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§1. Introduction

Let X and Y be real linear spaces which are in duality with respect to a bi-
linear functional (( , )), and let Z and W be real linear spaces which are in duality
with respect to a bilinear functional (( , )),. A standard linear programming
problem is:

(P) Find M, =inf{((x, yo))1; x€ P, Ax — zo € Q},

where y,€ Y, zo€ Z, P and Q are weakly closed convex cones in X and Z respec-
tively and A is a weakly continuous linear mapping from X to Z.
A dual problem of (P,) is:

(Dy) Find M} = sup {((z, w));; we Q°, yo — A*we P},

where P° and Q° are the polar sets of P and Q respectively and A* is the adjoint
mapping of A.
Kretschmer showed

THEOREM O ([4; Theorem 3]). (a) If the set H={(Ax—z, r+((x, yo))1);
xeP, zeQ, r>0} is weakly closed in Zx R and M, or M% is finite, then M, =
M% and there exists an xq € P such that Axq—z€ Q and ((xo, o)1 =M,.

(b) If there exists an element wy € Q° such that y,— A*w, is contained in
the interior of P° with respect to the Mackey topology, then H is weakly closed.

Later on, Fan [2 and 3] dealt with the case where one of P and Q is merely
closed convex. Under some conditions, he showed a duality between (P,) and

(D,):
(D;) sup{(((zo, W)2 — D/r; r >0, weQ°, ry, — A*we P°}.

Furthermore, Levin-Pomerol [5] and Zalinescu [9] were interested in the prob-
lems which contain a positively homogeneous functional:

(P3) inf{((x, yo))1; x€ P, (Ax — C) n Q # g},
where C is a weakly compact convex subset of Z,

(D3) sup{(gc(w) — Dfr; r>0,weQ° ry, — A*we P},
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where g(w)=inf{((z, w)),; ze C}.

On the other hand, programming problems with set-valued mappings have
been discussed by several authors. Tagawa considered the following (P,) in
[8; Kapitel 8]:

(P,) inf{f(x); xeP, Bx n Q # @},

where fis a convex functional on X, P is a quasi-convex subset of X, Q is a convex
cone in Z which has a nonempty interior with respect to the Mackey topology and
B is a set-valued mapping from X to Z whose graph is convex.

Here we are concerned with the problem (P,). If we assume that f and B
are positively homogeneous, then a dual problem of (P,) is similar to (D)~ (D3).
In the present paper, based on the ideas in linear programming problems, we
deal with the problem (P,) under some additional assumptions.

In §2, we define a programming problem and its dual problem, and prove
a duality theorem, which is a generalization of Zalinescu [9; Theorem 4]. In
§ 3, we are concerned with sufficient conditions for our duality theorem. Fan
[3; Theorem 6] and Nakamura-Yamasaki [6; Theorem 3.1] improved Theorem
0, (b), by using Dieudonné’s proposition [1; Proposition 1]. Here we also use
the proposition and give conditions similar to the ones in Fan [3; Theorems 4 and
6] and Theorem O, (b).

The author wishes to express his deepest gratitude to Professor M. Yamasaki
for many valuable suggestions and discussions during the preparation of this

paper.

§2. A duality theorem

Let X, Y, Z and W be as in the preceding section. By a(X, Y) we denote the
weak topology on X, and by 7(X, Y) the Mackey topology on X with respect to
the above duality. Throughout this paper, we assume that each one of the
paired spaces is assigned the weak topology unless otherwise stated. We always
assume also that the cones considered have their vertices at the origin of the
space.

Let P be a closed convex subset of X. The polar set P° of P is defined by

P°={yeY;((x,y), = —1 forall xeP}.

If P is a convex cone, then P°={ye Y; ((x, ¥)); >0 for all xe P}. The polar set
P°° of P° is equal to P if and only if P is a closed convex set which contains the
origin. We define Q° and Q°° for a closed convex subset Q of Z similarly.

We introduce the definitions of a convex process and its adjoints which are
due to Rockafellar [7].
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DEerINITION 1. A convex process from X to Z is a set-valued mapping A4: x
— Ax such that

(1) A(x, + x,)> Axy + Ax, forall x,, x,eX,
(2) A(tx)=tAx forall xeX and t>0,
(3) 0€ Ao0.

We set dom A= {x; Ax#g}, where ¢ denotes the empty set. A set-valued
mapping A is a convex process if and only if graph A={(x, z); xedom 4 and
ze Ax} is a convex cone which contains the origin of X xZ. If graphA is a
closed convex cone, A is called a closed convex process.

We shall define two kinds of adjoints.

DEFINITION 2. Let A be a convex process from X to Z. We say that A4 is
supremum oriented if its adjoint convex process A* from W to Y is defined by

A*w={yeY; ((z, w), <((x, y)); forall xedomA and zeAx}.

An infimum oriented convex process and its adjoint are defined in the same way
with the reversed inequality. A convex process which is supremum or infimum
oriented is called an oriented convex process.

These adjoints are always closed convex processes. If A is a supremum
oriented (resp. infimum oriented) closed convex process, then we understand that
A* is infimum (resp. supremum) oriented, so that 4= A4**,

An extended real valued function f on X is called positively homogeneous if
f(tx)=tf(x) for all t>0 and xe X. Let f be a lower semicontinuous positively
homogeneous convex function on X and g be an upper semicontinuous positively
homogeneous concave function on W. In this paper, we always assume that
—w<f(x)<o0, —o<gw)<oo and [f(0)=g(0)=0. We set f(0)={yeY;
f(x)>((x, y)), for all xe X} and dg(0)={z e Z; g(w) <((z, w)), for all we W}.

We prove

LEMMA 1. Both 0f(0) and 0g(0) are nonempty closed convex sets and
f)=sup{((x, »));; y€f(0)} for all xe X and g(w)=inf{((z, w)),; z € 0g(0)}
forallwe W. Furthermore if f is ©(X, Y)-continuous on X, then df(0) is o(Y, X)-
compact. Similarly if g is ©(W, Z)-continuous, then 0g(0) is a(Z, W)-compact.

ProOF. We set domf={xeX; f(x)<oo} and epif={(x,r)eXXR; xe
dom f and r> f(x)}. Since f is lower semicontinuous, epif is a nonempty closed
convex subset of X x R. First we show df(0)#¢. Since (0, —1)e&epif, by the
separation theorem, there exists y, € Y such that ((x, y,)); +r>0 for all (x, r)e
epif. This yields that —y, €df(0). Hence Jf(0)#g. Next we show that
f(x)=sup {((x, ¥))1; yedf(0)} for all xe X. Let xoeX and ro<f(x,). Since
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(xo, ro)tepif, by the separation theorem, there exists (y,, )€ Yx R such that
((x9, ¥1))1+1rot=—1 and ((x, y,)); +rt=>0 for all (x, r)eepif. From this, 1>0.
If >0, then we see that —t~'y, € df(0) and ((x¢, —t"'y,)); >ro. This means
that f(xo)=sup {((x¢, ¥))1; y€of(0)}. If t=0, then ((x, y;));=0 for all xe
domf and ((xq, ¥;));=—1. It follows that x,&&domf. Let y,edf(0). Then
Yo—5y; €f(0) for all s>0, since ((x, yo—5y1))1 <((*, yo))1 < f(x) for all xe X
and alls>0. Thus f(xq)=sup {((xe, ¥)):; y € f(0)} =00, because ((xg, Yo —SV1)1
=((x0> Yo)1 +s.

It is easy to check that 9f(0) is closed convex. Finally we show that 9f(0) is
a(Y, X)-compact if fis 7(X, Y)-continuous on X. By considering f(x)—((x, o)1
for yo€df(0), we may assume f>0. For U={x; f(x)<1}, we easily see that
f(0)= —U". Since the 7(X, Y)-interior of U contains the origin, we infer that
df(0) is a(Y, X)-compact by Alaoglu-Bourbaki’s theorem.

By considering —g, we see that the assertions on the functional g also hold.
This completes the proof.

Hereafter let A be a supremum oriented closed convex process from X to Z,
and P, Q be closed convex subsets of X and Z respectively. We assume that at
least one of P and Q is a cone. Let fand g be as above. For (4, P, Q, f, g), we
consider the following programming problem (2.1) and its dual problem (2.2):

(2.1) Find M = inf{f(x); xe S},
where S={x e P; (Ax—0dg(0)) n Q #@}.
(2.2) Find M*=sup {(g(w) — 1)/r; (w, r) € S*},

where S*={(w, r); r>0, we Q°, (rdf (0)— A*w) n P°#g}. If both P and Q are
cones, then M* is equal to M* in the problem

(2.2") Find M* = sup {g(w); we S*},

where S*={we Q°; (0f(0)— A*w) n P° # @}.
Here we use the convention that the infimum of a real function on the empty set
is equal to co. It is easy to check that M* <M.

Now we state

THEOREM 1. We assume that f is ©(X, Y)-continuous and the following two
conditions are satisfied:

(2.3) There exists an element X € P such that AX N Q+#¢ and f(X)<0.

(2.4) The set G={(x, —z, f(x)+7r); xedom A4, ze Ax, r>0}+(—P)x Q x {0} +
{0} x 0g(0) x {0} is a closed subset of X x Z x R.
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Then M=M* or M= —M*=c0. Furthermore if M is finite, then there exists
an element x, € S such that M =f(x,).

For the proof of Theorem 1 we shall use
LEMMA 2. We set
Gy ={(x, —z, f(x) + r); xedom A n domf, ze Ax, r > 0},
Hoy = {(yy — tyz, w, 1); wedom A%, y, € A*w, y, € 9f(0), t > 0}.

Then the polar set Gg of G, with respect to the dual pair {X xZ xR, Yx Wx R}
is equal to the closure Hy of Hy. In particular, if f is 1(X, Y)-continuous, then
GS=H0.

ProoF. It is easy to check that HycG;. We show that Hy<G,. Let
(x1s 2y, r) € Hg. Then ((x4, y;—ty,); +((z4, w)), +1tr; >0 for all wedom A*,
y1€ A*w, y,€df(0) and t>0. We set t=0. Then ((x;, y1)); +((z4, w)), >0 for
allwedom A* and y, € A*w. Since y, € A*wif and only if (y,, —w) € [graph 4]°,
we see that (x,, —z,)e[graph A]°°=graph A. Thus —z; e Ax,. Next we set
w=0, y;,=0and t=1. Then r; —((x;, y,)); =0 for all y, €9f(0). By Lemma 1,
we see that r; > f(x,;). It follows that (x,, z{, r;) € Go,. Thus Hy=H{°=Gj.

If fis ©(X, Y)-continuous, then 9f(0) is 6(Y, X)-compact by Lemma 1 so that
H, is closed. Thus Hy=Gg. This completes the proof.

PROOF OF THEOREM 1. We assume that M# oo or M*# —oo. Let pu be a
real number. First we show that if (0, 0, p)& G, then there exist (y,, Wy, to) €
Yx Wx R and «, € R such that ¢, >0 and oy < — 1 and the following two conditions
are satisfied:

(2.5) ((x =P,y + (= z+ 4, wo))a + tof(x) > — 1
for all xedom A, ze Ax, pe P and g€ Q.
(2.6) = ((2, wo)), + pto < ag

for all 2 € 0g(0).
Since G is a closed convex set, by the separation theorem, there exist (y, w, t) e
Yx Wx R and a>0 such that

=D+ (=z+q+2wW) +(f(D)+1)>a+ 1t

for all xedomA, zeAx, peP,qeQ,2€0g(0) and r>0. We set B, =
inf{((x—p, YD1 +{(—z+q, W), +t(f(x)+7r); xedom 4, ze Ax, pe P, qe€Q,
r>0} and B, =sup {tu—((2, w)),; £€0g(0)}. Then B,>a+pB,>p,. In the defi-
nition of B, as x and p take X which satisfies (2.3), as z and g take Z in AX N Q
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and take r=—f(X). Then we see that f, <0. Choose o, such that §, >a;>f,.
We note that >0 since f, is finite. We see that yo=—arly, wo= —arlw, t,=
—t/a; and ag= — B,/ satisfy (2.5) and (2.6).

We shall show that #,>0 if M#o00. We assume that t,=0 and M # co.
Then there exist xe P, Z€ AX and Z, € dg(0) such that Z—Z, € Q. We substitute
x=p=X,z=2Z and q=Z—2Z, in (2.5), and £=7Z, in (2.6). Then we have
—((Z1, wo))2=—1 and —((Z,, wy)), <ag<—1. This is a contradiction. Thus
to>0 if M+ 0.

Next we assume t,=0 and M*# —oo. Then there exist we Q°, j, € A*W,
y,€0f(0) and >0 such that 7y, —j, € P° and g(w)# —oo. Setting j=y,—1j,,
we obtain

2.7 (=2, 1 +(=2+ g, W), +if(x) = —1

for all xedom A4, ze Ax, peP and geQ. We set y(s)=(1—s)y,+sj, w(s)=
(1—5)wo+sw and t(s)=s? for 0<s<1. From (2.5) and (2.7), we derive ((x—p,
Y1 +((—z+4g, W), +t(s)f(x)>—1 for all xedom A4, ze Ax, peP, qeQ
and 0<s<1. From (2.6), the inequality

—((2, W)z + pt(s) < (1—s)og — sg(W) + sip

follows for all £2€0g(0). We set a(s)=(1—s)ag—sg(w)+siu. Then there exists
a real number s, such that 0<sy,<1 and a(sg)< —1. Thus y(so), w(so), t(so) and
os) satisfy (2.5) and (2.6).

In (2.5) we fix p and q. If ((x, yo)); +((—2z, wg))2+1tof(x)=y<0 for some
xedomA and zeAdx, then ((sx,yo)):+((—sz, wo)),+tof(sx)=sy<—1+
((p, yo))1—((g, wo)), for sufficiently large s>0. Since sz € A(sx), this is a con-
tradiction. Thus ((x, yo))1+({(—z, wo)),+1t,f(x)>0 for all xedomA and
ze Ax. Tt follows that (yy, wg, ty) € Gg. Since at least one of P and Q is a cone,
similarly we see that y,e —P° and wye Q°. Using Lemma 2, we observe that
(Wo, to) €S*. By (2.6), u<(ao+((2, wo)),)/to for all 2edg(0). It follows from
Lemma 1 that u<(g(wo)—1)/to <M*. Thus we see that u<N* if (0, 0, u)&G.

Next we take an arbitrary real number p such that u<M. Then it is easy to
check that (0, 0, u)¢G. Thus u<M* and we have M <NM*. Since M >M*,
we see that M = M*. _

Finally we assume that M is finite. If (0, 0, M)&G, then M <M* by the
above argument. This is a contradiction. Thus (0, 0, M)e G. From this, we
conclude that there exists an element x,€ S such that f(x,)=M. This com-
pletes the proof.

As a dual statement, for the problem (2.2") and the following problem (2.1),
we have a similar result:

(2.1") Find M = inf {(f(x) + 1)/r; (x, 1) €8},
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where S={(x, r); xe P, r>0, (Ax—rdg(0)) n Q#g}.

COROLLARY. We assume that g is (W, Z)-continuous, that the convex hulls
of {0} U P and {0}u Q are closed and that condition (2.3) and the following
condition (2.8) are satisfied

2.8) G*={(-w,y, —gw)+1r); r>0, wedom A*, ye A*w} + Q° x P° x
{0} — {0} x 9f\0) x {0} is closed.

Then M*=M or M*=—M=—o0. Furthermore if M* is finite, then there
exists an element wy € S* such that M* =g(w,).

Proor. Weset Bw=—A*(—w)ifwe —dom A*, and Bw=g if wg& —dom A*,
and set (w)=g(—w) for we W. We regard B as a supremum oriented convex
process from Wto Y. Then

—M* =inf{—§(w); we —Q°, (Bw — (—0f(0))) N P° # @}.

We apply Theorem 1 to (B, —Q°, P°, —§, —f). The condition corresponding
to (2.3) is satisfied with w=0 and the one corresponding to (2.4) is equivalent to
(2.8). Since 8g§(0)= —0dg(0) and B*x=Ax for all xe X, M*=M' or M*=—M'
= — o0 follows from Theorem 1, where

M =inf{(f(x) + 1)/r; xe P°°, r > 0, (Ax — rdg(0)) n Q°° # @}.

If M* is finite, then there exists w, € S* such that M*=g(w,).

Let us show that M'=M. Since P°°>P and Q°°>Q, M'<M. Let xe P
and r>0 be such that (Ax—rdg(0)) N Q°°#¢@. First we assume that P is a cone.
Then P=P°° and Q°° is the convex hull of {0} U Q. Let ze(Ax—rdg(0)) n Q°°.
Then there exist a real number ¢t and an element Ze Q such that 0<t<1 and
z=tZ. If t>0, then t"xe P and (A(t"1x)—(r/t)dg(0)) N Q> Z since P is a cone.
Thus (t7ix, r/H)eS and (fF(X)+D)/r>(fX)+)r=(ft"1x)+D)/(rt-)>M. If
t=0, then Ax—rdg(0)20. For XeP in (2.3), (x+%,7) e S and (f(x)+1)/r=(f(x)
+f &) +1)/r=(f(x+X)+1)/r> M since f(%) <0 by (2.3). It follows that M’ > .
If Q is a cone, we can similarly prove that M’ >M. This completes the proof.

REMARK. In Theorem O, the set H={(Ax—z, r+f(x)); xe P, ze Q, r>0}
was considered instead of G under the condition that A4, f and g are continuous
and linear. We note that the closedness of G and the closedness of H are
equivalent if 4, f and g are continuous and linear; we omit the proof.

§3. Closedness of the set G

In this section we assume that f is 7(X, Y)-continuous and g is ©(W, Z)-
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continuous, and give some sufficient conditions for the closedness of the set G in
Theorem 1. ,

Let C be a closed convex subset of X. We denote the 7(X, Y)-interior of C
by int C, and set cone C={tx; t>0, xe C}. An asymptotic cone ac C of C is
defined by acC=n\,,,#(C—x), where xeC. The following proposition is
well-known (cf. [7; §8]), so we omit the proof.

PROPOSITION. ac C is a closed convex cone independent of the choice of
xeC and C+acC=C.

The following Lemma 3 is also well-known. See Dieudonné [1; Proposition
1], Zarinescu [9; Theorem 12] and Nakamura-Yamasaki [6; Corollary of
Theorem 2.2].

LEMMA 3. Let C and D be closed convex subsets of X.

(1) IfacCn(—acD) is a linear subspace and at least one of C and D is
locally compact, then C+ D is closed.

(2) If C°nintD°#g, then acCNn(—acD)={0}, and therefore C+D is
closed.

We note that if int D°#g, then D is weakly locally compact. See Fan [2;
Theorem 1]. As in Fan [3], we apply this lemma to our problem.

Let xoe X. Suppose for every open set U which contains Ax,, there exists
a neighborhood V of x, such that U> Ax for all xe V. Then we say that A4 is
upper semicontinuous at x,. If 4 is upper semicontinuous at every x,€ X, 4 is
called upper semicontinuous on X. If Ax is compact for all x e dom A, then A4 is
called compact valued. We note that if A is upper semicontinuous on X, then
dom 4 is closed.

We shall prove

THEOREM 2. Assume that L={xeacP ndom A; Ax nac Q#g, f(x)<0} is
a linear subspace of X. If any one of the following conditions is satisfied, then
G is closed:

(3.1) Both P and Q are locally compact and A0={0}.

(3.2) P s locally compact, both the space X with ©(X, Y) and the space Z with
©(Z, W) are metrizable, and A is upper semicontinuous and compact
valued with respect to the Mackey topologies on X and Z.

Proor. Let G, be as in Lemma 2, and set G; =G, + (— P)x Q x {0}.
If it is shown that G, is closed, then G=G + {0} x dg(0) x {0} is closed because
g is ©(W, Z)-continuous by assumption so that 0g(0) is o(Z, W)-compact by
Lemma 1.

Case 1. We assume (3.1). First we show that A is regarded as a linear
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mapping on L. Let xeL. Then —xeL and {0}=A0>Ax+A(—x), and
therefore each one of Ax and A(—x) consists of one point and A(—x)= — A4x,
since Ax and A(—x) are nonempty. From Definition 1 it follows that A(t;x; +
t,x,)=t,Ax,+1t,Ax, for all t,, t, € R and x,, x, € L.

Next we show that G, N [ac P x (—ac Q) x {0}] is a linear subspace of X xZ
xR. Let (x{, —z4, 0), (x5, —2,,0)e Gy n[ac Px(—ac Q) x {0}] and ¢,, t, € R.
We observe Gon[acPx(—acQ)x{0}]={(x, —z, 0); xeacPndom A4, zeac Q
N Ax, f(x) <0} and infer x,, x, € L. Since L is a linear subspace, t;x; +1,x, € L.
By the above argument, A(t;x, +1t,X,)={t;z; +1,2,}, and we see that t,z, +1,2,
€acQ N A(t;x, +1t,x,). It follows that (t;x,+1t,x,, —t,z;—1,2,, 0)€ Gy N [ac P
x (—ac Q) x {0}] and therefore Gy N [ac P x (—ac Q) x {0}] is a linear subspace.

We now apply (1) of Lemma 3 to G, and (—P)x Q x {0} and conclude that
G, is closed.

Case 2. We assume (3.2). We show that F=Gy+ {0} x Q x {0} is closed.
Since F is convex, it is sufficient to show that it is (X x Z x R, Yx Wx R)-closed.
Since the space with 7(X x Z x R, Yx Wx R) is metrizable, it is sufficient to show
that if {(x,, Z,, r»)} is a sequence in F which converges to (xq, Zo, rg), then
(xg, 2o, 7o)€ F. There exist z,e Ax, and g,€Q such that z,=—z,+¢q, We
denote by d(-, -) a distance which defines ©(Z, W). Since A4 is upper semicon-
tinuous at x,, there exists a subsequence {z, } such that d(z,,, Axo)<k™!. We
may assume that d(z,, Ax,)<k™! for every k. Then there exists Z, e Ax, such
that d(z,, zZ,)e k™. Since Ax, is compact, there exists a subsequence of {Z,}
which converges to an element zZ e Ax,. We may assume that {Z,} converges to
zZ. Then {z,} also converges to z. Since {—z,+q,} converges to z,, {q,} con-
verges to Z+2zo. Since Q is closed, Z+2z,€Q. Thus (xq, zg, ro)=(xg, —Z+
(zo+2), f(x0)+(ro—f(x0)) € F. Tt is now shown that F is closed.

Next we show that ac F=Gy+ {0} xacQ x {0}. We may assume that Q
contains the origin. Let (x, —z+¢q, f(x)+7r)e Gy+{0} xac Q x {0}, where xe
dom A4, ze Ax, geacQ and r>0. Then for every t>0, (t"1x, —t 1z, (f(x)+
/) eGy and t7iqe Q. Thus (t71x, t71(—z+¢q), (f(x)+7r)/t)e F and therefore
(x, —z+q, f(x)+r)eN,»otF=acF. It follows that G+ {0} xac Q x {0} =acF.

Conversely let (xq, zo, 7o) €ac F. Then for every t>0, (t™1x,, t71zy, ro/t) €
F. For every positive integer n, there exist x, e dom A4, z,€ Ax,, g,€Q and r,>0
such that (x,, —z,+4,, f(x,)+1,)=(nx,, nzy, nry). Using n~1x,=x, we have
n~lz,en 1Ax,=A(n"1x,)=Ax,. Since Ax, is ©(Z, W)-compact, there exists a
subsequence of {n~!z,} which converges to an element Z € Ax,. We may assume
{n=1z,} converges to Z. On account of the equality —z,+g,=nzq, {n"1q,}
converges to zo+2. Since Q is a convex set which contains the origin, (tn)"1g, €
Q for t>0such that (tn)~1<1. Thus for every fixed t>0, t71(zo+2)=¢t"1lim,_ -
n~lg,=lim,_ (tn)"1q,€ Q, because Q is closed. Thus zy+Z€ N;otQ=acQ
and (xg, zg, 70)=(Xg, —Z+(29+2), o) €Go+{0} xac Q@ x {0}. It follows that
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G, + {0} xacQx {0} =acPF.

We note that ac F nac[P x {0} x {0}]1=[G,+ {0} xac @ x {0}] n [ac P x {0}
x{0}]={(x, 0, 0); xeacPndom A, Ax Nac Q+#g, f(x)<0}=Lx {0} x {0} and L
is a linear subspace. We apply (1) of Lemma 3 to F and (—P) x {0} x {0} and
conclude that G, is closed.

In the proof of the following theorem we shall apply (2) of Lemma 3.

THeoREM 3. (1) If 9f(0) ncone [A*(int Q°)+int P°]#@, then G is closed.
(2) Under condition (3.2), if df(0) N cone [A*(Q°)+int P°]#@, then G is
closed.

Proor. (1) It is sufficient to show that Gg nint [(—P)x Qx {0}]°#g.
By Lemma 2, Gy=H, Hence G§ nint[(—P)x Qx {0}]°=H, n [(—int P°) x
(int 0°) x R]. Since 9f(0) n cone [A*(int Q°)+int P°]#4¢, there exist t>0, we
int Q° Ndom A*, y, € A*w, y,€df(0) and yeint P° such that y,=ty,+Y).
Then (y, —t"1y,, w, t71) e Hy N [(—int P°) X (int Q°) x R].

(2) As in the proof of Theorem 3, we see by condition (3.2) that G+ {0} x
QO x{0} is closed. Thus it is sufficient to show that [G,+{0} xQ x {0}]°n
int [(—P)x {0} x {0}]°#@. Since [Gy+{0}xQx{0}1°=G3nN(YxQ°x R)=H,
N(Yx Q° x R), we see in a similar manner that [G,+ {0} x Q x {0}]° nint [(—P) x
{0} x {0}]°=H, n [(—int P°) x Q° x R] is nonempty.

ReMARK. In (3.2), if 4 is a continuous linear mapping, then we do not need
the condition that both the spaces X and Z are metrizable.
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