\xi_1 = \sum_{i=1}^m a_i\xi_i$. By (3.3) we have

$$(\pi_n(g)\Phi_1^n)(x) = n! \sum_{n_1 + \dots + n_m = n} \prod_j (n_j!)^{-1} (a_j)^{n_j} H_{n_j}(\langle x, \xi_j \rangle / 2^{1/2}).$$

It follows that

$$0 = (w, \pi_n(g)\Phi_1^n) = \sum_{n_1 + \dots + n_m = n} n! 2^n c_{n_1,\dots,n_m} a_1^{n_1} \cdots a_m^{n_m}$$

Hence we have $\sum_{n_1 + \dots + n_m = n} c_{n_1, \dots, n_m} (t_1)^{n_1} \cdots (t_m)^{n_m} = 0.$

It follows that all coefficients of w are equal to zero. This implies that V is dense in \mathcal{H}_n .

LEMMA 2. Any $\pi_n(G)$ -fixed vector in \mathcal{H}_n is equal to zero if $n \neq 0$.

PROOF. We assume that $n \neq 0$. For any j in N, there exists a g in G such that $\pi_n(g)\Phi_j^n = \Phi_1^n$. Let v be any $\pi_n(G)$ -fixed vector in \mathcal{H}_n . Then we have

$$(v, \Phi_i^n) = (\pi_n(g)v, \pi_n(g)\Phi_i^n) = (v, \Phi_1^n).$$

This implies that $(v, \Phi_1^n) = 0$. Since v is a $\pi_n(G)$ -fixed vector, from Lemma 1 we conclude that v = 0.

LEMMA 3. For any $\pi_n(K)$ -fixed vector v in \mathcal{H}_n , there exists a constant c such that $v = c \Phi_1^n$.

PROOF. Let v be a $\pi_n(K)$ -fixed vector, then v is written as follows;

$$v = \sum_{n_1 + \dots = n} c_{n_1, \dots} \prod_j H_{n_j}(\langle x, \xi_j \rangle / 2^{1/2}) = f_0 + \sum_{l=1}^n f_l \Phi_1^l,$$

where f_l (l=0,...,n) are independent of $\langle x, \xi_1 \rangle$. As Φ_1^l (l=1,...,n) are $\pi_n(K)$ -fixed vectors, for any k in K, we have

$$f_0 + \sum_{l=1}^n f_l \Phi_1^l = v = \pi_n(k)v = \pi_n(k)f_0 + \sum_{l=1}^n (\pi_n(k)f_l)\Phi_1^l.$$

This implies that f_l (l=0,...,n) are $\pi_n(K)$ -fixed vectors. By Lemma 2, we have $f_l=0$ if $l \neq n$. Thus we obtain $v = c\Phi_1^n$ where c is a constant.

LEMMA 4. (π_n, \mathscr{H}_n) is an irreducible unitary representation of G.

PROOF. Let W be a $\pi_n(G)$ -invariant closed subspace in \mathscr{H}_n , and let P_W be the orthogonal projection of \mathscr{H}_n onto W. Since W^{\perp} is again $\pi_n(G)$ -invariant for any g in G and v in \mathscr{H}_n , we have

(3.4)
$$\pi_n(g)P_W v = P_W \pi_n(g)v.$$

It follows that for any k in K

$$P_{W}\Phi_{1}^{n} = P_{W}\pi_{n}(k)\Phi_{1}^{n} = \pi_{n}(k)P_{W}\Phi_{1}^{n}.$$

By Lemma 3, there exists a constant c such that $P_W \Phi_1^n = c \Phi_1^n$. From Lemma 1 and (3.4) we have $P_W = cI$ where I is the identity operator on \mathcal{H}_n . Thus we conclude that $W = \{0\}$ or $W = \mathcal{H}_n$.

Let g_m be the Lie algebra of G_m , and let exp be the exponential mapping of g_m to G_m as usual. We denote by E_{ij} the $m \times m$ matrix with 1 in the *i*, *j*th position and zeros elsewhere. And we put $X_{ij} = E_{ij} - E_{ji}$. Then g_m is canonically identified with the linear Lie algebra generated by $\{X_{ij}; 1 \le i < j \le m\}$. We

define a bilinear form $B: g_m \times g_m \to \mathbf{R}$ by $(X, Y) \longrightarrow (m-2) \operatorname{tr} X Y$. Then B is nondegenerate. We denote by C_m the element of the universal enveloping algebra of g_m by the formula

(3.5)
$$C_m = -c_m \sum_{1 \le i < j \le m} X_{ij}^2, \quad c_m = 1/(2m-4),$$

 C_m is called the Casimir operator associated to B.

PROPOSITION 3. (π_n, \mathscr{H}_n) is a class one representation of G.

PROOF. From Lemma 1 ~ Lemma 4, we have only to show that Φ_1^n satisfies (A.2). It is clear that Φ_1^n is $\pi_n(G_m)$ -finite $(m \in \mathbb{N})$. Put $x_j = \langle x, \xi_j \rangle$ $(j \in \mathbb{N})$. Then any element of the space spanned by $\pi_n(G_m)\Phi_1^n$ can be regarded as a function only of $x_1, ..., x_m$. Using this identification we get

$$d\pi_n(X_{ij})^2 = \left(x_j \frac{\partial}{\partial x_i} - x_i \frac{\partial}{\partial x_j}\right)^2.$$

As Φ_1^n is a function only of x_1 , we have

(3.6)
$$d\pi_n(C_m)\Phi_1^n(x) = -c_m \left\{ (\sum_{j=2}^m x_j^2) \frac{\partial^2}{\partial x_1^2} - (m-2)x_1 \frac{\partial}{\partial x_1} \right\} \Phi_1^n(x).$$

By the strong law of large numbers we have

(3.7)
$$\lim_{m\to\infty} m^{-1} \sum_{j=1}^m \langle x, \xi_j \rangle^2 = 1 \quad \text{a.e. } x \text{ in } E^*.$$

Since Φ_1^n does not depend on *m*, from (3.6) and (3.7) it follows that

$$\lim_{m\to\infty} d\pi_n(C_m)\Phi_1^n(x) = -2^{-1}\left(\frac{\partial^2}{\partial x_1^2} - x_1\frac{\partial}{\partial x_1}\right)\Phi_1^n(x).$$

Using the formulas (3.1) and (3.2) we have

$$\lim_{m\to\infty} d\pi_n(C_m)\Phi_1^n = 2^{-1}n\Phi_1^n.$$

Finally we calculate the spherical function ϕ_{π_n} .

PROPOSITION 4. $\phi_{\pi_n}(g) = \langle \xi_1, g \xi_1 \rangle^n \quad (g \in G).$

PROOF. Let $g \in G$. Then there exists an *m* in **N** such that $g \in G_m$. We put $g\xi_1 = \sum_{j=1}^m g_{j1}\xi_j$. Using (3.3) we have

$$\begin{split} \phi_{\pi_n}(g) &= (\Phi_1^n, \pi(g)\Phi_1^n) \\ &= (n!2^n)^{-1}(H_n(\langle \cdot, \xi_1 \rangle/2^{1/2}), \pi(g)H_n(\langle \cdot, \xi_1 \rangle/2^{1/2})) \\ &= (n!2^n)^{-1}(H_n(\langle \cdot, \xi_1 \rangle/2^{1/2}), H_n(\sum_{j=1}^m g_{j1}\langle \cdot, \xi_j \rangle/2^{1/2})) \\ &= g_{11}^n = \langle \xi_1, g_{\xi_1} \rangle^n. \end{split}$$

§4. McKean's conjecture (real case)

We denote by A the group of all elements g in G_2 such that det g=1. Then we have "the Cartan decomposition"; G=KAK. We can identify A with SO(2), and we denote by a_{θ} the element of A defined by

(4.1)
$$a_{\theta}\xi_1 = \cos \theta \xi_1 - \sin \theta \xi_2, \quad a_{\theta}\xi_2 = \sin \theta \xi_1 + \cos \theta \xi_2.$$

Let (π, \mathfrak{H}) be a class one representation of G, and let v_0 be a $\pi(K)$ -fixed unit vector. As the spherical function ϕ_{π} is K-biinvariant, ϕ_{π} can be considered as a function on A. We define the function F_{π} on A by $F_{\pi}(\theta) = \phi_{\pi}(a_{\theta}) (a_{\theta} \in A)$. From Proposition 2 we can use the Schur's Lemma, and conclude that $d\pi(C)$ is a scalar operator; $d\pi(C) = \chi_{\pi}(C)I$ where $\chi_{\pi}(C)$ is a constant and I is the identity operator on \mathfrak{H} .

THEOREM 1. Let (π, \mathfrak{H}) be a class one representation of G with respect to K. Then $2\chi_{\pi}(C)$ is a non-negative integer, and (π, \mathfrak{H}) is equivalent to (π_n, \mathscr{H}_n) where $n = 2\chi_{\pi}(C)$.

PROOF. By (A.2) there exists a $\pi(K)$ -fixed unit vector v_0 such that $\lim_{m\to\infty} d\pi(C_m)v_0$ is convergent. From the above remark we have

(4.2)
$$\chi_{\pi}(C)F_{\pi}(\theta) = (v_0, \pi(a_{\theta})d\pi(C)v_0).$$

On the other hand we have $(v_0, \pi(a_\theta)d\pi(C)v_0) = \lim_{m \to \infty} (v_0, \pi(a_\theta)d\pi(C_m)v_0)$. Using the formula (3.5) and the fact that $\exp tX_{ij} \in K$ (i=2,...,m), we get

(4.3)
$$(v_0, \pi(a_\theta)d\pi(C_m)v_0) = -c_m \sum_{j=2}^m (v_0, \pi(a_\theta)d\pi(X_{1j})^2 v_0).$$

The following formulas are easily checked.

(4.4)
$$\operatorname{Ad}(a_{\theta})^{-1}X_{2i} = \cos\theta X_{2i} - \sin\theta X_{1i}$$
 $(j=3,...,m),$

(4.5)
$$[\operatorname{Ad}(a_{\theta})^{-1}X_{2j}, X_{2j}] = \sin\theta X_{12} \qquad (j = 3, ..., m).$$

Using (4.4) and (4.5) we have

(4.6)
$$X_{1j}^{2} = \csc^{2} \theta (\operatorname{Ad}(A_{\theta})^{-1} X_{2j})^{2} - \cot \theta \operatorname{cosec} \theta \{2 (\operatorname{Ad}(a_{\theta})^{-1} X_{2j} - \sin \theta X_{12}) + \cot^{2} \theta X_{2j}^{2} - (j = 3, ..., m).$$

We note that

(4.7)
$$\sum_{j=2}^{m} (v_0, \pi(a_{\theta}) d\pi(X_{1j})^2 v_0) = (v_0, \pi(a_{\theta}) d\pi(X_{12})^2 v_0) + \sum_{j=3}^{m} (v_0, \pi(a_{\theta}) d\pi(X_{1j})^2 v_0).$$

Clearly the first term is $\frac{d^2}{d\theta^2} F_{\pi}(\theta)$. Substituting (4.6) into the second term of (4.7), and after some calculations we obtain

(4.8)
$$(v_0, \pi(a_\theta)d\pi(C)v_0) = -\lim_{m \to \infty} c_m \left\{ \frac{d^2}{d\theta^2} F_{\pi}(\theta) + (m-2)\cot\theta \frac{d}{d\theta} F_{\pi}(\theta) \right\}$$
$$= -2^{-1}\cot\theta \frac{d}{d\theta} F_{\pi}(\theta).$$

Thus by (4.2) and (4.8) we have

$$\chi_{\pi}(C)F_{\pi}(\theta) = -2^{-1}\cot\theta \frac{d^2}{d\theta^2}F_{\pi}(\theta).$$

Since F_{π} is C^{∞} and $F_{\pi}(0) = 1$, we conclude that $2\chi_{\pi}(C)$ is a non-negative integer and that if we put $2\chi_{\pi}(C) = n$ we have

$$F_{\pi}(\theta) = \cos^{n} \theta.$$

On the other hand, from Proposition 4, putting $g = k'a_{\theta}k$ we can compute the spherical function of the representation (π_n, \mathcal{H}_n) as follows;

$$\phi_{\pi_n}(g) = \langle \xi_1, \, g\xi_1 \rangle^n = \cos^n \theta.$$

Thus we have $\phi_{\pi} = \phi_{\pi_n}$. It follows from Proposition 1 that (π, \mathfrak{H}) is equivalent to (π_n, \mathscr{H}_n) .

§ 5. Wiener-Itô decomposition (complex case)

In § 5 and § 6 we assume that E and H are complex vector spaces. For any non-negative integers p and q, we consider the complex Hermite polynomial;

$$H_{p,q}(t,\,\bar{t})=(-1)^{p+q}e^{t\bar{t}}\,\frac{\partial^{p+q}}{\partial\bar{t}^p\partial t^q}\,e^{-t\bar{t}}\qquad(t\in\mathbb{C})\,.$$

It satisfies the following equations;

(5.1)
$$\begin{cases} \frac{\partial^2}{\partial t \partial \bar{t}} H_{p,q}(t, \bar{t}) - \bar{t} \frac{\partial}{\partial \bar{t}} H_{p,q}(t, \bar{t}) + q H_{p,q}(t, \bar{t}) = 0, \\ \frac{\partial^2}{\partial \bar{t} \partial t} H_{p,q}(t, \bar{t}) - t \frac{\partial}{\partial t} H_{p,q}(t, \bar{t}) + p H_{p,q}(t, \bar{t}) = 0. \end{cases}$$

(5.2)
$$\frac{\partial}{\partial t} H_{p,q}(t,\bar{t}) = p H_{p-1,q}(t,\bar{t}), \quad \frac{\partial}{\partial \bar{t}} H_{p,q}(t,\bar{t}) = q H_{p,q-1}(t,\bar{t}).$$

(5.3) If
$$t = \sum_{j=1}^{m} a_j t_j$$
 with $|a_1|^2 + \dots + |a_m|^2 = 1$, then
 $H_{p,q}(t, \bar{t}) = p! q! \sum \prod_j (p_j! q_j!)^{-1} (a_j)^{p_j} (\bar{a}_j)^{q_j} H_{p_j,q_j}(t_j, \bar{t}_j)$,

where \sum is taken over all non-negative integers p_j , q_j (j = 1,...,m) with $\sum_j p_j = p_j$,

$$\sum_{j} q_{j} = q.$$

We put

$$\mathfrak{B}_{p,q} = \{\prod_{j=1}^{\infty} (p_j! q_j!)^{-1/2} H_{p_j,q_j}(\langle z, \xi_j \rangle, \overline{\langle z, \xi_j \rangle});$$

$$p_1 + p_2 + \dots = p, q_1 + q_2 + \dots = q, p_j, q_j \ge 0\}.$$

Then it is known that $\bigcup_{n=0}^{\infty} (\bigcup_{p+q=n} \mathfrak{B}_{p,q})$ is an orthonomal basis of $L^2(\mathbf{E}^*, \mu)$, (see [1]). We denote by $\mathscr{H}_{p,q}$ the closed subspace spanned by $\mathfrak{B}_{p,q}$. Then we have

 $L^{2}(\boldsymbol{E^{*}}, \mu) = \sum_{n=0}^{\infty} \bigoplus \sum_{p+q=n} \bigoplus \mathscr{H}_{p,q} \quad (\text{Wiener-Itô decomposition}).$

From (5.3) we see that $\mathscr{H}_{p,q}$ is $\pi_*(G)$ -invariant, so that we have the subrepresentation $\pi_{p,q}$ of G on $\mathscr{H}_{p,q}$. For any *i* in **N** we put

$$\Phi_{i}^{p,q}(z,\,\bar{z})=(p!q!)^{-1/2}H_{p,q}(\langle z,\,\xi_{i}\rangle,\,\overline{\langle z,\,\xi_{i}\rangle})\,.$$

The following Lemma $5 \sim$ Lemma 8 can be proved similarly to the real case.

LEMMA 5. $\Phi_1^{p,q}$ is a cyclic vector of $\mathcal{H}_{p,q}$.

LEMMA 6. Any $\pi_{p,q}(G)$ -fixed vector in $\mathscr{H}_{p,q}$ is equal to zero if $(p,q) \neq (0, 0)$.

LEMMA 7. For any $\pi_{p,q}(K)$ -fixed vector v in $\mathscr{H}_{p,q}$, there exists a constant c such that $v = c \Phi_1^{p,q}$.

LEMMA 8. $(\pi_{p,q}, \mathcal{H}_{p,q})$ is an irreducible unitary representation of G.

Let g_m be the Lie algebra of G_m , and let E_{ij} be the $m \times m$ matrix defined in § 3. We put $X_{ij} = E_{ij} - E_{ji}$, $Y_{ij} = i(E_{ij} + E_{ji})$ for i < j and $Y_{ii} = iE_{ii}$. Then g_m is canonically identified with the linear Lie algebra generated by $\{X_{ij}, Y_{ij}, Y_{ii}; 1 \le i < j \le m\}$. We define a bilinear form $B: g_m \times g_m \rightarrow C$ by $(X, Y) \longrightarrow 2m \operatorname{tr} X Y$. Then B is non-degenerate, so we define the Casimir operator C_m associated to B by the formula;

(5.4)
$$C_m = -c_m \sum_{1 \le i < j \le m} (X_{ij}^2 + Y_{ij}^2) - 2c_m \sum_{i=1}^m Y_{ii}^2, \quad c_m = 1/4m.$$

PROPOSITION 5. $(\pi_{p,q}, \mathscr{H}_{p,q})$ is a class one representation of G.

PROOF. From Lemma 5~ Lemma 8, we have only to show that $\Phi_1^{p,q}$ satisfies (A.2). It is clear that $\Phi_1^{p,q}$ is $\pi_{p,q}(G_m)$ -finite $(m \in \mathbb{N})$. Let $z_i = \langle z, \xi_i \rangle$ $(i \in \mathbb{N}, z \in \mathbb{E}^*)$. Then any element of the space spanned by $\pi_{p,q}(G_m)\Phi_1^{p,q}$ can be regarded as a function only of $z_1, \ldots, z_m, \overline{z_1}, \ldots, \overline{z_m}$. Using this identification we get

(5.5)
$$d\pi_{p,q}(X_{ij})^2 = \left(z_i \frac{\partial}{\partial z_j} - z_j \frac{\partial}{\partial z_i} + \bar{z}_i \frac{\partial}{\partial \bar{z}_j} - \bar{z}_j \frac{\partial}{\partial \bar{z}_i}\right)^2,$$

Hiroshi Matsushima, Kiyosato Okamoto and Takatoshi Sakurai

(5.6)
$$d\pi_{p,q}(Y_{ij})^2 = -\left(z_i\frac{\partial}{\partial z_j} + z_j\frac{\partial}{\partial z_i} - \bar{z}_i\frac{\partial}{\partial \bar{z}_j} - \bar{z}_j\frac{\partial}{\partial \bar{z}_i}\right)^2,$$

(5.7)
$$d\pi_{p,q}(Y_{ii})^2 = -\left(z_i \frac{\partial}{\partial z_i} - \bar{z}_i \frac{\partial}{\partial \bar{z}_i}\right)^2.$$

As $\Phi_1^{p,q}$ is a function only of z_1 and \overline{z}_1 , using (5.5), (5.6) and (5.7), we have

(5.8)
$$d\pi_{p,q}(C_m)\Phi_1^{p,q} = \left\{ 2^{-1} \left(z_1 \frac{\partial}{\partial z_1} + \bar{z}_1 \frac{\partial}{\partial \bar{z}_1} \right) + 2c_m \left(z_1^2 \frac{\partial^2}{\partial z_1^2} + \bar{z}_1^2 \frac{\partial^2}{\partial \bar{z}_1^2} \right) - 4c_m \sum_{j=1}^m z_j \bar{z}_j \frac{\partial^2}{\partial z_1 \partial \bar{z}_1} \right\} \Phi_1^{p,q}.$$

By the strong law of large numbers we have

(5.9)
$$\lim_{m\to\infty} m^{-1} \sum_{j=1}^m |\langle z, \xi_j \rangle|^2 = 1 \quad \text{a.e. } z \text{ in } \boldsymbol{E^*}.$$

Since $\Phi_1^{p,q}$ does not depend on *m*, it follows from (5.8) and (5.9) that

$$\lim_{m\to\infty} d\pi_{p,q}(C_m)\Phi_1^{p,q} = 2^{-1} \left(z_1 \frac{\partial}{\partial z_1} + \bar{z}_1 \frac{\partial}{\partial \bar{z}_1} - 2 \frac{\partial^2}{\partial z_1 \partial \bar{z}_1} \right) \Phi_1^{p,q}$$

Using the formula (5.2) we obtain

$$\lim_{m \to \infty} d\pi_{p,q} (C_m) \Phi_1^{p,q} = 2^{-1} (p+q) \Phi_1^{p,q}.$$

PROPOSITION 6. $\phi_{\pi_{p,q}}(g) = \langle \xi_1, g\xi_1 \rangle^p \overline{\langle \xi_1, g\xi_1 \rangle}^q \quad (g \in G).$

PROOF. Let $g \in G$. Then we have an *m* in **N** such that $g \in G_m$. We put $g\xi_1 = \sum_{j=1}^m g_{j1}\xi_j$. Using the formula (5.3), we have

$$\begin{split} \phi_{\pi_{p,q}}(g) &= (\Phi_1^{p,q}, \pi_{p,q}(g)\phi_1^{p,q}) \\ &= (p!q!)^{-1}(H_{p,q}(\langle \cdot, \xi_1 \rangle, \overline{\langle \cdot, \xi_1 \rangle}), H_{p,q}(\langle \cdot, g\xi_1 \rangle, \overline{\langle \cdot, g\xi_1 \rangle})) \\ &= (p!q!)^{-1}(H_{p,q}(\langle \cdot, \xi_1 \rangle, \overline{\langle \cdot, \xi_1 \rangle}), \\ &p!q!\sum \prod_j (p_j!q_j!)^{-1}(g_{j1})^{p_j}(\overline{g}_{j1})^{q_j}H_{p_j,q_j}(\langle \cdot, \xi_j \rangle, \overline{\langle \cdot, \xi_j \rangle})) \\ &= \overline{g}_1^{p_1}g_{11}^{q} = \langle \xi_1, g\xi_1 \rangle^{p} \overline{\langle \xi_1, g\xi_1 \rangle}^{q}, \end{split}$$

where \sum is the same as in (5.3).

§6. McKean's conjecture (complex case)

We put $T=G_1$. And we denote by a_{θ} the element of G_2 defined by (4.1). Let A be the group of all elements a_{θ} . Then we have "the Cartan decomposition"; G=KTAK. We note that kt=tk ($t \in T$, $k \in K$). We denote by t_{φ} the element of T defined by $t_{\varphi}\xi_1 = e^{i\varphi}\xi_1$. Then T is isomorphic to U(1), so that the character group \hat{T} of T is isomorphic to Z where Z is the additive group of all

190

integers. We denote by σ the canonical isomorphism of \hat{T} to Z defined by $\sigma(\eta) = l$ where $\eta \in \hat{T}$ and $\eta(t_{\varphi}) = e^{il\varphi}$ $(t_{\varphi} \in T)$.

Let (π, \mathfrak{H}) be a class one representation of G and let v_0 be a $\pi(K)$ -fixed unit vector. For any t_{ω} in T and k in K, it follows that

$$\pi(k)\pi(t_{\varphi})v_0 = \pi(t_{\varphi})\pi(k)v_0 = \pi(t_{\varphi})v_0.$$

Thus $\pi(t_{\varphi})v_0$ is a $\pi(K)$ -fixed vector. By (A.1) there exists a constant $\eta_{\pi}(t_{\varphi})$ such that $\pi(t_{\varphi})v_0 = \eta_{\pi}(t_{\varphi})v_0$. Then we have

$$|\eta_{\pi}(t_{\varphi})| = 1, \qquad \eta_{\pi}(t_{\varphi}t_{\varphi'}) = \eta_{\pi}(t_{\varphi})\eta_{\pi}(t_{\varphi'}).$$

Thus η_{π} is a character of T.

From Proposition 2 $d\pi(C)$ is a scalar operator, so that we put $d\pi(C) = \chi_{\pi}(C)I$.

THEOREM 2. Let (π, \mathfrak{H}) be a class one representation of G with respect to K. Then $2\chi_{\pi}(C)$ is a non-negative integer, and if $|\sigma(\eta_{\pi})| \leq 2\chi_{\pi}(C)$ (π, \mathfrak{H}) is equivalent to $(\pi_{p,q}, \mathscr{H}_{p,q})$ where $p+q=2\chi_{\pi}(C)$ and $p-q=\sigma(\chi_{\pi})$.

PROOF. By (A.2) there exists a $\pi(K)$ -fixed unit vector v_0 such that $\lim_{m\to\infty} d\pi(C_m)v_0$ is convergent. As in the real case, we denote by F_{π} the function on A such that $F_{\pi}(\theta) = \phi_{\pi}(a_{\theta})$. Since ϕ_{π} is K-biinvariant, putting $g = k't_{\varphi}a_{\theta}k$, we have

$$\phi_{\pi}(g) = e^{-il\varphi}F_{\pi}(\theta)$$
 where $l = \sigma(\eta_{\pi})$.

Now we note that

(6.1)
$$\chi_{\pi}(C)F_{\pi}(\theta) = (v_0, \pi(a_{\theta})d\pi(C)v_0) = \lim_{m \to \infty} (v_0, \pi(a_{\theta})d\pi(C_m)v_0).$$

Using the fact that $\exp tX_{ij}$, $\exp t_{ij}$ and $\exp tY_{ii}$ are in K if $i \ge 2$, we have

(6.2)
$$(v_0, \pi(a_{\theta})d\pi(C_m)v_0) = -c_m \sum_{j=2}^m (v_0, \pi(a_{\theta})d\pi(X_{1j})^2 v_0) - c_m \sum_{j=2}^m (v_0, \pi(a_{\theta})d\pi(Y_{1j})^2 v_0) - 2c_m (v_0, \pi(a_{\theta})d\pi(Y_{11})^2 v_0).$$

As in the real case, the first term of (6.2) is

(6.3)
$$-c_m \left\{ \frac{d^2}{d\theta^2} F_\pi(\theta) + (m-2) \cot \theta \, \frac{d}{d\theta} \, F_\pi(\theta) \right\}.$$

It is easy to get the followings;

$$\begin{aligned} & \operatorname{Ad}(a_{\theta})^{-1}Y_{2j} = \cos \theta Y_{2j} - \sin \theta Y_{1j} & (j=3, 4, ...), \\ & \left[\operatorname{Ad}(a_{\theta})^{-1}Y_{2j}, Y_{2j}\right] = \sin \theta X_{12} & (j=3, 4, ...). \end{aligned}$$

Then we have

Hiroshi Matsushima, Kiyosato Okamoto and Takatoshi Sakurai

(6.4)
$$Y_{1j}^{2} = \cot^{2} \theta Y_{2j}^{2} + \cot \theta X_{12} - 2 \cot \theta \operatorname{cosec} \theta \operatorname{Ad}(a_{\theta})^{-1} Y_{2j} Y_{2j} + \operatorname{cosec}^{2} \theta (\operatorname{Ad}(a_{\theta})^{-1} Y_{2j})^{2} \qquad (j = 3, 4, ...)$$

We substitute (6.4) into the second term of (6.2), and after some calculations we get

(6.5)
$$- c_m\{(v_0, \pi(a_\theta)d\pi(Y_{12})^2v_0) + (m-2)\cot\theta(v_0, \pi(a_\theta)d\pi(X_{12})v_0)\} = 0$$

To calculate the first term of (6.5), we use the following formula;

$$Ad(a_{\theta})^{-1}Y_{11} = \cos^2 \theta Y_{11} + \cos \theta \sin \theta Y_{12} + \sin^2 \theta Y_{22}$$

Then we have

$$Y_{12}^{2} = \sec^{2}\theta \csc^{2}\theta \{ (\operatorname{Ad}(a_{\theta})^{-1}Y_{11})^{2} + \cos^{4}\theta Y_{11}^{2} + \sin^{4}\theta Y_{22}^{2} - \cos^{2}\theta (\operatorname{Ad}(a_{\theta})^{-1}Y_{11}Y_{11} + Y_{11}\operatorname{Ad}(a_{\theta})^{-1}Y_{11}) - \sin^{2}\theta (\operatorname{Ad}(a_{\theta})^{-1}Y_{11}Y_{22} + Y_{22}\operatorname{Ad}(a_{\theta})^{-1}Y_{11}) + \sin^{2}\theta \cos^{2}\theta (Y_{11}Y_{22} + Y_{22}Y_{11}) \}$$

Since exp $t Y_{11} \in T (t \in \mathbf{R})$, we have

$$(v_0, \pi(a_{\theta})d\pi(\mathrm{Ad}(a_{\theta})^{-1}Y_{11})^2 v_0) = -l^2 F_{\pi}(\theta),$$

$$(v_0, \pi(a_{\theta})d\pi(\mathrm{Ad}(a_{\theta})^{-1}Y_{11})d\pi(Y_{11})v_0) = -l^2 F_{\pi}(\theta)$$

where $l = \sigma(\eta_{\pi})$. It follows from these equations that the first term of (6.5) is

$$2\cot 2\theta \frac{d}{d\theta}F_{\pi}(\theta) - l^{2}\tan^{2}\theta F_{\pi}(\theta).$$

Thus the second term of (6.2) becomes

(6.6)
$$-c_m \left\{ 2 \cot 2\theta \frac{d}{d\theta} F_{\pi}(\theta) - l^2 \tan^2 \theta F_{\pi}(\theta) + (m-2) \cot \theta \frac{d}{d\theta} F_{\pi}(\theta) \right\}.$$

It is easy to see that the third term of (6.2) is

$$(6.7) 2c_m l^2 F_n(\theta).$$

Finally, substituting (6.3), (6.6) and (6.7) in (6.1), we obtain

$$\chi_{\pi}(C)F_{\pi}(\theta) = -2^{-1}\cot\theta \frac{d}{d\theta}F_{\pi}(\theta).$$

Since F_{π} is C^{∞} and $F_{\pi}(0) = 1$, we conclude that $2\chi_{\pi}(C)$ is a non-negative integer. Putting $2\chi_{\pi}(C) = n$, we have $F_{\pi}(\theta) = \cos^{n} \theta$. Thus we get $\phi_{\pi}(g) = e^{-il\varphi} \cos^{n} \theta$ where $g = k' t_{\varphi} a_{\theta} k$.

If $|\sigma(\eta_{\pi})| \leq 2\chi_{\pi}(C)$, then there exist non-negative integers p and q such that

192

p+q=n and p-q=l. From Proposition 6, putting $g=k't_{\varphi}a_{\theta}k$, we can compute the spherical function of representation $(\pi_{p,q}, \mathcal{H}_{p,q})$ as follows;

$$\phi_{\pi_{p,q}}(g) = \langle \xi_1, g\xi_1 \rangle^p \overline{\langle \xi_1, g\xi_1 \rangle}^q = e^{-i(p-q)\varphi} \cos^{p+q} \theta.$$

Thus we have $\phi_{\pi} = \phi_{\pi_{p,q}}$. From Proposition 1 we see that (π, \mathfrak{H}) is equivalent to $(\pi_{p,q}, \mathscr{H}_{p,q})$.

References

- [1] T. Hida, Brownian motion, Springer-Verlag, (1980).
- [2] H. P. McKean, Geometry of differential space, (Special invited paper), Ann. Probability 1 (1973), 197-206.
- [3] A. Orihara, Hermitian polynomials and infinite dimensinal motion group, J. Math. Kyoto Univ. 6 (1966), 1-12.
- Y. Umemura, On the infinite dimensional Laplacian operator, J. Math. Kyoto Univ. 4 (1965), 477-492.

Masuda Senior High School of Technology,

Department of Mathematics, Faculty of Science, Hiroshima University

and

Department of Mathematics, Faculty of Science, Hiroshima University