Ascendancy in locally solvable, ideally finite Lie algebras

Ernest L. STITZINGER (Received April 23, 1980)

In a recent work, N. Kawamoto has obtained conditions which are sufficient for a subalgebra A to be ascendant in a generalized solvable Lie algebra L. One such condition is that for each $a \in L$, there exists k = k(a) such that (a) $ad^k x \in A$ for all $x \in A$. The results are obtained when the scalars come from a field of characteristic 0, a condition which is shown to be necessary for certain of the results. It seems to be of interest to obtain similar results without restrictions on the characteristic. Such a result is shown here and some consequences are derived.

The Lie algebras considered here are assumed to be over a field. The algebras are assumed locally solvable and ideally finite (see [3]); that is, each element of the algebra is contained in a finite dimensional ideal. Let \Im denote the class of locally solvable, ideally finite Lie algebras. Let $L \in \Im$ and A be a subalgebra of L. For each $a \in A$, let $L_0(a) = \{x \in L; (x) \text{ ad}^k a = 0 \text{ for some } k = 1, 2, ...\}$ and $L_1(a) = \bigcap_{k=1}^{\infty} \text{ range (ad}^k a)$. Since $L \in \Im$, clearly $L = L_0(a) + L_1(a)$ for each $a \in L$. In the conclusion of the main result, a condition which is apparently stronger than ascendancy is obtained. A is ω -ascendant in L if there exists a chain $A = A(0) \lhd A(1) \lhd \cdots A(\omega) = L$ where $A(\omega) = \bigcup_{k=0}^{\infty} A(k)$. The conditions which are sufficient for ω -ascendancy are also necessary. This is the context of the following main result.

THEOREM 1. Let $L \in \mathfrak{I}$ and let A be a subalgebra of L. Then the following are equivalent:

- 1. A is ω -ascendant in L.
- 2. $A + L_0(a) = L$ for all $a \in A$.
- 3. $L_1(a) \subseteq A$ for all $a \in A$.

PROOF. That 1 implies 3 is clear. Assume that 3 holds. Let $a \in A$, $x \in L$ and B be a finite dimensional ideal which contains x. Then $B = B_0(a) + B_1(a)$ and $x \in A + B = A + B_0(a) \subseteq A + L_0(a)$. Hence $L = A + L_0(a)$ and 2 follows. Now assume that 2 holds. L is the union of finite dimensional ideals $\{H(\lambda)\}$. Hence each $H(\lambda)$ contains a chain $0 = H(\lambda, 0) \subset \cdots \subset H(\lambda, n(\lambda)) = H(\lambda)$ where each $H(\lambda, i)$ is an ideal in L and $H(\lambda, i)/H(\lambda, i-1)$ is an irreducible L-module. Since L is locally solvable and $H(\lambda, 1), H(\beta, 1)$ are minimal, $H(\lambda, 1)H(\beta, 1)=0$. Consider $H(\lambda, j), H(\beta, k)$. Then $T=H(\lambda, j-1)+H(\beta, k-1)$ is an ideal in L and $H(\lambda, j) + T/T$, $H(\beta, k) + T/T$ are either minimal ideals or 0 in L/T. Hence $(H(\lambda, j) + T)(H(\beta, k) + T) \subseteq T$ and

(*)
$$H(\lambda, j)H(\beta, k) \subseteq H(\lambda, j-1) + H(\beta, k-1).$$

We construct a chain of subspaces $\{\Omega(i)\}$ such that $\{A + \Omega(i)\}$ is of the desired type. Let $\Omega(0)=0$ and $\Omega(1)$ is constructed as follows. If $H(\lambda) \not\subseteq A$, then let $r(\lambda)$ be the smallest positive integer such that $H(\lambda, r(\lambda)) \not\subseteq A$. Let $W(\lambda, 1) =$ $\{z \in H(\lambda, r(\lambda)); zA \subseteq A\}$. Now $H(\lambda, r(\lambda)) + A/A$ is finite dimensional and since $L_0(a) + A = L$ for all $a \in A$, each $a \in A$ induces a nilpotent operator on this space. Hence $W(\lambda, 1) \neq 0$. If $H(\lambda) \subseteq A$, then let $r(\lambda)$ be the smallest positive integer such that $H(\lambda, r(\lambda)) = H(\lambda)$ and define $W(\lambda, 1)$ as above. In this case $W(\lambda, 1)$ may be 0. Since $W(\lambda, 1) \subseteq H(\lambda, r(\lambda))$ and $H(\lambda, r(\lambda) - 1) \subseteq A, W(\lambda, 1)W(\beta, 1) \subseteq A$ $H(\lambda, r(\lambda))H(\beta, r(\beta)) \subseteq A$ by (*). Also $W(\lambda, 1)A \subseteq A$. Let $\Omega(1)$ be the subalgebra of L generated by all $W(\lambda, 1)$. Then $(A + \Omega(1))A \subseteq A$. Now suppose that $\Omega(k)$ has been constructed and we construct $\Omega(k+1)$. If $H(\lambda) \not\subseteq A + \Omega(k)$, let $r(\lambda)$ be the smallest positive integer such that $H(\lambda, r(\lambda)) \not\subseteq \Omega(k) + A$. Then $H(\lambda, r(\lambda)) + A + A$ $\Omega(k)/A + \Omega(k)$ is finite dimensional and each element of A induces a nilpotent linear transformation on this space. Hence $W(\lambda, k+1) = \{z \in H(\lambda, r(\lambda));$ $zA \subseteq A + \Omega(k)$ is not zero. If $H(\lambda) \subseteq A + \Omega(k)$, let $r(\lambda)$ be the smallest positive integer such that $H(\lambda, r(\lambda)) = H(\lambda)$ and define $W(\lambda, k+1)$ as before. Let $\Omega(k+1)$ be the algebra generated by all $W(\lambda, k+1)$. Then $\Omega(k+1)A \subseteq A + \Omega(k)$. Also $W(\lambda, k+1) \subseteq H(\lambda, r(\lambda)), H(\lambda, r(\lambda)-1) \subseteq A + \Omega(k).$ Hence $W(\lambda, k+1)W(\beta, k+1)$ $\subseteq H(\lambda, r(\lambda))H(\beta, r(\beta)) \subseteq A + \Omega(k)$ by (*). Therefore $\Omega(k+1)\Omega(k+1) \subseteq \Omega(k) + A$ and $(\Omega(k+1)+A)(\Omega(k+1)+A) \subseteq \Omega(k)+A$. Since $W(\lambda, 1) \subset W(\lambda, 2) \subset \cdots$ until $H(\lambda)$ is reached, $H(\lambda) \subseteq \Omega(\dim H(\lambda))$ and $L \subseteq \bigcup_{i=1}^{\infty} \Omega(i)$. Hence $\{A + \Omega(i)\}$ shows that A is ω -ascendant in L.

Let $A \subseteq L \in \mathfrak{I}$. We investigate the subalgebras of L in which A is ω -ascendant. First a well-known lemma on subinvariant subalgebras is obtained in the present setting. Let $L \supseteq L^2 \supseteq \cdots$ be the lower central series of L and $L^{\omega} = \bigcap L^k$.

LEMMA 1. Let L be a Lie algebra over a field and A be ω -ascendant in L. Then $A^{\omega} \triangleleft L$.

PROOF. Let $A = A(0) \lhd A(1) \lhd \cdots A(\omega) = L$ where $A(\omega) = \bigcup A(i)$. Let $x \in L$. Then $x \in A(n)$ for some *n* and *A* is subinvariant in A(n). Since $A^{\omega} \lhd A(n)$, $xA^{\omega} \subseteq A^{\omega}$ and $A^{\omega} \lhd L$.

LEMMA 2. Let $L \in \mathfrak{I}$ and let A, H, K be subalgebras of L such that $A \subseteq H \cap K$. If A is ω -ascendant in H and K, then A is ω -ascendant in $\langle H, K \rangle$.

PROOF. We may assume that $L = \langle H, K \rangle$. Then $A^{\omega} \triangleleft H$, K, hence $A^{\omega} \triangleleft L$

and we may assume that $A^{\omega} = 0$. Let $a \in A$. Then $H_1(a) \subseteq A$ by Theorem 1. Let $x \in H$. Then there exists k such that $x \operatorname{ad}^k a \in A$ and then, since $A^{\omega} = 0$, $x \in L_0(a)$. Hence $L_0(a) \supseteq H$ and similarly $L_0(a) \supseteq K$. Therefore $L_0(a) = \langle H, K \rangle = L$ for each $a \in A$. Hence A is ω -ascendant in L by Theorem 1.

THEOREM 2. Let $A \subseteq L \in \mathfrak{I}$. Then there exists a unique maximal subalgebra of L in which A is ω -ascendant.

PROOF. Let \mathscr{S} be the collection of all subalgebras of L in which A is ω -ascendant. Clearly $\mathscr{S} \neq \emptyset$. Order \mathscr{S} by inclusion and let $T(1) \subseteq T(2) \subseteq \cdots$ be an increasing chain in \mathscr{S} . Let $R = \bigcup T(i)$. If $x \in R$, then $x \in T(n)$ for some n. Let $a \in A$. Then there exists k such that $x \operatorname{ad}^k a \in A$, hence $R_1(a) \subseteq A$ for each $a \in A$ and A is ω -ascendant in R. Hence \mathscr{S} has a maximal element S by Zorn's lemma. Let $U \in \mathscr{S}$. Then $U + S \in \mathscr{S}$ by Lemma 2. Hence $U \subseteq S$ and S contains all elements of \mathscr{S} .

The maximal subalgebra of L in which A is ω -ascendant will be denoted by $\alpha(A, L)$. Note that $\alpha(A, L)$ is the maximal subalgebra B of L such that $B_1(a) \subseteq A$ for all $a \in A$. We use $\alpha(A, L)$ to prove the following

THEOREM 3. Let $A \subseteq L \in \mathfrak{I}$. Then the following are equivalent:

- 1. A is ω -ascendant in L.
- 2. A is ω -ascendant in every subalgebra B of L such that $A \subseteq B$ and dim B/A is finite.
- 3. A is ω -ascendant in $\langle A, x \rangle$ for every $x \in L$.
- 4. A is ω -ascendant in $\langle A, A \text{ ad } x \rangle$ for every $x \in L$.

PROOF. Since each of the conditions clearly implies the next, it remains to show that 4 implies 1. Suppose that A is ω -ascendant in $\langle A, A \, \mathrm{ad} \, x \rangle$ for every $x \in L$ but A is not ω -ascendant in L. Then $\alpha(A, L) \neq L$. Let $x \in L, x \notin \alpha(A, L)$ and let N be a finite dimensional ideal of L containing x. Then $\alpha(A, L)$ has finite codimension in $\alpha(A, L) + N$, hence there exists a minimal subalgebra of $\alpha(A, L) + N$ which contains $\alpha(A, L)$ properly. Hence we may assume that there exists $A \subseteq L \in \mathfrak{I}$ such that A is ω -ascendant in $\langle A, A \, \mathrm{ad} \, x \rangle$ for all $x \in L$, A is not ω -ascendant in L but A is ω -ascendant in a maximal subalgebra M of L. We break off the next piece of the proof as

LEMMA 3. There exists $x \in A$ such that $A + L_0(x) = M$.

PROOF. Since M is maximal in L and $L \in \mathfrak{I}$, M is of finite codimension in L. Let K be the maximal ideal of L contained in M. Then K has finite codimension, for let N be a finite dimensional ideal of L which supplements M and let $C_L(N)$ be the centralizer of N in L. Then $C_L(N) \cap M = J \triangleleft L$ and since $C_L(N)$ has finite codimension in L, J does also. Furthermore since A is ω -as-

cendant in M, $M \subseteq A + L_0(x)$ for all $x \in A$, hence we need only to find $x \in A$ such that $L_0(x) \subseteq M$. Now $A + K/K = \overline{A}$ is subinvariant in $M/K = \overline{M}$ and \overline{M} is self-normalizing in $L/K = \overline{L}$. Now \overline{L} is a primitive algebra and by the same proof as [1, Theorem 4, Case II], there exists $x \in A$ such that $\overline{M} = \overline{A} + \overline{L}_0(\overline{x})$. (Note that [1, Theorem 4] is under stronger assumptions that the \overline{L} in this situation but the Case II still carries through.) Then $L_0(x) \subseteq M$ since if $y \in L$ and $y ad^n x = 0$, then $(y+K) ad^n (x+K) = (y ad^n x) + K = K$ and $\overline{y} \in \overline{M}$, hence $y \in M$ and $L_0(x) \subseteq M$.

We now complete the proof of Theorem 3. We show that if $y \notin M$, then $\langle A, A \text{ ad } y \rangle = L$. Hence A is ω -ascendant in L, a contradiction. Let $x \in A$ such that $M = A + L_0(x)$. Suppose that $\langle A, A \text{ ad } y \rangle \neq L$. Then $\langle A, A \text{ ad } y \rangle \subseteq \alpha(A, L) = M$ by Theorem 2 and $xy \in M$. Let B be a finite dimensional ideal such that $y \in B$. Then $y \in B_0(x) + B_1(x) \subseteq L_0(x) + L_1(x)$. Let y = s + t where $s \in L_0(x)$, $t \in L_1(x)$. Now $t \notin M$ since $s \in M$. Then $xt = xy - xs \in M$. However, ad x is non-singular on the finite dimensional space $L_1(x)$ and $M \cap L_1(x)$ is ad x invariant. Hence if $z \in L_1(x)$ and $xz \in M \cap L_1(x)$, then $z \in M \cap L_1(x)$. In particular this holds for z = t, a contradiction. Hence $\langle A, A \text{ ad } y \rangle = L$ and $\alpha(A, L) = L$. Therefore, 4 implies 1 and Theorem 3 is shown.

References

- C-Y. Chao and E. L. Stitzinger, Subinvariance in solvable Lie algebras, Canad. J. Math. 28 (1976), 181-185.
- [2] N. Kawamoto, Subideality and ascendancy in generalized solvable Lie algebras, Hiroshima Math. J. 9 (1979), 701-716.
- [3] I. N. Stewart, Lie algebras generated by finite dimensional ideals, Pitman, London-San Francisco-Melbourne, 1975.

Department of Mathematics, North Carolina State University, Raleigh, North Carolina