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§1 . Introduction

Let X and Y be real linear spaces which are in duality with respect to a bi-
linear functional (( , ))i and let Z and Wbe real linear spaces which are in duality
with respect to a bilinear functional (( , ))2. A standard linear programming
problem is:

(PO Find Mx = inf {((*, yo))i; * e P, Ax - z0 e Q},

where y0 eY,zoeZ,P and Q are weakly closed convex cones in X and Z respec-
tively and A is a weakly continuous linear mapping from X to Z.

A dual problem of (Px) is:

(DO Find M? = sup {((z0, w))2; w e Q°, y0 - ^*w e P°},

where P° and Q° are the polar sets of P and Q respectively and A* is the adjoint
mapping of A,

Kretschmer showed

THEOREM 0 ([4; Theorem 3]). (a) / / the set H = {(Ax-z9 r + ((x, yo))i);
x e P , zeQ, r>0} is weakly closed in ZxR and M1 or Mf is finite, then Mx =
M% and there exists an xoeP such that Axo — zoeQ and ((x0, yo))i=M1.

(b) If there exists an element woeQ° such that y0 — A*w0 is contained in
the interior of P° with respect to the Mackey topology, then H is weakly closed.

Later on, Fan [2 and 3] dealt with the case where one of P and Q is merely
closed convex. Under some conditions, he showed a duality between (Px) and
(D2):

(D2) sup {(((z0, w))2 - l)/r; r > 0, w e Q\ ry0 - A*w eP°} .

Furthermore, Levin-Pomerol [5] and Zalinescu [9] were interested in the prob-
lems which contain a positively homogeneous functional:

(P3) inf {((x, yo))i ;xeP9(Ax-C) 0 Q*0},

where C is a weakly compact convex subset of Z,

(D3) sup {(gc(w) - l)/r; r > 0, w e Q°, rj;0 -
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where 0c(w) = inf{((z, w))2; zeC}.
On the other hand, programming problems with set-valued mappings have

been discussed by several authors. Tagawa considered the following (P4) in
[8; Kapitel8]:

(P4) inf {/(*); xeP,BxnQ¥=0},

where/is a convex functional on X, P is a quasi-convex subset of X, Q is a convex
cone in Z which has a nonempty interior with respect to the Mackey topology and
B is a set-valued mapping from X to Z whose graph is convex.

Here we are concerned with the problem (P4). If we assume that / and B
are positively homogeneous, then a dual problem of (P4) is similar to (D1)~(D3) .
In the present paper, based on the ideas in linear programming problems, we
deal with the problem (P4) under some additional assumptions.

In §2, we define a programming problem and its dual problem, and prove
a duality theorem, which is a generalization of Zalinescu [9; Theorem 4]. In
§ 3, we are concerned with sufficient conditions for our duality theorem. Fan
[3; Theorem 6] and Nakamura-Yamasaki [6; Theorem 3.1] improved Theorem
0, (b), by using Dieudonne's proposition [1 ; Proposition 1]. Here we also use
the proposition and give conditions similar to the ones in Fan [3; Theorems 4 and
6] and Theorem 0, (b).

The author wishes to express his deepest gratitude to Professor M. Yamasaki
for many valuable suggestions and discussions during the preparation of this
paper.

§ 2. A duality theorem

Let X9 Y9 Z and W be as in the preceding section. By cr(X, Y) we denote the
weak topology on X, and by T(X, Y) the Mackey topology on X with respect to
the above duality. Throughout this paper, we assume that each one of the
paired spaces is assigned the weak topology unless otherwise stated. We always
assume also that the cones considered have their vertices at the origin of the
space.

Let P be a closed convex subset of X. The polar set P° of P is defined by

P° = {yeY;((x, y))1 > - 1 for all xeP}.

If P is a convex cone, then P° = {ye Y; ((x, y))x > 0 for all x e P}. The polar set
P°° of P° is equal to P if and only if P is a closed convex set which contains the
origin. We define Q° and 2°° for a closed convex subset Q of Z similarly.

We introduce the definitions of a convex process and its adjoints which are
due to Rockafellar [7].
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DEFINITION 1. A convex process from X to Z is a set-valued mapping A: x
-+Ax such that

(1) A(xx + x2) => Axt + Ax2 for all xl5 x2 e X,
(2) y4(ta) = f,4x for all xeX and f > 0,
(3) OeAO.

We set dom^4 = {x; Ax^0}, where 0 denotes the empty set. A set-valued
mapping A is a convex process if and only if graph ̂ 4 = {(x, z); xedom^4 and
zeAx} is a convex cone which contains the origin of XxZ. If graphs is a
closed convex cone, A is called a closed convex process.

We shall define two kinds of adjoints.

DEFINITION 2. Let i b e a convex process from X to Z. We say that A is
supremum oriented if its adjoint convex process A* from Wto Y is defined by

A*w = { j e7 ; ((z, w))2 < ((x, y))1 for all xedom^4 and ze^4x} .

An infimum oriented convex process and its adjoint are defined in the same way
with the reversed inequality. A convex process which is supremum or infimum
oriented is called an oriented convex process.

These adjoints are always closed convex processes. If A is a supremum
oriented (resp. infimum oriented) closed convex process, then we understand that
A* is infimum (resp. supremum) oriented, so that A = A**.

An extended real valued function / on X is called positively homogeneous if
f(tx) = tf(x) for all t>0 and xeX. Let /be a lower semicontinuous positively
homogeneous convex function on X and g be an upper semicontinuous positively
homogeneous concave function on W. In this paper, we always assume that
-oo</(x)<oo, -oo<#(w)<oo and /(0)=#(0) = 0. We set df(O) = {yeY;

/ (x)>(0 , JO)I f ° r all xeX} and dg(0) = {zeZ; fif(w)<((z, w))2 for all weW}.
We prove

LEMMA 1. Both df(O) and dg(0) are nonempty closed convex sets and
/(x) = sup{((x, y^iyedfm for all xeX and g(w) = inf{((z, w))2; zedg(0)}
for allweW. Furthermore iff is T(X, Y)-continuous on X, then 3/(0) is G(Y, X)-
compact. Similarly if g is T(W, Z)-continuous9 then dg(0) is tr(Z, wycompact.

PROOF. We set dom/= {x e X; /(x) < oo } and epi/= {(x, r) e X x R; x e
dom/and r>/(x)}. Since/is lower semicontinuous, epi/is a nonempty closed
convex subset of XxR. First we show d/(O)^0. Since (0, — l)^epi/, by the
separation theorem, there exists y1 e Y such that ((x, }>i))i + r>0 for all (x, r)e
epi/ This yields that -yx edf(0). Hence 5/(0)^0. Next we show that
/(x) = sup{((x, y))t; y<=df(0)} for all xeX. Let xoeX and ro</(xo) . Since
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(x0, ro)<£epi/, by the separation theorem, there exists (yu t)eYxR such that
((*o> yi))i + rot= - 1 an<* ((*, }>i))i + rf>0 for all (x, r)G epi/. From this, f>0.
If f>0, then we see that — t~1yiedf(O) and ((x0, — t~1y1))1>r0. This means
that /(xo) = sup{((xo, y))i'>yedf(P)}- I f * = °> then ((x, y^^O for all xe
dom/and ((x0, y1))1 = — 1. It follows that x0^dom/. Let yoedf(0). Then
yo-syi edf(0) for all s>0, since ((x, }>o--s.yi))i<((x, Jo) ) i^ /W for a11

andalls>0. Thus/(xo) = sup{((xo, y))t; ye3/(0)} = oo,because((x0, J o -

It is easy to check that 3/(0) is closed convex. Finally we show that 3/(0) is
(7(7, X)-compact if/ is T(X, y)-continuous on X. By considering/(x) — ((x, yo))i
for j 0 G 3/(0), we may assume/>0. For J7 = {x;/(x)<l}, we easily see that
df(O)= — U°. Since the x{X, 7)-interior of U contains the origin, we infer that
3/(0) is a(Y, JQ-compact by Alaoglu-Bourbaki's theorem.

By considering — g, we see that the assertions on the functional g also hold.
This completes the proof.

Hereafter let A be a supremum oriented closed convex process from X to Z,
and P, Q be closed convex subsets of X and Z respectively. We assume that at
least one of P and Q is a cone. Let / and g be as above. For (A, P, Q, f, g), we
consider the following programming problem (2.1) and its dual problem (2.2):

(2.1) Find M = inf {/(x); x e S},

where S = {x eP ; (4x-3#(0)) n Q^0}.

(2.2) Find iQr* = sup{(gf(w) - l)/r; (w, r)eS*},

where S* = {(w, r); r>0, weQ°, (r3/(0)-^l*w) n P°#0}. If both P and g are
cones, then M* is equal to M* in the problem

(2.20 Find M* = sup{g(w);weS*}9

where 5* = {weQ°; (df(0)-A*w) n P° # 0}.
Here we use the convention that the infimum of a real function on the empty set
is equal to oo. It is easy to check that M*<M.

Now we state

THEOREM 1. We assume that f is T(X, Y)-continuous and the following two
conditions are satisfied:

(2.3) There exists an element xeP such that Ax D Q^0 and/(x)<0.

(2.4) The set G={(x, - z , / (x ) + r); xedomA, zeAx, r>0} + ( - P ) x Qx {0} +

{0} x3#(0)x {0} is a closed subset ofXxZxR.



Programmings with constraints of convex processes 373

Then M = M* or M=— A3r* = oo. Furthermore if M is finite, then there exists
an element xoeS such that M=/(x0).

For the proof of Theorem 1 we shall use

LEMMA 2. We set

Go = {(*> - z >/(*) + r); xedom A 0 dom/, ze Ax, r > 0},

#o = {(yi - ty29 w, 0; w e dom A*, yx e A*w, y2 e df(O), t > 0}.

Then the polar set G°o of Go with respect to the dual pair {XxZxR, Yx WxR}
is equal to the closure Ho of Ho. In particular, iffis T(X, Y)-continuous, then
G°o = Ho.

PROOF. It is easy to check that HOC:GQ. We show that HlaG0. Let
(xl9 zl9 rJeHl. Then ((JC^ y1-ty2))i+((z1, w ^ + r r ^ O for all we dom A*,
y±eA*w, y2edf(0) and t>0. We set t = 0. Then ((xl5 y1))1 + ((zl9 w))2>0 for
all we dom A* andyx e^4*w. Since yx e^4*wif and only if (yl9 — w)e [graphs]0,
we see that (xl9 — zx)e [graph A]oo = graphs. Thus —z1eAx1. Next we set

w = 0, >;1=0 and t = l . Then r^^x^ y2))t>0 for all y2edf(0). By Lemma 1,
we see that rt >/(Xi). It follows that (xl9 zl9 rx) e Go. Thus H0 = H°0° = Gg.

If/is T(X, 7)-continuous, then d/(0) is c(7, X)-compact by Lemma 1 so that
Ho is closed. Thus H0 = GQ. This completes the proof.

PROOF OF THEOREM 1. We assume that M^oo or M*# — oo. Let \i be a
real number. First we show that if (0, 0, \£)^G, then there exist (y0, w0, to)e
Yx Wx R and ccoeR such that 10 > 0 and a0 < — 1 and the following two conditions
are satisfied:

(2.5) ((x - p, 3>o))i + ( ( - * + «, wo))2 + ro/(x) > - 1

for all x e dom A, ze Ax, peP and qeQ.

(2.6) - ((z, wo))2 + /zfo < a0

for all f e dg(O).
Since G is a closed convex set, by the separation theorem, there exist (y, w, i) e
Yx Wx R and a>0 such that

((* - V, J>))i + ( ( "^ + 4 + 2, w))2 + t(f(x) + r)>a + tii

for all x e dom A, zeAx, peP, qeQ, ze dg(O) and r > 0. We set £x =
inf {((x - p, y))± +((-z + q9 w))2 + t(f(x) + r); x e dom ̂ , zeAx, peP, qeQ,
r>0} and £2 = sup{tyi-((z, w))2; 2edg(0)}. Then )51>a + ^2>jS2. In the defi-
nition of /?!, as x and p take x which satisfies (2.3), as z and g take z in 4̂x Pi Q
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and take r = —/(3c). Then we see that px<0. Choose ax such that Pi>ot1>p2>
We note that t>0 since /?x is finite. We see that yo = — ajiy, wo= — a^w, to =
-tla± and a o = -j82/«i satisfy (2.5) and (2.6).

We shall show that to>0 if M / o o . We assume that ?0 = 0 a n d M=£oo.
Then there exist 3c e P, z e Ax and zx e 3gr(O) such that z — z1 e Q. We substitute
x = p=x, z — z and q=z — z1 in (2.5), and z = zx in (2.6). Then we have
— ((z1? wo))2> — 1 and — ((zl5 w o ) ) 2<a o< — 1. This is a contradiction. Thus

Next we assume to = 0 and M*^—oo. Then there exist weQ°, yteA*w,
y2 e 5/(0) and t > 0 such that ty2 - Ji e P° and r̂(vv) ̂  - 00. Setting J = y 1 - ?y25

we obtain

(2.7) ((x - p, y))i + (( " z + 4, w))2 + tfix) > - 1

for all xedomA, ZEAx, peP and #eQ. We set y(s) = (l-s)yo + sy9 w(s) =
(1 — s)wo + sw and (̂5) = 5? for 0 < s < l . From (2.5) and (2.7), we derive ((x — p,
Xs) ) ) i+ ( ( -* + $> w(s)))2 + f ( s ) / ( x ) ^ - l for all x e d o m i , z e ^ x , p e P , q e Q
and 0 < s < 1. From (2.6), the inequality

- ( («, w(s)))2 + Ait(s) < ( l -s )a 0 - sflf(w) + stfi

follows for all 2edg(0). We set a(s) = (l — s)a0 — sg(w) + stjn. Then there exists
a real number s0 such that 0<s o <l and a(so)< —1. Thus y(s0), w(s0), ^(s0) and
a(s0) satisfy (2.5) and (2.6).

In (2.5) we fix p and q. If ((x, y o ) ) i+( ( -^ wo))2 + ^o/W = ?<0 for some
x e dom A and z G >4X, then ((sx, jo))i + ( ( - ŝ ? wo))2 + ^o/(s^) = S7 < - 1 +
((p5 .yo))i ""((#> wo))2 f°r sufficiently large s>0. Since 5ze^4(sx), this is a con-
tradiction. Thus ((x, jo^i + ̂ - z , wo))2 + ro/(x)>0 for all xedomA and
z e Ax. It follows that (y0, w0, f0) e GQ. Since at least one of P and Q is a cone,
similarly we see that yoe — P° and woeg°. Using Lemma 2, we observe that
(w0, *0)eS*. By (2.6), M<(ao + ((z, wo))2)/to for all f ed#(0). It follows from
Lemma 1 that fi<(g(wo)-i)lto^M*. Thus we see that fi<M* if (0, 0, JU)<£G.

Next we take an arbitrary real number \i such that fi<M. Then it is easy to
check that (0, 0, fi)<£G. Thus n<M* and we have M<M*. Since M>M*,
we see that M = M*.

Finally we assume that M is finite. If (0, 0, M)£G, then M<M* by the
above argument. This is a contradiction. Thus (0, 0, M) e G. From this, we
conclude that there exists an element xoeS such that f(xo) = M. This com-
pletes the proof.

As a dual statement, for the problem (2.2') and the following problem (2.1'),
we have a similar result:

(2.10 Find M = inf{(/(x) + l)/r; (x, r )eS},
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where S = {(x, r); xeP, r>0, (Ax-rdg(0)) n 2^0}.

COROLLARY. We assume that g is T(W, Z)-continuous, that the convex hulls
°f {0} U P and {0} U Q are closed and that condition (2.3) and the following
condition (2.8) are satisfied:

(2.8) G* = {(-w, y, -g(w) + r); r > 0, wedomi*,j;6i*w} + g° x P° x

{0} - {0} x 5/(0) x {0} is closed.

Then M* = M or M*=— M = — oo. Furthermore if M* is finite, then there
exists an element w0 e 5* such that M* = g(w0).

PROOF. We set Bw = - A*( - w) if w e - dom A*, and .Bw = 0 if w <£ - dom A*,

and set g(w) = g( — w) for we Pf. We regard 5 as a supremum oriented convex
process from Wto Y. Then

- M * = inf {-flf(w); w e -Q°, (Bw - (-5/(0))) n P° * 0} .

We apply Theorem 1 to (5, —Q°, P°, —g, —/). The condition corresponding
to (2.3) is satisfied with w=0 and the one corresponding to (2.4) is equivalent to
(2.8). Since dg(0) = - dg(0) and B*x = Ax for all x e X, M* = M' or M* = - M'
= — oo follows from Theorem 1, where

M' = inf {(/(*) + l)/r; x 6 P°°, r > 0, (Ax - rdg(0)) fl 6°° ^ 0}.

If M* is finite, then there exists w0 e S* such that M* = ̂ f(w0).
Let us show that W = M. Since P°° =D P and 6°° => Q, W < M. Let x e P°°

and r>0 be such that (Ax — rdg(0)) (1 Qoo#0. First we assume that P is a cone.
Then P = P°° and go° is the convex hull of {0} u Q. Let ze(Ax~r^(0)) n Q°°.
Then there exist a real number t and an element zeQ such that 0<£<l and
z = tz. If f>0, then r x x £ P and (A(t-1x)-(rli)dg(®)) OQBZ since P is a cone.
Thus ( r ^ r / O e S and (/(x) + l)/r>(/(x) + O/r = (/(r1x) + l)/(rr1)>M. If
r = 0, then Ax - r%(0) 9 0. For x eP in (2.3), (x + x, r) e S and (/(x) + l)/r > (/(x)
+/(x) + l)/r>(/(x + x)+l)/r>M since/(x)<0 by (2.3). It follows that M'>M.
If Q is a cone, we can similarly prove that M' > M. This completes the proof.

REMARK. In Theorem 0, the set H = {(Ax-z, r+/(x)); xeP , z e g , r>0}
was considered instead of G under the condition that A, / and g are continuous
and linear. We note that the closedness of G and the closedness of H are
equivalent if A,/and g are continuous and linear; we omit the proof.

§ 3. Closedness of the set G

In this section we assume that / is T(X, 7)-continuous and g is T(W, Z)-
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continuous, and give some sufficient conditions for the closedness of the set G in
Theorem 1.

Let C be a closed convex subset of X. We denote the T(X, Y)-interior of C
by intC, and set coneC = {ta; t>0, x e C } . An asymptotic cone acC of C is
defined by ac C=r\t>ot(C — x), where xeC. The following proposition is
well-known (cf. [7; §8]), so we omit the proof.

PROPOSITION, ac C is a closed convex cone independent of the choice of
xeC and C + acC = C.

The following Lemma 3 is also well-known. See Dieudonne [1; Proposition
1], Zarinescu [9; Theorem 12] and Nakamura-Yamasaki [6; Corollary of
Theorem 2.2].

LEMMA 3. Let C and D be closed convex subsets of X.
(1) / / ac C (1 ( —acD) is a linear subspace and at least one of C and D is

locally compact, then C + D is closed.
(2) J / C ° n i n t D V 0 , then acC fl ( - a c D ) = {0}, and therefore C + D is

closed.

We note that if intD°#0, then D is weakly locally compact. See Fan [2;
Theorem 1]. As in Fan [3], we apply this lemma to our problem.

Let x0 e X. Suppose for every open set U which contains Ax0, there exists
a neighborhood Fof x0 such that U^DAX for all xeV. Then we say that A is
upper semicontinuous at x0. If A is upper semicontinuous at every x0 eX, A is
called upper semicontinuous on X. If Ax is compact for all x e dom A, then A is
called compact valued. We note that if A is upper semicontinuous on X, then
dom A is closed.

We shall prove

THEOREM 2. Assume that L = {x e ac P n dom A; Ax n ac Q # 0, f(x) <0} is
a linear subspace of X. If any one of the following conditions is satisfied, then
G is closed:

(3.1) Both P and Q are locally compact and ,40 = {0}.

(3.2) P is locally compact, both the space X with z(X, Y) and the space Z with
T(Z, W) are metrizable, and A is upper semicontinuous and compact
valued with respect to the Mackey topologies on X and Z.

PROOF. Let Go be as in Lemma 2, and set G1 = Go + ( - P ) x Q x { 0 } .
If it is shown that G1 is closed, then G = GX + {0} x dg(O) x {0} is closed because
g is %(W, Z)-continuous by assumption so that 3#(0) is o(Z, ^ -compact by
Lemma 1.

Case 1. We assume (3.1). First we show that A is regarded as a linear
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mapping on L. Let x e L . Then - x e L and {0}=A0=DAX + A( — X), and
therefore each one of Ax and A( — x) consists of one point and A( — x)= —Ax,
since Ax and A( — x) are nonempty. From Definition 1 it follows that A(tlxl +
t2x2) = tlAxl + t2Ax2 for all tl9 t2eR and xl9 x2eL.

Next we show that Go n [ac P x ( — ac Q) x {0}] is a linear subspace of X x Z
x £ . Let (x,, - z 1 ? 0), (x2, - z 2 , 0 ) e G o n [ a c P x ( - a c g ) x { 0 } ] and tl9t2eR.
We observe Go fl [ac P x ( - a c Q) x {0}] = {(x, - z , 0); x e ac P n dom A, z e ac Q
(1 v4x, / (x) <0} and infer xl9 x 2 e L . Since L is a linear subspace, t1xl + t2x2 e L.

By the above argument, A(t1x1 + t2x2) = {t1z1 + t2z2}, and we see that t1z1 + t2z2

e ac Q n A^jXi + f2*2)- It follows that (f xxx + t2x2, —t1z1 — t2z2, 0) e Go n [ac P
x ( — ac Q) x {0}] and therefore Go n [ac P x ( — ac Q) x {0}] is a linear subspace.

We now apply (1) of Lemma 3 to Go and ( — P) x Q x {0} and conclude that
Gx is closed.

Case 2. We assume (3.2). We show that F = Go + {0} x Qx {0} is closed.
Since F is convex, it is sufficient to show that it is T(XXZXR, YX WX#)-closed.
Since the space with T(XXZXR, YX WXR) is metrizable, it is sufficient to show
that if {(xB, zn9 rn)} is a sequence in F which converges to (x0, z0, r0), then
(x0, z0, ro)eF. There exist zneAxn and qneQ such that zn= — zn + qn. We
denote by d( •, •) a distance which defines T(Z, W). Since 4̂ is upper semicon-
tinuous at x0, there exists a subsequence {znk} such that d(zBk, Axo)</c"1. We
may assume that c/(zfe, Y4XO)<^;~1 for every k. Then there exists zkeAx0 such
that d(zfc, z^efc"1 . Since Ax0 is compact, there exists a subsequence of {zfe}
which converges to an element zeAx0. We may assume that {zfc} converges to
z. Then {zfc} also converges to z. Since { — zk + qk} converges to z0, {qk} con-
verges to z + z0. Since g is closed, z + zoeQ. Thus (x0, z0, ro) = (xo, — z +
(z0 + z), / (x 0 ) + (r0 —/(x0))) e F. It is now shown that F is closed.

Next we show that a cF = Go + {0} x a c g x {0}. We may assume that Q
contains the origin. Let (x, — z + q, f(x) + r) e Go + {0} x ac Q x {0}, where x e
dom,4, zeAx, qeacQ and r > 0 . Then for every t>0, (t~1x9 —t~1z, (/(x) +
r)/t)eG0 and rlqeQ. Thus ( r x x , r ^ - z + f̂), (f(x) + r)/t)eF and therefore
(x, - z + g,/(x) + r ) e n f > 0 ^ = acF. It follows that G + {0} x ac Q x {0}cacF.

Conversely let (x0, z0, r o ) e a c F . Then for every t>09 (t~1x0, t~1z09 roji)e
F. For every positive integer n, there exist xn e dom A, zn e Axni qneQ and rn > 0
such that (xn, - z n + ^n , /(xn) + rM) = (nx0, nz0, nr0). Using n-1xn = x0, we have
n~1znen~1Axn = A(n~1xn) = Ax0. Since ^ x 0 is T(Z, FF)-compact, there exists a
subsequence of {n~1zn} which converges to an element z e ^4x0. We may assume
{n"^,,} converges to z. On account of the equality — zn + qn = nz09 {n"1^}
converges to zo + z. Since Q is a convex set which contains the origin, (tn)~1qne
Q for r>0 such that (tn)'1 < 1. Thus for every fixed t>0 , r H^o + z) = t'1 lim,,^^ •
n"1^n = lim / l_00(m)"1^neg, because Q is closed. Thus zo + ze r\t>otQ = acQ
and (x0, z0, ro) = (xo, - z + (zo + z), r 0 ) eG 0 + {0}xacgx{0} . It follows that
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Go + {0} x ac Q x {0} = ac F.
We note that ac F n ac [P x {0} x {0}] = [Go + {0} x ac Q x {0}] n [ac P x {0}

x{0}] = {(x, 0, 0); xeacPndom.4, ^x n acg^0,/(x)<O} = Lx {0} x {0} and L
is a linear subspace. We apply (1) of Lemma 3 to F and ( —P) x {0} x {0} and
conclude that Gx is closed.

In the proof of the following theorem we shall apply (2) of Lemma 3.

THEOREM 3. (1) If 3/(0) n cone [A*(int Q°)+int P°] ̂  0, */ien G is closed.
(2) t/nder condition (3.2), i/5/(0) n cone [4*(Q°) +int P°]?*0, *JH?H G IS

PROOF. (1) It is sufficient to show that G°o 0 int [ ( -P)x Qx {O}]V0.
By Lemma 2, G^ = H0. Hence G°o n int [ ( -P )xQx {0}]° = # 0 fl [(-intP°)x
(int Q°) x £] . Since 3/(0) n cone [4*(int 2°) + int P°] ̂  0, there exist t > 0, w e
int g° fl dom A*, y1 e A*w, y2 e 3/(0) and y e int P° such that j 2 = t(yx + j).
Then (y1-r

1y2, w, r1)eff0 n [(-intP°)x(intQ°)xP].
(2) As in the proof of Theorem 3, we see by condition (3.2) that Go + {0} x

gx{0} is closed. Thus it is sufficient to show that [Go + {0} x Qx {0}]° fl
int[(-P)x{O}x{O}]V0. Since [Go + {0} x Qx {0}]° = Gg n (Yx Q° x R) = H0

(1 (Yx Q° x R), we see in a similar manner that [Go + {0} x Q x {0}]° fl int [ ( -P) x
{0} x {0}]° = Ho fl [( - int P°) x Q° x R] is nonempty.

REMARK. In (3.2), if A is a continuous linear mapping, then we do not need
the condition that both the spaces X and Z are metrizable.
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