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1. Introduction

On a bounded domain D in Rn (n > 3) with smooth boundary S we consider
the initial value problem for the Navier-Stokes equation

(N.S)

- Au + (u, grad)w + grad q=f in D x (0, T),

div u' = 0 in D x (0, T),

u = 0 on S x (0, T),

M(X, 0) = α(x) in D.

Here u = u(x, ί) = ("ι(^ 0,-., un(x, ί)), <7 = g(*, 0 and /=/(*, 0 = (/ι(*, 0,-,
/Λ(x, 0) are the velocity, the pressure and the given external force respectively, and
(u, grad) = Σ7 Ujd/dXj. Our main concern is in the existence and uniqueness
problem of strong solutions of (N.S) in the Banach space (LP(D))", n<p<oo.
In treating this problem we employ the method of Kato and Fujita [2], [7] and
transform the equation (N.S) to the following evolution equation in the Banach

space Xp:

(I) -— + Au + P(ιι, grad)w = Pf, t> 0, κ(0) = α e Xp.

Here Xp is the closed subspace of (Lp(D))n consisting of all solenoidal vector
fields on D whose normal components vanish on S, and A= — PA is the Stokes
operator with P denoting the projection onto Xp. See [4] for the details. Kato
and Fujita [2], [7] considered the equation (I) in X2, n = 39 and proved the
existence and uniqueness, generally local in time, of strong solutions for initial
data in D(A1/4) under a certain assumption on Pf. In this paper we shall show
that the above restriction on the initial data can be removed by considering (I)
in Xp, n<p<co. Further, we show that, as is done in [2], [7], the solution
exists globally if the data are sufficiently small. What is basic for our discussion
is the estimation of the nonlinear term P(u, grad)w by the fractional powers of the
Stokes operator, the existence of which is assured by the fact that the Stokes
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operator generates a bounded holomorphic semigroup in Xp, l<p<oo (see

Theorem 2.1 below). It is to be noted that our estimates for the nonlinear term

are weaker than those given in [11] for the Navier-Stokes equation with the

Neumann condition. We also note that in the case of the Neumann condition

we can solve (I) even in Xn. (This fact is not mentioned explicitly in [11].) In

order to include the case p = n for the problem with the no-slip boundary con-

dition, it seems necessary to determine explicitly the domains of fractional powers

of the Stokes operator.

In the final section we apply our results to the uniqueness and regularity

problem for weak solutions. In particular we improve a result of von Wahl [15]

concerning the regularity of weak solutions in four dimensions.

Recently von Wahl [16] has announced results similar to ours. In addition,

he studies regularity in Holder spaces and improves the regularity result of Serrin

[12]. (See Remark 3.8.)

2. Solvability and uniqueness in Xp

It is proved in [4] that the following direct sum decomposition holds for each

(1) (LP(D)Y = X p

where Xp is the closure in (Lf(D))n of the space of all u E (C$(D))n such that
div u = 0 in D, and Gp is the closed subspace of (Lp(D))n consisting of gradients of

scalar functions in Wίtp(D). (Here and hereafter we use the standard notation

of Sobolev spaces.) Let P = PP be the projection onto Xp along Gp. Then ap-

plying this to both sides of the Navier-Stokes equation, one can derive the follow-
ing evolution equation in Xp:

(I) ^~ + Au = Fu + Pf9 t > 0, w(0) = a e Xp.

Here Fu— — P(u, grad)w, and A—Ap — —PA denotes the Stokes operator defined

on D(A) = Xpί\(W^P(D))H n (WMW It is shown in [4] that A is a closed
operator in Xp and that A* = Ap,. The regularity theorem for the stationary

Stokes equation tells us that the spectrum of A =• Ap does not depend on p and is

contained to (0, 4- oo).

THEOREM 2.1. —A generates a bounded holomorphic semigroup, e tA,

in Xp.

To prove this, we make use of the following

LEMMA (Solonnikov [14], von Wahl [15]). For each /eί/(0, Γ; Xp) and
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each aeXpr\(Wkp(D)Y Γ\(W2>P(D})n, p ^3/2, there exists a unique function

u e Z/(0, T\ D(A)) with w'el/(0, T; Xp) such that du/dt + Au=f on (0, T),
w(0) = α. Moreover, there is a constant C = C(p, D)>0 such that

(2)

This lemma is proved in Solonnikov [14] in the case n = 3. Necessary
modifications in higher dimensions are given in von Wahl [15].

PROOF OF THEOREM 2.1. We fix A, Reλ>0, and geXp,p^3/2. Put u =

(λ + A)~lg, and choose h(i)GC\\Q, oo); ,R) such that 0</ι<l, Λ(0 = l if ί^l>
and Λ(ί) = 0 if 0<ί<l/2. Then, the function u(t) = veλth(εt), ε>0, satisfies

uf + Au = geλth(εή + sveλth'(εt), w(0) = 0.

Since ιι/(ί) = Aι;eλfA(eί) + ει;eλί/ϊ/(εO it follows from (2) that

(3)

Here we apply the following

LEMMA 2.2. Let 0<<5<1 be fixed. Then there exist for each λ, Re/l>0,

constants TΛ>0 and ελ>0 such that

(4) Cpε
p

λ eP^V \hf(ελt)\*>dt
Jo

Admitting this lemma for a moment we continue the proof of Theorem 2.1.

Applying (4) to (3) we see

so that

(5) (l + μ|*) ||ι;||«ip < Cp||flf||g.p/(l-^ P ^ 3/2.

Thus the proof is completed in the case p^3/2. The case p — 3/2 is treated by

the use of (5) with p = 3 and a simple duality argument.
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PROOF OF LEMMA 2.2. From our choice of h(t) it follows that

(6) CpεP (T eP^λ^\h'(εt)\Pdt < C,e*M* Γ/ £

J o ^ J l / 2 ε

= CpεPMP{eP(ReλV£ - ep^^2e}jp Re A,

where M = max |λ'(ί)l On tne other hand we have

(7) (l + μip)Γ ^Reλ)f|Λ(εί)|pί/ί > (l + μip)
Jo J l / ε

Now, put ελ = Re A. Then, since the right hand sides of (6) and (7) are equal to
Cp(^Qλ)p-lMP{ep-eP'2}lp and (1 +\λ\p) {ep(Reλ>τ -eP}/p Re λ respectively, it
suffices to prove the inequality

(8) CpM^(Re λ)p{eP - e^2} < δ(\ + \λ\p) {^(R*w - e?} ,

by choosing T>0 appropriately. But the validity of (8) for a large Γ>0 is ob-
vious, and so the proof is completed.

REMARK 2.3. The above proof of Theorem 2.1 is motivated by the work of
Sobolevskii ([13]). The proof in [13] seems to be incorrect.

Theorem 2.1 enables us to define the fractional powers of A. The propo-
sition below plays an important role in constructing a solution of (I) for an arbi-
trary initial value.

PROPOSITION 2.4. Suppose that n<p<co.
(i) There exists for each ε>0 a constant Mj >0 such that

\\P(u, grad)t>||0il, < M^A'+WuhJA'+Wυ^

for any u and v in D(Aε+1/2).
(ii) There exists for each εj >0, j = l , 2, a constant M2>0 such that

\\A-'i-V*P(u, grad)ι;||0fp < M2||M||0<|,μ«+«^||0fp

for each uεXp and each veD(A«+£2). Here α = l/2, if p>2n, and α = l / 4 +
n/(2p\ ifn<p<2n.

This proposition is an immediate consequence of two lemmas stated below,
and so the proof is omitted. In what follows we denote by B = BP the Laplacian,
— Δ, on (Lp(D))n, !</?<oo, with the Dirichlet boundary condition. It is well
known that B is a closed operator defined on D(B) = (Wfrp(D)Y r\(W2>P(D)Y,
and that jB*=βp>, p' = pl(p— 1) (see [10]). By the apriori estimate for A it is
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easy to see that D(A)aD(B) and \\Bu\\0fp<C\\Au\\0tp with a constant C>0 in-
dependent of u e D(A).

LEMMA 2.5. Let n<p<oo be fixed. Then there exists a constant M>0

such that

(i) | |(u,grad)i; | |o ip^Ai| |B 1/ 2M|| 0 f p | |B 1/ 2i?| |o f p for any u, v in D(^/2),

(ii) ||B-1/4(ιι,grad)ι;||oip^M||ιι||0iJ,||B«!;||oip for each u e (L*(D))"
and each veD(BΛ), where α is the number in (ii) of Proposition 2.4.

LEMMA 2.6. Let 0<α<l and [<p<co be fixed. Then there exists for
each β>a a constant Cxβ>0 such that \\Bctu\\0tp<C0ίβ\\Aβu\\Q>pfor each ueD(Aβ).
Thus B<*A~β is a bounded operator from Xp into (Lp(D))n, and hence, by duality,
A~βPB* is extended uniquely to a bounded operator from (Lp(D))n into Xp.

PROOF OF LEMMA 2.5. (i) From a result of Fujiwara [3] it follows that
D(Bί/2)c:(W^p(D))n with a continuous injection. Therefore, by the Sobolev
imbedding theorem and the Poincare inequality, we have

||(w, grad)ί;||θ5p < Csup|ιι(x)| | |gradi?| |0 f j > < C||grad w||0,p||gradt;||0)p

This completes the proof of (i).
(ii) Let #~1/4(x, y) be the kernel function of B~1/4. Then we have (see

[2])

(9) |B"1/4(x, y)\ < C/lx-yl"-1'2 for any x, yeD, x φ y.

Therefore we see, for each ψ e(Lp'(D))", that

(10) |(B-'/*(«, grad)ί;, ψ)\ < \((u, grad)ι>, ^/V)l

\u(x)\ \Γv(X)\ \φ(y)\ \x-y\U*- dxdy.
D

Put w(x)= \ ψ(y) \x — y\1/2~ndy. By the Sobolev inequality we have
JD

we(L«(D))», r1 = 1 - (^n)-1 - p~\ and ||w||0iβ < C||^||0^,

so that, by Holder's inequality,

(11) \(B-U*(u, gradX ψ)\ < C\\ \u\.\r v\ L,q>\\w\\Q,q

^ C I I N IΓi l l l o ^ l l ^ l l o . p ' ^ C I I i i l l o J f lli.ίJ^llo.p',

since q'~l = l — q~i=(2n)~1+p~1. This implies that when p>2n we have

(12) \\B~v\u, gτad)ι;||ofp <
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When n<p<2n, we proceed as follows: A result of Fujiwara [3] tells us that
D(B«)d(H2a'p(D))n with a continuous injection, where HS>P(D) denotes the
space of the Bessel potentials (see [1], [10]). Since H2*>P<=Hl>2n if 2a-n/p =
1/2, n<p<2n (see [1]), the assertion follows from (11) by taking α =

PROOF OF LEMMA 2.6. By the moment inequality, we have

(13) \\B«u\\0>p < CJ«||J7/||Λι||δfp < CΛ\\u\\£p*\\Au\\ξ,p

for each u e D(A). Using this, we see, for each β>α and u e D(A),

(14) \\B«u\\0tp= ||

+ ̂

Taking the minimum in N we obtain

\\B*u\\0ίp < C^ll i i l lJ ^ll^iillg/; <

Note that here we have used the formula

which is easily verified by an integration by parts and by shifting the path of
integration. This completes the proof.

Choose now ε7 >0, ;' = !, 2, so that ε1 + ε2 + α<3/4, and put β = 3/4-(α + ε1

+ ε2) Then, by (ii) of Proposition 2.4, we get

(15) \\A-«-v*P(u, grad)f>||0fp <

Note that (εl + 1/4) + β + (α + ε2) = 1 .
Let us now construct a solution of the integral equation :

(II) u(ί) = e~tAa
Jo

by means of the following iteration scheme :
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Wo(ί) == e"tAa

«»+ι(0 = «o(0 + Γ e-«-s>AFum(s)ds, m > 0.
Jo

Using the estimate (15) one can prove the proposition below in just the same

way as in [11] (see also [7]). In what follows the Lp-norm will be denoted

simply by || ||.

PROPOSITION 2.7. For each P/eC([0, Γ]; Xp) and each aeXpί n<p<co,

the functions um(t) in (16) are well-defined and belong to C([0, T~};Xp)Γi

C((0, T]; D(AyJ) for each y, 0<y<3/4 — ε t . Moreover, we have the estimates

(17) MXXOII ^ K^t-y, m>0,

where Kym are defined inductively by

(18)
X 7 f M + 1 - Ky0 + CyM2B(3/4-ε1-y9 l/4 + e1)X/lll lKβ+β2im m > 0,

w/ί/i α constant Cv>0 depending on y and ελ. Here B(a, b) is the beta function

and

N =

Repeating the arguments given in [7] and [1 1, Sec. 4] one can now prove

THEOREM 2.8. For each aεXp and each P/eC([0, oo); Xp), n<p<oo,

there exist a Γ>0 and a solution u(i) of (II) belonging to C([0, T]; Xp) n

C((0, T]; D(A?y) for any y, 0<γ<3/4. // the data are sufficiently small, then

we can take T=oo. Further, u(t) is unique within the class of functions v(t) in

C([0, T]; Xp) such that Aθv(t)<=C((Q9 T]; Xp) and \\Aθv(t)\\=o(Γθ) as ί->0, for

someθ, i/2<θ<3/4.

THEOREM 2.9. //, in addition to the assumptions of Theorem 2.8, Pf is

Holder continuous on each compact subset of (0, T], then the solution u(t) of

(II) satisfies the evolution equation (I).

3. An application

In this section we consider the equation (N.S) with/=0. Let us recall the
definition of weak solutions (see [9]).

DEFINITION 3.1. Let u(t) be a function defined on (0, T) with values in X2

and a be an arbitrary element in X2. We call u(t) a weak solution of (N.S) with
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/=0 and with the initial value a if it satisfies the following conditions.
( i ) u(ί) lies in L2(0, T; X2 n (Wfr2(D))») Π L°°(0, T; X2).
(ii) The identity

- Γ(ιι(0, υ)h'(t)dt + Γ(Γιι(0, Γϋ)/ι(0dί
Jo Jo

((ιι(0, grad)t<(0, v)h(t)dt = (a, υ)h(0)

is valid for each veX2 n (W^2(D))n Π (L"(D))" and each h(i)e Cl([Q, T]; 7?)

with Λ(T) = 0.
(iii) w(0 satisfies the energy inequality

(19) l |w(0l lg .2 + 2Γ ||Γιι(s)||Si2ds < H§,2, for a.e. ίe(0, Γ).
Jo

From the above definition it follows that every weak solution is weakly con-
tinuous on [0, T] with values in X2. Although the existence of a global weak
solution for an arbitrary a is established e.g. by Hopf [5], its uniqueness is still
an open problem. We note that the solution of (I) constructed in the preceding
section is in fact a weak solution in the above sense which, moreover, satisfies the
energy equality

(20) ||u(0llg,2 + 2 (' ||Γιι(s)||gi2ds = N|gf2, for each ίe(0, T).
Jo

The existence result in the preceding section enables us to prove the follow-
ing theorem. Note that we do not impose any regularity assumption on the

initial value a.

THEOREM 3.2. For each aeXp,p>n, the weak solutions with the initial

value a coincide in a neighbourhood of f = 0. Furthermore, there exists on
(0, oo ) a unique weak solution with the initial value a if a is sufficiently small in

REMARK 3.3. The above theorem is a generalization of a result of Serrin
[12], where a uniqueness criterion is given when n<4 (see [12, Th. 6]). By our
results in the preceding section, we can remove the restriction π<4, (see Lemma

3.4 below).

To prove the above result we begin with the following

LEMMA 3.4. Let v(t) be an arbitrary weak solution on (0, T) with the initial
value aeXp, p>n, and suppose that the solution u(t) of (I) exists on [0, T] with
w(0) = 0. Then we have
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(21) (υ(ί), ιι(0) + 2 (' (Fφ),
o

= NI§ ~ WΦ), Φ)> κ(s)) + *>(w(s), ιι(s),φ))}Λ /or 6>0c/ιfe[0, T],
Jo

(w, ι>, vv) = ((w, grad)y, w).

PROOF. First we note that Holder's inequality and the Sobolev imbedding

theorem imply

\b(u, v, w)| < C||W | |0 > 2 n / ( M_2 ) | |ι;| |1 > 2 | |w||0 > / J < C||w||1 ) 2 | |ι; | |1 > 2 | |w||0 > w,

for any w, y e^Γ2 Π (W&2(D))n and any w e Xrt. Thus the integrand on the right
hand side of (21) makes sense. (Note that the roles of u and w can be inter-
changed in the above inequality.) Let B be the nonlinear operator from X2 Π

)Y to the dual of X2 Π (W^\D))n n (L"(D))« defined by fe(ιι, ti, w) =
w, w>. Then we see from Definition 3.1 that the weak solution v(t) satisfies

(22) (v'(i), w) + (Γv(t\ Fw) + <Bφ), w> = 0

weZ 2 n (WJ 2(D))" Π (L"(D))W,

as a distribution on (0, T). Now, take a non-negative even function p 6 CQ(R)
Γ°°

such that \ p(OΛ = l, supp /? = [-!, 1], and set pε(t) = ε~lp(t/ε). Defining
J-OO

) = M(ί) = 0 outside (0, T) and putting υε = v*pε we see from (22) that

(23) (d/*)(f.(0, «(0) = W(0, tt(0) + 0>.(0> tt'(O

= - 2(Fι;β(0, Fιι(0) - <(Bφpβ, u(0> -

on (ε, T-ε). Choose ί, se(0, T) and ε>0 such that 0<5-2ε<5<ί<ί + 2ε<Γ.
Then, integrating (23) over (5, 0 we obtain

(24) (t>.(0, tt(0) - (Φ)> u(s))

ϋ
s+ε f s Γί+ε Γt+2ε )

rfτ\ rfσ+\ rfτ dσ \ pε(τ-σ)b(v(τ), v(τ), «(
s-ε Js-2ε Jί-ε Jί )

), t (σ), uε(σ)) + b(u(σ), u(σ), vε(σ))}dσ

Here we have used the fact that p(f) is an even function. As ε->0, uε and vε tend
respectively to u and t; in L?oc(0, Γ; X2 n (^J'2(D))Π). Therefore we may as-
sume, by passing to a subsequence, that vε(σ) tends to υ(σ) in (W^2(D))n almost
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everywhere in (0, T). Moreover, since u e C([0, T] Xp), we see that uε(σ)
tends to u(σ) in Xp uniformly on each compact subset of (0, T). These obser-
vations together with (24) imply that for almost all t and 5,

(25) WO, ιι(0) - (Φ), u(s)) + 2 (Γt<σ), Fκ(σ))dσ
Js

= - Γ {Z>0(σ), c(σ), «(σ)) + b(u(σ\ u(σ\ v(σ))}dσ.
Js

But, since v(i) is weakly continuous and u(f) is strongly continuous on [0, T]
with values in X2, one concludes that (25) is valid everywhere on [0, T]. Letting
s-»0 we obtain (21). Thus the proof of Lemma 3.4 is completed.

PROOF OF THEOREM 3.2. Let υ(t) be a weak solution and u(f) the solution of
(I) with the same initial function a. As is noticed before, v(f) satisfies the energy
inequality

KOII8.2 + 2Γ ||Fφ)||§f2<fc < Nlg.2 for a.e. f e(0, T),
Jo

and u(t) satisfies the energy equality

IKOIIg.2 + 2Γ ||Γu(s)||8.2ds = ||α||g f2 for each t e [0, T] .
Jo

Adding these and subtracting twice the equality (21) we see, with w(t)=v(f) — u(t),
that

(26) IKOIIS.2 + 2JVw(s)||g.2ds

< 2 (' {fc(t;(s), φ), u(s)) + fe(u(s), tι(s), φ))}ds
Jo

= 2 ί' {6(c(s), φ), u(s)) - f>(u(s), φ), u(s))}ds
Jo

, w(s), ιι(s))ds.
o

By the Sobolev imbedding theorem we get

\b(w, w, u)\ ^ C\\ \w\.\u\ ||0i2||Γw||o,2

Since (l + n/p)/2 + (l — n/p)/2=l, we see from Young's inequality that

2\b(w, w, u)|
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with some constant C>0. Thus it follows from (26) that

Since u(t) is strongly continuous with values in Xp the assertion follows from the
Gronwall inequality. This completes the proof.

Finally we state a regularity theorem for the 4-dimensional problem.

THEOREM 3.5. Suppose n = 4. Then for each ε>0 and each aeX2Γ\

(W1+ε>2(D))4 n(Wi>2(£))4 there exist a T>0 and a unique weak solution on
(0, Γ), which belongs to L2(0, Γ; (^2'2(Z)))4) IΊ W^2(09 Γ; X2). Further, Γ>0
can be chosen arbitrarily if a is sufficiently small in (Wl+ε'2(DJ)4.

REMARK 3.6. In [12] Serrin proved that for each ae X2 n (W^2(DJ)4 n
(W2>2(D))4 there exist a T>0 and a weak solution u such that w'eL2(0, T; J*f2 Π
(Wfr2(D))4) Π L°°(0, T; Jf2). But he could not prove its uniqueness except when
a is sufficiently small in (W2'2(DJ)4. Then, von Wahl [15] proved that the
(unique) weak solution obtained by Serrin belongs to L^(0, T; (W2^(D))4) n
Wi rφ, T XJ if a is in XPΠ(W^(D))4 f](W2-P(D))4 for some p>5 with its
W2'2-norm sufficiently small. Thus Theorem 3.5 is, in a way, an improvement
of the results of [12] and [15]. The unique existence result for the initial data in

l+ ε'2(£>))4 seems to be new.

As for the proof of Theorem 3.5, the existence and uniqueness part follows
from Theorem 3.2 since the initial value a belongs to X4 / ( 1_ ε ) by the Sobolev
imbedding theorem. The regularity result follows from a result of Ladyzhenskaya
[8] concerning the uniqueness and regularity of solutions for Oseen's linearized

equation.

REMARK 3.7. In [6], Inoue and Wakimoto extended the results of Kato
and Fujita to the case n = 4, 5. They proved the existence of strong solutions in
X2 for the initial data in X2 n W'2(D))4, if n = 4, and in X2 n (W^2(DJ)5 n
(W 3/2'2(D))5, if n = 5. Since the Sobolev imbedding theorem tells us that Wl'2a
L4 (n = 4) and W3/2>2c:L5 (w = 5), it would be possible to include the results of
[6] if we could solve the equation (I) in Xn. It is not known whether the solutions

constructed in [6] are unique or not in the class of weak solutions.

REMARK 3.8. In [16], von Wahl proved the existence of solutions of the
integral equation (II) with P/=0 and p>n by a method similar to ours. In
addition, he showed that if u e C([0, T] Xp) is a solution of (II) then dufdt,
du/dxj and d2u/dXjdxk all belong to C((0, T]; Cl'n+\B))9 where Cα(D) is the
space of functions which are Holder continuous on D with exponent α. This
extends the interior regularity result of Serrin [12].
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