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Ascendancy in locally solvable, ideally finite Lie algebras
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In a recent work, N. Kawamoto has obtained conditions which are sufficient
for a subalgebra A to be ascendant in a generalized solvable Lie algebra L. One
such condition is that for each αeL, there exists k = k(a) such that (α)adfc xeA
for all xeA. The results are obtained when the scalars come from a field of
characteristic 0, a condition which is shown to be necessary for certain of the
results. It seems to be of interest to obtain similar results without restrictions
on the characteristic. Such a result is shown here and some consequences are
derived.

The Lie algebras considered here are assumed to be over a field. The
algebras are assumed locally solvable and ideally finite (see [3]); that is, each
element of the algebra is contained in a finite dimensional ideal. Let 3 denote
the class of locally solvable, ideally finite Lie algebras. Let L e 3 and A be a
subalgebra of L. For each aeA, let L0(α) = {xeL; (x)adfc α = 0 for some
/c = l,2,...} and L1(fl) = Λf=ι range(adfc a). Since Le3, clearly L = L0(a) + Ll(a)
for each a e L. In the conclusion of the main result, a condition which is ap-
parently stronger than ascendancy is obtained. A is ω-ascendant in L if there
exists a chain A = A(Q)^A(i)^ -Ά(ω) = L where A(ω) = \Jf=0 A(k). The con-
ditions which are sufficient for ω-ascendancy are also necessary. This is the
context of the following main result.

THEOREM 1. Let Le3 and let A be a subalgebra of L. Then the following
are equivalent:

1. A is ω-ascendant in L.
2. A + L0(a) = L for all aeA.
3. L^^A for all aeA.

PROOF. That 1 implies 3 is clear. Assume that 3 holds. Let aeA, xeL
and B be a finite dimensional ideal which contains x. Then B = B0(a) + Bl(a)
and x e A -f B = A + B0(a) ^A + L0(α). Hence L = A + L0(a) and 2 follows. Now
assume that 2 holds. L is the union of finite dimensional ideals (H(λ)}. Hence
each H(λ) contains a chain Q = H(λ, 0) cz - - - c H(λ, n(λ)) = H(λ) where each H(λ, /)
is an ideal in L and H(λ, i)/H(λ, i— 1) is an irreducible L-module. Since L is
locally solvable and H(λ, 1), H(β, 1) are minimal, H(λ, l)#(β, 1) = 0. Consider
H(λ, j ) , H(β, k). Then T=H(λJ-ϊ) + H(β,k-ϊ) is an ideal in L and
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H(λ9j)+TIT,H(β,k) + TIT are either minimal ideals or 0 in L/T. Hence
(H(λ, j ) + T) (H(β, /c) + Γ) <= Γ and

(*) H(λ, j)H(β, k) c= H(λ, j - 1) + H(β, k-l).

We construct a chain of subspaces {Ω(i)} such that {A + Ω(i)} is of the desired
type. Let ί2(0) = 0 and Ω(l) is constructed as follows. If H(λ)£A9 then let
r(λ) be the smallest positive integer such that H(λ, r(λ))<£A. Let W(λ, 1) =
{zeH(λ, r(λ))ι zA^A}. Now H(λ, r(λj) + A/A is finite dimensional and since
L0(a) + A = L for all a eA9 each a eA induces a nilpotent operator on this space.
Hence W(λ, 1)^0. If H(λ)cA, then let r(λ) be the smallest positive integer
such that H(λ, r(λ)) = H(λ) and define W(λ, 1) as above. In this case W(λ9 1)

may be 0. Since W(λ, l)sH(λ, r(T)) and H(λ, KA)-l)s^, W(λ, l)W(β, l)s
//(A, r(λ))H(β, r(βJ)<=A by (*). Also fF(λ, l)^[c A Let O(l) be the subalgebra

of L generated by all W(λ9 1). Then (A + Ω(\))A^A. Now suppose that Ω(k)
has been constructed and we construct Ω(k + 1). If H(λ)<£A + Ω(k)9 let r(λ) be the

smallest positive integer such that H(λ, r(λ))£Ω(k) + A. Then H(λ, r(λ)) + A +
Ω(k)/A + Ω(k) is finite dimensional and each element of A induces a nilpotent
linear transformation on this space. Hence W(λ9 k + \) = {zeH(λ, r(λ));
zA^A + Ω(k)} is not zero. If H(λ) £ A + Ω(fe), let r(A) be the smallest positive
integer such that H(λ, r(/l)) = H(A) and define »Γ(λ, fe + 1) as before. Let Ω(ik+l)
be the algebra generated by all W(λ, fc+1). Then Ω(k+l)A^A + Ω(k). Also

W(λ, k + 1) c ff (λ, r(A)), fί(A, rW - 1) s ̂ 4 + Ω(k) . Hence Pf(A, fe + ϊ)W(β, k+\)
= H(λ,r(λy)H(β9r(β))cA + Ω(k) by (*). Therefore Ω(k+l)Ω(k + l)^Ω(k) + A
and (Ω(fc + 1) + A) (Ω(k + 1) + Λ) £ β(/c) + A. Since ^(/l, 1) c Pf (A, 2) c - until

/ί(A) is reached, H(λ)^Ω(άim H(λ)) and L^V?=i Ω(i). Hence {X + Ω(i)} shows
that A is ω-ascendant in L.

Let ^4^Le3. We investigate the subalgebras of L in which A is ω-
ascendant. First a well-known lemma on subinvariant subalgebras is obtained
in the present setting. Let L^L2^ ••• be the lower central series of L and Lω =

LEMMA 1. Lei L be a Lie algebra over a field and A be ω-ascendant in

L.

PROOF. Let A = A(Q)^A(l)^"Ά(ω) = L where A(ω) = \J A(i). Let xeL.
Then x e ^4(n) for some n and ^4 is subinvariant in A(n). Since ^4ω<α v4(n), xAω

LEMMA 2. Let Le3 and /eί A, H, K be subalgebras of L such that A^
H n K. If A is ω-ascendant in H and K, then A is ω-ascendant in <#, Ky.

PROOF. We may assume that L = <#, Ky. Then Aω^H9 K, hence
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and we may assume that Aω = Q. Let aeA. Then Hl(a)^A by Theorem 1.
Let xeH. Then there exists k such that xsLάkaeA and then, since Aω = Q,

x e L0(α). Hence L0(α) 3 H and similarly L0(α) 3 #. Therefore L0(α) = <#, £>
= L for each a eA. Hence A is ω-ascendant in L by Theorem 1.

THEOREM 2. Let v4<=Le3. Then there exists a unique maximal sub-
algebra of L in which A is ω-ascendant.

PROOF. Let &> be the collection of all subalgebras of L in which A is ω-
ascendant. Clearly y^0. Order & by inclusion and let T(l)cΓ(2)c... be

an increasing chain in ΪS. Let R = \J T(i). If xeR, then xe T(n) for some n.
Let aeA. Then there exists k such that xad f e0e,4, hence R^cή^A for each
α e A and A is ω-ascendant in R. Hence & has a maximal element S by Zorn's
lemma. Let U e&. Then U + Se&> by Lemma 2. Hence ί/^s and 5 con-
tains all elements of &*.

The maximal subalgebra of L in which A is ω-ascendant will be denoted by
α(v4, L). Note that α(y4, L) is the maximal subalgebra B of L such that Bl(ά)^A
for all aεA. We use αG4, L) to prove the following

THEOREM 3. Let A^Le3. Then the following are equivalent:
1. A is ω-ascendant in L.
2. A is ω-ascendant in every subalgebra B of L such that A^B and

dimB/^4 is finite.

3. A is ω-ascendant in <^4, x> for every xeL.
4. A is ω-ascendant in <X, A ad x> for every x e L.

PROOF. Since each of the conditions clearly implies the next, it remains to
show that 4 implies 1. Suppose that A is ω-ascendant in <A, 4adx> for every

x e L but A is not ω-ascendant in L. Then a,(A, L)^L. Let xeL, x^α(/l, L)
and let AT be a finite dimensional ideal of L containing x. Then α(/4, L) has
finite codimension in α(4, L) + N, hence there exists a minimal subalgebra of
α(/l, L) + N which contains α(X, L) properly. Hence we may assume that there
exists A c L e 3 such that yl is ω-ascendant in <^4, ^4 ad x> for all x e L, ^4 is not
ω-ascendant in L but yl is ω-ascendant in a maximal subalgebra M of L. We
break off the next piece of the proof as

LEMMA 3. There exists xeA such that A + L0(x) = M.

PROOF. Since M is maximal in L and Le3, M is of finite codimension in
L. Let K be the maximal ideal of L contained in M. Then K has finite
codimension, for let N be a finite dimensional ideal of L which supplements M
and let CL(ΛΓ) be the centralizer of N in L. Then CL(N) n M = J<ιL and since
CL(N) has finite codimension in L, J does also. Furthermore since A is ω-as-
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cendant in M, M^A + L0(x) for all xeA, hence we need only to find xeA such
that L0(x)^M. Now A + K/K = Ά is subinvariant in M/K = M and M is self-
normalizing in L/K = L. Now L is a primitive algebra and by the same proof as
[1, Theorem 4, Case II], there exists xeA such that M = Ά + LQ(x). (Note that
[1, Theorem 4] is under stronger assumptions that the L in this situation but the
Case II still carries through.) Then L0(x)^M since if y e L and y adn x = 0, then

yeM, hence y e M and L0(x)^M.

We now complete the proof of Theorem 3. We show that if y^M, then
<v4, A ad y> =L. Hence ^4 is ω-ascendant in L, a contradiction. Let xeA such
that M = A + L0(x). Suppose that < ,̂ A ad y> ̂  L. Then <v4, yl ad y> c ̂ ,4, L)

= M by Theorem 2 and x/eM. Let B be a finite dimensional ideal such that

yeB. Then yeB0(x) + B1(x)^L0(x)-{-L1(x). Let y = s + ί where seL0(x),
teL^x). Now ί^M since seM. Then xί = x^ — xseM. However, adx is
non-singular on the finite dimensional space L^x) and M n L^x) is ad x invariant.
Hence if zeL x(x) and xzeMnL^x), then zeMnL^x). In particular this
holds for z = t9 a contradiction. Hence <^4, A ad y> = L and α(A, L) = L. There-
fore, 4 implies 1 and Theorem 3 is shown.
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