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Introduction

E. L. Lima [3] denned a direct spectrum {Et, (j)t: Et-+Ei+1} and an inverse
spectrum {F(, ^/t: Fi+1^F^. The former has been developed by many authors
into the theory of CW spectra, which is now the basic notion in the cohomology
theory ([1], [6], [7], [8]). In this paper, we shall define the notion of CW cos-
pectra corresponding to the latter, and argue the homotopy category of CW
cospectra by treating it as dual to that of CW spectra.

In this paper, a. CW complex is called a nice complex if each cell is a sub-
complex, and a map between nice complexes is called a nice map if each
cell is mapped onto a subcomplex. By using the category NCWof nice complexes
and nice maps, we define a CWcospectrum £ as a collection

E = {£„, sn: En+1 > SEn\neZ}

in NCW where S denotes the suspension and en is the projection shrinking a
subcomplex of En+1 to *, and a map

between CW cospectra is a collection of /„: En-+FjF'n in NCW commuting with
sn and s'n9 where F' = {F'n} is a null subcollection of F, (see Definitions 1.1, 1.4
and 1.10). Further, a homotopy is a map h: £ A / + - > F where / + = {*} u [0, 1]
(disjoint union) and (EnAl+)n = EnAl+ (see Definition 1.14).

Thus, we obtain the homotopy category of CW cospectra. Furthermore,
by considering the notion of cells in a CJF cospectrum, we define a CW cospectrum
E of finite type and the cohomotopy group

nn(E) = [£, 2'MS0] (homotopy set) for any neZ

where (ZrtS°)f = * (i<-n), =Sn+i (i>-n), (see Definitions 2.1, 2.4 and 3.3).
Then, we have the following

THEOREM 3.5. Assume that a CW cospectrum E of finite type satisfies
Kn(E) = 0 for any n. Then, E is contractible in the homotopy category of CW
cospectra.

COROLLARY 3.8. Let E be a CW cospectrum of finite type. Then, there is
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a natural homotopy equivalence EAS1CHI1E, where (E A S1)n = En A S1 and
(Z*E\ = En+*.

Moreover, any CJF cospectrum E defines a homology theory

E*(X) = [_Z*E9 E(Xy] (homotopy set) for XeNCW,

where E(X) is the CW cospectrum of X given by E(X)n = *(n < 0), =SnX(n>0).
Conversely, we have the following representation theorem of homology theories
by CWcospectra.

THEOREM 4.5. Let h* be a given reduced homology theory satisfying the
following condition:
(4.6) hm(Sn) is finitely generated for any n>0 and m, and there is an integer
N with hm(S°) = 0for m<N.

Then, there exist a CW cospectrum E of finite type and a natural equivalence

T: E*(X) s h*(X) for any finite nice complex X.

This paper is organized as follows. In § 1, we introduce the notion of nice
complexes and nice maps, and define the homotopy category of CWcospectra and
maps. In §2, we consider the notion of cells in a CW cospectrum and of locally
finite maps, and prove the homotopy extension property and the homotopy
excision theorem. By using the results in §2, we prove Theorem 3.5 in §3.
Finally, Theorem 4.5 is proved in § 4.

The author wishes to express his hearty thanks to Professors M. Sugawara
and T. Matumoto for thier valuable suggestions and discussions.

§ 1. CW cospectra

In this paper, we are concerned with nice complexes defined as follows:

DEFINITION 1.1 A CWcomplex X with base point * is called a nice complex,
if each cell e in X is a subcomplex of X ("cell" means "closed cell" in this paper).
For nice complexes X and Y, a continuous m a p / : X-*Ypreserving base points
is called a nice map, if the image f(A) of each subcomplex A of X is a subcomplex
of Y. Two nice complexes X and Yare said to be isomorphic, written frequently
X= 7, if there is a homeomorphism/: X-> Fpreserving the cell structures and base
points.

Then, we can consider the category NCWof nice complexes and nice maps;
and we see easily the following

EXAMPLE 1.2. Let X and Ybe nice complexes.
(1) Any subcomplex A(s *) of X and the CW complex XjA obtained from



On CWcospectra 349

X by shrinking A to * are nice complexes, and the inclusion i: Acz'X and the
projection pr: X-+X/A are nice maps. Moreover, cells e'(^*) in XjA are in
1-1 correspondence with cells e(gLA) in X by e' = pr(e), and pr"1^') is a sub-
complex of X for any subcomplex B' of XjA.

(2) The product complex X x Y (with the weak topology), the wedge sum
Xv Y and the smash product I A Y=XX Y/XV Y are nice complexes.

(3) We consider the rc-sphere Sn as the nice complex Sn = {*}\jen and
(n + l)-disc Dw+1 as that Dn+1 = Sn (J en+1 = {*} u e" U en+1. Then, the sus-
pension SnX = Sn A X of X is a nice complex, and Sl A Sj = Si+j for any integers
i, j>0 . Moreover, 5"X(n>l) has a single 0-cell *, and cells e'(^*) *n S^X a r e

in 1-1 correspondence with cells e(^*) in X by e' = Sne (where Sne denotes
pr(S" x e) for the projection pr: Sn x X->S"X).

(4) We consider the interval / = [0, 1] as the nice complex / = {0} u {1} U /
with base point 0. Then, the mapping cone Cf=Y u fX AI of a nice map
/ : X-+Y\s a nice complex.

(5) For any nice complex A without considering base point, we can consider
the nice complex A+= {*}{] A (disjoint union). Then, the mapping cylinder
Mf =Y[J fXAI+ of a nice map / : X-*Yis a nice complex. Furthermore, the
nice homotopy of X to Yis defined to be a nice map h: X AI+-*Y.

We notice that the inclusion of NCW to the category CW of pointed CW
complexes and continuous maps induces an equivalence of associated homotopy
categories; i.e., we have the following

PROPOSITION 1.3. (1) Any continuous map f:X-^Y between nice com-
plexes X and Ysuch thatf\A is nice for a subcomplex AczX is homotopic relA
to a nice map f \ X-+Y.

(2) Any CW complex is homotopy equivalent to a nice complex.
(3) Two maps between nice complexes are homotopic (rel*) if and only

if they are nicely homotopic (rel *).

PROOF. (1) for the case X = Dn and A — Sn~l: Since f(Dn) is contained in
a finite subcomplex of Y, we may assume that Yis finite. If/(£)") = 7, then / i s
clearly nice. If/(Dn)§iY, then Y contains a cell e<£f(Dn), and we take e of
maximum dimension among such cells. Thus, Y=Y0[je where e(£f(Dn) and
Yo is a subcomplex of Y with Y0^e. We notice that / ( S ^ c Yo because /IS""1

is nice by the assumption. Now, we can find a point x in the open cell of e such
that x£f{Dn), i.e.,/(Z)n)c Y-{x). Since Yo is a deformation retract of T-{x},
we see that/ is homotopic rel Sn~l to a map /0:\D

n-»Yoc= Y; and we obtain the
desired homotopy by induction on the number of cells in Y.

(1) for the general case can be proved inductively by using the above result
on cells in X.



350 Mizuho HIKIDA

(2) The desired nice complex is obtained by deforming inductively the
attaching maps of a given complex to make them nice.

(3) This follows immediately from (1). q. e. d.

Now, we define the notion of CFT cospectra.

DEFINITION 1.4. (1) A CW cospectrum is a collection {En, sn\neZ} of nice
complexes En and maps en: En+1^>SEn where SEn = S1

 AEH9 satisfying the fol-
lowing condition:
(1.5) There is a subcomplex E'n+1(3 *) ofEn+1 such that sn: En+1-^En+1/E

f
n+1 =

SEn is the composition of the projection and an isomorphism between nice
complexes.

(2) A subcollection F = {Fn} of E consists of subcomplexes Fn(e*) of
En such that sn(Fn+l)czSFn for each n. Moreover, if sn(Fn+1) = SFn for each n,
then F is called a subcospectrum of E; and (E, F) is called a pair of CW cospectra.

(3) Let E = {En9 en} and F = {Fn, ef
n} be CW cospectra. Then, a function

/ = { / „ } : E->F is a collection of nice maps fn\ En-*Fn with &f
n

ofn+\ = Sfn°£n for
each n. A function f: (JE, E')-+(F, F') between pairs of CW cospectra is a
function/: E-*F w i t h / ( £ ' ) c F ,

EXAMPLE 1.6. (1) Let {(£„,£;), r\n\ En->E'n+1\neZ} be a collection of
pairs (En, E'n) of nice complexes and nice maps rjn such that En+1 — CnW) the map-
ping cone of r\n. Then, by taking sn: En+1 = Crjn->CnJE'n+1=En A S1 = S1 A
En = SEn to be the projection shrinking E'n+l to *, we have a CW cospectrum

{En, Sn)-
(2) If X is a nice complex, then we can define a CW cospectrum E(X) of X

by taking
f * (n < 0) I * (n < 0)

n [ S " X ( n > 0 ) , £" [id ( n > 0 ) .

We notice that E(X) is a CPf cospectrum given by taking Ew = *(n<0), E0 =
X(n = 0), £ ; = * and rjn = * in (1).

(3) For any CW cospectrum £ = {£„} and integer /c, we can define a. CW
cospectrum Ik E by taking (Ik E)n = En+k.

(4) Given a function f:E-+F between CW cospectra, we can define new CW
cospectra Mf (the mapping cylinder o f / ) and Cf (the mapping cone o f / ) , by
taking (Mf)n = Mfn and (C/)w = C /n, respectively. The cone CE of £ is the map-
ping cone C id of the identity function id: E-*E.

LEMMA 1.7. Let E be a CW cospectrum.

(1) For subcollections F = {Fn} and G = {Gn} of E, F (J G = {JFMU Gn} is a
subcollection of E. Moreover, if F and G are subcospectra of E, then so is
FUG.
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(2) For any subcospectrum F = {Fn} of E, F = {Fn, eJFB+1} is a CW cos-
pectrum and the inclusion FaE consisting of the inclusions FnaEn is a function.

(3) For any subcollection F = {Fn} of E, E/F={EJFn, e'n} is a CW cos-
pectrum where s'n: En+lIFn+1-+SEJSFn = S(En/Fn) is the map induced from
en: En+l-+SEn (en(Fn+l)<^SFn), and the projection E-+E/F consisting of the
projections En-+EnjFn is a function.

(4) In addition to (3), let G be a subcollection of EjF. Then, there is a
subcollection G' of E with G'ZDF and Gf/F = G.

(5) Let f: E-+F be a function between CW cospectra. Then, for any
subcollection G of E,f(G) = {fn(G)n} is a subcollection of F. Moreover, if G is
a subcospectrum of E, thenf(G) is a subcospectrum of F.

PROOF. The lemma can be proved easily by definition and by Example 1.2.
For example, (3) is shown by noticing that e^1(5FM) is a subcomplex of En+l

containing E'n+1\jFn + 1 and that En+1/E'n+1 = SFn induces En+1/e^(SFn) =
SEJSFn = S(EJFn); and G' = {G'n} in (4) is given by G'n=pr^(Gn) where prn:
En-+EJFn is the projection. q. e. d.

In order to construct the category of CW cospectra, we need to specify the
morphisms, called maps.

DEFINITION 1.8. We say that a subcollection F={Fn} of a CW cospectrum
E = {En, sn} is null in E, if for each n, there is an integer k> 0 such that s(Fn+k+1) =
*, where 8 denotes the composition en+koSsn+k.1o"-oSk£n.

By the definition, we see easily the following

LEMMA 1.9. (1) In Lemma 1.7 (1), if F and G are null in E, then so is
F u G .

(2) In Lemma 1.7 (4), if F is null in E and G is null in EjF, then so is
G' in E.

(3) In Lemma 1.7 (5), if G is null in E, then so isf(G) in F.
(4) For any CW cospectrum E and reZ, the subcollection F ( r ) , given by

(£('))„ = En for n<r, =* for n > r,

is null in E. Moreover, for the CW cospectrum E(X) of a nice complex X given
in Example 1.6 (2), F is null in E(X) if and only if F is contained in F(X)(r)

for some r.

We define a map as follows.

DEFINITION 1.10. (1) A map / : F-^F between CW cospectra E and F is an

equivalence class of a function fF,\ E-+F/F' such that F ' is a null subcollection of
F, where
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(1.11) two functions fF.: E-^FjFt (Ft: null in F; i = l, 2) are equivalent if and
only if there is a function f3: E-+F/F3 (F3: null in F) with Fx U F2^F3 and
pTlofFi=pr2

0fF2=f3(pri: FjFt^FjF3 are the projections). (We see that (1.11)
defines an equivalence relation by Lemma 1.9.)

(2) A map f: (E, G)->(F, H) between pairs of CW cospectra is a map / :
E-*F with f(G)aH which means that for some representative fF.\ E-^FjF' (Ff:
null in F) of / ,/F ,(G) c if/H n F'. Then, the restriction f\G: G-+H is the map
represented by/F , |G: G^H/H n F'.

DEFINITION 1.12. The composition gof;E->G of maps f:E-*F and g:
F-*G between CW cospectra is defined as follows: L e t / a n d g be represented
by functions/: E-+F/F' ( F : null in F) and g: F-+G/G'(G': null in G), respectively.
Then, by Lemma 1.9 (3) and (2), g(F') is null in G\G' and there is a null sub-
collection G" of G with G" 3 G' and G"/G' = g(Ff). Thus, we obtain the composed
function

g'of: E -L> F\F' - C {G\G')\g(F') = G\G\

where g' is the function induced from g\ and we can define the composition gof
as the map represented by g'of

By the definition of maps, we see easily the following

LEMMA 1.13. In the category of CW cospectra and maps, the projection
E-*EjE' is an equivalence for any null subcollection E' of E. In particular,
E is equivalent to E/E^r) where E(r) is that given in Lemma 1.9 (4) and
(E/E^X = Enforn>r9 =*forn<r.

Now, we define a homotopy of functions and maps.

DEFINITION 1.14. (1) If E = {En, en} is a CW cospectrum and X is a nice
complex, then we can define a new CW cospectrum EAX, the smash product
of E and X, by taking ( £ A I ) M = £ H A I (with the weak topology) and enAid:
En+lAX-+SEnAX = S(EnAX). Given a function or a map / : £->F of CW
cospectra and a nice map g: X-+Y, we get a function or a m a p / A g: E A X-+F A Y
of CW cospectra naturally.

(2) A homotopy of functions or maps between CW cospectra E and F is a
function or a map h: EAI+-*F, where / + = / u { * } . There are two functions
it: E = E A {t}+-+EAI+(t = 0,1) induced by {t}+cl+, and we write ht for

h°it(t = O, 1). Then, we say that two functions or m a p s / o ^ : E-+F are homo-
topic if there is a homotopy h: EAI+-^F with ht=ft(t = O, 1).

(3) It is easy to see that the homotopy defines an equivalence relation, and
we denote by [£, F] the set of all homotopy classes of maps from E to F.

(4) A homotopy of functions or maps between pairs (£, G) and (F, H) of
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CWcospectra and the homotopy set [E, G; F, H~\ are defined in the same way.

PROPOSITION 1.15. For any CWcospectrum E={En, en} and a nice complex
X, consider the direct system {[£„, SnX], e*oZ\n>0} of the (pointed) homotopy
set [En, SnX~\ and the compositions

(I: the homotopy suspension). Then, there is a natural bijection

[E, £ (*) ]= dirlim[£n, S-JSQ

of the homotopy set of maps of E to the CW cospectrum E(X) of X in Example
1.6 (2) onto the direct limit of {[£„, SnX]}.

PROOF. By Lemma 1.9 (4) and the definition of functions and maps, we see
that any m a p / : E-+E(X) is represented by a function / : E-*E(X)/E(Xyr>> for
some r > 0 , and that the latter is just a nice map fr: Er->E(X)r = SrX together with
all fn = Sn-rfros: En-*S"-rEr->SnX, and it determines the element { [ / J | n > r }
in dirlim[£n, SnX']. We see easily that this correspondence gives the desired
bijection by using Proposition 1.3. q.e. d.

We can see easily the following lemma (cf. [7, Lemma 2.36]), and this is
used to prove Theorem 3.6.

LEMMA 1.16. Let f: E-+F be a function of CW cospectra. For any CW
cospectrum G, a sequence

[C/( G] Jl> [F, G] IU IE, G]

is exact, where i: FczF (J fE Al = Cf is the inclusion.

§ 2. Cells in CW cospectra and locally finite maps

We introduce the notion of cells of CW cospectra.

DEFINITION 2.1. Let E={En, e j be a CW cospectrum. Then, there is the
subcospectrum F of E such that Fn = * for all n; we denote F by * also and call

ia cell of dimension -co. If en is any d-cell of En (other than *, if d = 0), then
there exists a unique (d+l)-cell en+1 of En+1 such that sn(en+1) = Sen, and in
general there exists a unique (d + m)-cell en+m of En+m such that s(en+m) = Smen.
The d-cell en cannot be "desuspended" more than d times, since e(en)czSJEn.j
is a d-cell SJ'en-j or *, where en_j is a (d—j)-co[\ of En-j. Therefore, we obtain
a collection e = {--, ek, ek+l,..., en,...} such that

(2.2) em = * for m<k and em is a (d-n + m)-cell in Em with sm(em+1) = Sem

for m>k and ^k-i(ek) = *-
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We call this subcospectrum e of E a cell of dimension d — n in E. Thus, we see
that each cell (¥" *) in each complex En is a member of exactly one cell ( ^ *) of
E9 and that E is the union of all cells of E.

LEMMA 2.3. Let E be a CWcospectrum.

(1) For a subcollection F of E such that each Fn is finite, F is null in E
if and only if any cell e^=* of E is not contained in F.

(2) Assume that each En is finite and that there is given an integer ne

for each cell e of E. Then, F= u c c £ e ( W e ) is null in E9 where e<r) is the sub-
collection with (e(r))n = enfor n<r, and = * for n>r.

PROOF. (1) The necessity is clear. Now, for a subcollection F of E, assume
that each Fn is finite and any cell e ̂  * of £ is not contained in F. For any fixed
n, let J'n be the set of cells e in E with en^* and enaFn. Then, J'n is finite since
Fn is finite and each cell ( ̂  *) in En is a member of exactly one cell in E. Therefore,
there is k>0 such that en+k(£Fn+k for any eeJ'n since eqLF. Thus, e(Fn+k) —
* c F B by the definition of cells; hence F is null in E.

(2) For any fixed n, the set Jn of cells e in E with en^ * is finite. Therefore,
there is an integer fc>0 such that n + k>ne for any eeJn, and (e("e\+k = * for
eeJn. Also s(e^ne))n+k = *cEn for any e ^ J n by the definition of Jn. Thus,
s(Fn+k) = * <=£„, and F is null in £. q. e. d.

DEFINITION 2.4. (1) Let £ be a CW cospectrum. We say that E is finite
if the number of cells in E is finite, and that E is locally finite if any cell in E is
finite as a CPF cospectrum. Moreover, we say that E is of finite type if each En

is finite and £ is locally finite.
(2) A function/: E-+F is said to be locally finite if fie) is finite for any cell

e of E, and a map / i s said to be locally finite if some representative o f / i s locally
finite. We denote by [£, F~\L the set of all locally finite homotopy classes of
locally finite maps of E to F.

EXAMPLE 2.5. (1) For any nice complex X, the CW cospectrum E(X) of X
is locally finite, and for any CW cospectrum E any function/: E-*E(X) is locally
finite by the definition. Thus, we have [£, E(X)~\L= [£, E(X)~\.

(2) Let Cn = * for n<0 , C0 = S°, C n + 1 = CCrt for n > 0 and en: Cn+1 = CCn^
C / I A 5 1 = 5CW be the projection shrinking Cn to * for n > 0 . Then, {Cn, a j is a
CW cospectrum which is not locally finite. In fact, the cell e in {Cn, en} with
e0 7̂  *( e 5°) contains infinitely many cells.

By (2) of the above example, a CW cospectrum E is not necessarily locally
finite even if each En is finite. But, we have the following

EXAMPLE 2.6. Let {(£„, E'n\ rjn: En-*E'n+1} be a collection with En+1 = Cnn
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and £ = {£„, sn} be a CW cospectrum with the projection en: En+l = Ct}n-^
CtJJEf

n+l=SEn given in Example 1.6 (1). Then, we set for n <0,

(En9 E'n) = (En, E'n), fjn^l = nn_u pn = id: En-+En and Cn = *,

and for n > 0, we set by induction as follows:

E'H+1 = Mn n (the mapping cylinder of rjn: En->E'n+l)9 in: En c E'n+U

Cn+1 = CPn (the mapping cone of pn: En-*En), En c CM+1,

^ = inoPn: En —>En c E ; + 1 , £ r t + 1 = ctjn = £ ; + 1 u c , + 1 , En = E ; + 1 n c w + 1 ,

sn:En+i > En+1/E'n+1 = Cn+JEn = CPn/£w = S£M (the projection),

P*+i = ^n+ i > EH+1ICH+1 = £;+!/£„ = M J £ n = C,n = £w + 1 (the projection).

Now, we /zaue a locally finite CW cospectrum E = {En9 en}, which is of finite type
if each En is finite, and a homotopy commutative diagram

SEn

where each pn is a homotopy equivalence.
In fact, we see easily that E is locally finite, because £n(Cn+1) = SEn(n>0)

and ek maps SCk(czCk+1czEk+1) identically onto SCk(czSEk) for k>n by the
construction. Further, we see immediately that Cn is contractible and pn is a
homotopy equivalence by induction and that the above diagram is homotopy
commutative.

We see easily the following lemma by definition.

LEMMA 2.7. Any finite CW cospectrum E is equivalent to the CW cospectrum
I~l E{X)for some nice complex X and some integer i. More precisely, £/£<*> =
I'1 E(Et) for some i.

Locally finite CJFcospectra can be built up cell by cell just as CW complexes
and CW spectra can be built up.

DEFINITION 2.8. (1) For a CW cospectrum E={En, en}, let e = {..., *, em,
em+1,...} be a d-cell of E and fk: Sk+d~1-^Ek(k>m) be the attaching map of ek.
Then, efc

o/fc+i = S/fc by Definition 2.1, and the collection {/J (with/ fc=* for k<m)
defines a function / : I~m Sm+d~i-^E and a map Id~x S°-*E, which are called the
attaching function and map of e, respectively, (where I{ Sj=1* E(SJ) is the CW
cospectrum such that (PSJ)n = * for n<-i, =SJ+n+i for n> -i).

(2) For a locally finite CW cospectrum £, we can define a filtration
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= \J n^

as follows: For any cell e^* in E, let u(e) be the number of cells contained in
e, which is finite because E is locally finite; and define En to be the union of *
and cells e^* in E with u(e)<n.

Then, we can see easily the following

LEMMA 2.9. For any n>0, let {ea\oceJn} be the set of cells of E"-En~\
and for each cceJn let fa: Z~m« Sm*+d«~1-*E be the attaching function of ea.
Then, the function

g: vaeJn lr
m* Sm"+d«-i >E,g\ Z~m" S ^ + ^ - i = fa9

factors through E""1, and En is the mapping cone

Cg = E»-i KJg(vaeJnZ->»« S -^^" 1 ) A /.

For any locally finite CW cospectrum, we have the following homotopy
extension property.

PROPOSITION 2.10. Let E be a locally finite CW cospectrum and F be its
subcospectrum. Then, for any function f: E-+G and any homotopy h: FA
7+->G of'/|F, there is a homotopy H: £ A / + - > G of f with H\FAl+ = h. More-
over, if f and h are locally finite, then we can take a locally finite homotopy H.

PROOF. At first, we prove the proposition for the case that E is the mapping
cone Cg=F\JgF' Al of a function g\F'-*F. Let r: IAI+-+IA {0}+ U / A / +

be a retraction (/ = {0, 1}). Define a function

h': Fr A I A {0}+ u F' A I A I+ > G

by h'\F'AlA{0}+=f\F'Al and h'\FrAlAl+ = ho(gAid), and a homotopy

H:(F\JgF' A I) A I+ >G

by H\FAl+ = h and #„([*, s], t) = h'H([x9 Pl(r(s, 0)], Pi«s, t))) for [x,s]e
F'nAl and tel+, where pf(sl5 s2) = si(i = l, 2) for [s^ s2] G / A {0}+ U / A / + .
Then, if is well defined and is the desired homotopy. The latter half is clear.

For the general case, we can construct inductively the desired homotopy by
using Lemma 2.9 and the above case. q. e. d.

Now, we see the following excision isomorphism theorem for the locally
finite homotopy sets.

THEOREM 2.11. Let G be a CW cospectrum, and H and K be subcospectra
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ofG with G — FL U K. Then, for any CW cospectrum E of finite type, the induced
map

i*: ICE, E;K,KDH1L > [CJE, E; G, fl]L

of the inclusion i: (K, K(]H)c(G, H) is bijective, where CE = E/\I is the cone
ofE.

Before proving this theorem, we state some applications. The following
is the suspension isomorphism theorem.

THEOREM 2.12. Let E be a CW cospectrum of finite type and F be a CW
cospectrum. Then, the homotopy suspension

X:\JR, F]L >[E A SKF A S^L,

given by If—f Aid for f: E-+F, is bijective.

PROOF. It is clear that I is well defined (without assuming that E is of finite
type). Consider a commutative diagram

IE, F ] L £255 > ICE, E; CF, F]L

ICE, E; CFu C-F, C_F]L

ICE, E;FAS\ * ] L

where cone is given in the same way as I, C-F is another cone of F, i is the in-
clusion, p: CFu C _ F - ^ ( C F U C _ F ) / C _ F = F A S 1 and p': CE-^EAS1 are the
projections. Then, p'* is bijective by the definition, and so is i* by Theorem
2.11. Furthermore, we can show that cone and p* are bijective as follows;
hence so is Z.

(1) cone is bijective: The restriction defines

with 5°cone = id. For any locally finite map / : (CE, E)-^(CF, F), we define a
map g:CEAl+\)EAl+->CF by # | C £ A {0}+=/, # | C £ A {l}+=coneo5(/) and

gn(x, t)=fn(x) for [x, t ]e£ n A/ + . Then, # is 0-homotopic since CF is con-
tractible, and we have a locally finite map h: CEAI+-+CF with h\CEAl+ u F A

j+=0 by Proposition 2.10, which is a locally finite homotopy between / and
coneod(/). Thus cone°d=id.

(2) p% is bijective: By using the fact that C-F is contractible, we can prove
the bijectivity of p* by the formally identical proof to that for CW complexes
(cf. [7, Prop. 6.6]). q.e.d.
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COROLLARY 2.13. Let E be a CW cospectrum of finite type. Then,
(1) for any CW cospectrum F, [E, F~\L has the structure of an abelian group

so that composition is bilinear, and
(2) for any locally finite mapf: F-+G between CW cospectra, the sequence

\_E, F\ J*-> [E, G]L - ^ IE, C / ] L

is exact, where i: Gc:Cf is the inclusion.

PROOF. (1) The homotopy commutative comultiplication S2-+S2vS2

gives us a function

E A S2 > E A (S2 v S2) = (E A S2) v (E A S2),

which induces the structure of an abelian group on [E A S2, F A S2~\L. Thus,
by using the bijection I2: [E, F~]L&\_EAS2, FAS2~\L of the above theorem, we
see (1).

(2) The equality /*<>/* = 0 is clear.
Let g: £-»G be a locally finite map with **(#) = 0. Then, by dividing EAS1

to the union of two cones C_E and CE and by taking a locally finite map h:
C-E-+Cf which is a 0-homotopy of i<>g9 we have a homotopy commutative
diagram

EAS1 gAid > G A S1 < / A i d FAS1

id T/7

C_E U CE ̂ oteAid>) cf U CG

where p and p' are the projections shrinking Cf and CG to *, respectively, and
v(t) = l-t for teS1. Thus, ^Aid is homotopic to (/Aid)°#' for some locally
finite map g'\ £ A S 1 - > F A S 1 . By the above theorem, take a locally finite map
g.E-±F such that ^Aid is homotopic to g'. Then, gAid is homotopic to
( / A ^)oid; hence g is homotopic to /°^ by the above theorem. Therefore, g e Im/*
and (2) is proved. q. e. d.

In the rest of this section, we shall prove Theorem 2.11, by showing the
following

LEMMA 2.14. Let G, H, K and E be as in Theorem 2.11, F be a subcos-

pectrum of E, andf: CE^G be a locally finite map withf(E)czH andf(CF)czK.
Then, there is a locally finite homotopy

h: CE A I+ > G

of maps such that h(CEAl+)=f(CE), h(EAl+)<=H, h(CFAl+)czK, ho=f, hx{E)
K and h is stationary on CF.
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PROOF OF THEOREM 2.11. By taking F = * in Lemma 2.14, we see easily
that the induced map i* in Theorem 2.11 is surjective. Furthermore, by consid-
ering EAI+ instead E and by taking F = EAI+ in Lemma 2.14, we can see that
i* is injective. Thus, i# is bijective. q. e. d.

PROOF OF LEMMA 2.14. We may assume/is a function.

(1) In the first place, we prove the lemma for the case that E = E(Dn), F =
E(Sn~l). Consider the image L =f(E(Dn)Al) of/ , which is a finite subcos-
pectrum of G. Then, by Lemma 2.7, there is k such that

Lr = S'-*Lk9 LrOHr = S'~\Lk fl Hk), Lr 0 Kr = S'"*(L* fl Kk)9

and fr = Sr~kfk for r > k;

and these are (r — fc— l)-connected and Lr = (Lr fl Hr) u (Lr fl Kr). Therefore, by
the homotopy excision theorem (cf. e. g. [7, Th. 6.21]), there is r (>n + 2fc + 3)
such that the map

fr: (CD**', D»+0 —> (Lr, Lr n ifr), / r(CS»+- i ) c Lr fl Xr,

is homotopic rel C5 n + r " 1 to a map (CDn+r, Dn+r)-^(Lr n Kr, LrnHrO Kr). De-
noting this homotopy by hr and setting hm = Sm~rhr(m > r), /zm = *(m < r), we obtain
a function

fc = {hm}: £(D") A / A /+ > L/LW c G/L<r>

which is the desired homotopy.
(2) For the general case, consider the filtration {En u F\n>0} where En

is the one in Definition 2.8 (2). Assume inductively that there exist some integer
re for each cell e in En u F and a function

hn: C(£w U F) A /+ > G/^n,

where ^4W= U {/(^(fa))k- cell in En[jF} is null by Lemma 2.3 (2), with the
following conditions:

1) hn(C(En UF)A I+) =f(C(En U F))/An
9 hn((En U F) A I+) a HjH fl A",

hn(CFAl+)aKIK fl An,

2) fe8=/|C(£»un
hl(C(En U F), £ " U F ) c (X/X f l i " ^ n K/H 0 KO A"),

3) /iw is stationary on CF.
Then, by Lemma 2.9 and by applying (1) for each cell e in En+1 \J F-En [j F9

we obtain rc for each e and a function hn+1: C(En+1 u i7) A/+->G/^n + 1 with the
above 1)~3) for n + 1 instead of n. Thus, we have a desired homotopy h: CEA
I+-^GlKJnA

n
i because E = ̂ JnE

n
9 where \JnA

n is null in G by Lemma 2.3 (2).
This completes the proof of Lemma 2.14 and hence that of Theorem 2.11. q. e. d.
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§ 3. Cohomotopy properties

In this section, we study the cohomotopy groups of CW cospectra. For
any CJF cospectrum E and any integer n, consider the cohomotopy set

(3.1) n\E) = [£, I" S°] = [£, I" S 0 ]^

where InS° is the sphere CFF cospectrum given by

(I^S0); = * for i < - n, = Sn+i for i > - n.

we notice that Proposition 1.15 means that
(3.1)' nn(E) is the direct limit of {[£f, S

w+ '], ef <>£}, where

efoZ: [£., S"+<] -*-> [SEi9

For a CWcospectrum E of finite type, by the two bijections

[£, In S°]L J-+ IE A S\ In S° A 5X]L -£*>[£ A S\ In+1 S°]L,

where I is the one in Theorem 2.12 and p: In+1 S°^In
 S°AS1 is the projection

shrinking the null subcollection (In+1 S°y~n) in In+1 S° to *, we obtain the
bijection

(3.2) I = p^ol: nn(E) > T C ^ ^ E A S 1 ) .

Furthermore, nn+2(EAS2) has the structure of an abelian group. Thus, by
using the bijection I2 we can see that nn(E) has the structure of an abelian gruop.

DEFINITION 3.3 For any CW cospectrum E of finite type and any integer n,
the n-th cohomotopy group nn(E) of £ is the set nn{E) in (3.1) with the structure of
an abelian group induced by the bijection I2. Any map between CW cospectra
of finite type induces the homomorphism between cohomotopy groups.

REMARK 3.4. The cohomotopy group nn(E) can be defined for any CW
cospectrum E which is not necessarily of finite type. In fact, we can show that
the suspension I of (3.2) is bijective for any CW cospectrum E (cf. Lemma 4.3.)

We shall deal with a proof and applications of the following theorem in this
section.

THEOREM 3.5. Assume that a CW cospectrum E of finite type satisfies the
condition n*(E) = 0. Then, E is contractible in the homotopy category of CW
cospectra and maps, i.e., the identity map id: E-*E is homotopic to *.

By using this theorem, we have the 'dual' of the J. H. C. Whitehead theorem.
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THEOREM 3.6. Let E and F be CW cospectra of finite type and f:E->F
be a locally finite map. Iff*: n*(F)->n*(E) induced by f is an isomorphism,
then f: E->F is a homotopy equivalence in the homotopy category of CW cos-
pectra and maps.

PROOF. In the first place, we show that

(*) for any CW cospectrum G of finite type, there are a CW cospectrum G
of finite type and locally finite homotopy equivalence q: G - ^ G A S 1 .

For G in (*), consider the filtration

* = G° c G1 c ... c G" c .. c \JnG
n = G

given in Definition 2.8 (2). Then, we can constract inductively CW cospectra
Gn of finite type and locally finite homotopy equivalences qn: Gn^Gn AS1 for
n>0 with G° = *, Gn^Gn+1 and qn+1\Gn = qn. In fact, assume that we have
Gn and qn as desired. Then, for the big attaching map g: v aKaA S1^Gn(K0C =
£d«S°) with Gn+1 = Cg in Lemma 2.9, there are subcospectra La of Gn with
(gno0)(KaAS'1):==LaAS'1 by Example 1.2 (3). Furthermore, by Theorem 2.12,
there is a locally finite map g: v (XKa-+Gn such that g A i d ^ A ^ 1 is homotopic
to qnog\K(tASl in LaASK Then, we can define Gn+1 = Cg and qn+1: Gn+1 =
Cg^>Gn+1 A Sl = CgK{d naturally.

By the above construction, we see (*) by taking G = \jnG
n and q\Gn = qn.

Now, we prove the theorem. Let E and F be CW cospectra in (*) for G = E
and F in the theorem, respectively. Then, we have the bijections [JE, F ] L «
[ E A S 1 , F A S 1 ] ^ ^ , F]L by Theorem 1.12 and (*). Thus, for a given locally
finite map/ : E-^F, we can find a locally finite map/ : E-+F which is mapped to
/by the composition of the above bijections; and/*: n*(F)->7i*(E) is isomorphic
by (3.2), (*) and the assumption that / * is isomorphic. Hence, 7t*(Cj) =
7r*(CjA51) = 0 by the exact sequence in Lemma 1.16, and these equalities imply
that [C7,if] = [C7AS1 ,/f]=0 for any CW cospectrum H by Theorem 3.5.
Therefore, (/Aid)*: [ F A S 1 , # ] - • [£AS 1 , H~\ is isomorphic by the exact se-
quence in Lemma 1.16. These show that

(3.7) /* : IF, if] > IE, if] is isomorphic for any CW cospectrum H.

By taking H = E in (3.7), we have a map g: F-*E with [#°/] = [id]. Further-
more, by taking H = F in (3.7), we see that/*[/o^] = [/o^o/] = [/]=/*[id] and
so [/o#] = [id]. Thus,/is a homotopy equivalence, and the theorem is proved
assuming Theorem 3.5. q. e. d.

The following corollary ensures that the homotopy category of CW cospectra
of finite type and maps is "stable".
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COROLLARY 3.8. Let E, F and G be CW cospectra of finite type.
(1) There is a natural homotopy equivalence EAS1CHI1E.

(2) The homotopy suspension

Z:[E,F\ • [ E A S ^ F A S 1 ] , Ig = g A id.

is an isomorphism.
(3) For any locally finite map f: F->G, there holds the following exact

sequence:

[£, F | A * [£, G] —->[£, Cf1.

PROOF. (1) Let H*1: S1
 A S 1 A I + - » S 1 A S1

 A J+ be homeomorphisms with
H±1[x,3;,0] = [ x , ^ 0 ] , H+1[x,);,l] = [v0;),x,l] and H " 1 ^ , ^ 1] = [>, v(x), 1]
where v: S1-*S1 is given by v(x) = l— x for xeS1. Then, we obtain a CW
cospectrum £={£„, sw} of finite type such that £II = £ / 1 A S 1 A / + and en is the
composition of

En+i = En+1 A 51 A / + - ^ ^ 51 A £n A S1 A J+

£„ A 51 A S1 A I+idAH(n)>En A S1 A S1 A /+
n

S1 AEnA S1

where H(ri)=H(~i)n and T is the switching map. Furthermore, by using the
inclusions i,: En A S1 A {t}+ <= En A S1 A I+(t = 0, 1), we have two locally finite
functions

TIEAS1 >E with Tn = i09 and

K: I1 E > E with ?cn = i^id A vn)oToen.

Now, we can show that the two induced homomorphisms

T* : n*(E) > n*(E A S1), K:* : n*(E) > n*(IxE),

are both bijective; hence T and K are both homotopy equivalences, which implies
(1). In fact, the bijectivity of K* is proved by (3.1); and by the commutative
diagram

where (i^idA vn)oT)* is bijective; and the one of T* is proved more easily.
(2) For E and F, consider the CW cospectra E and F given in the proof
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of (1), respectively. Then, for any function/: £->F, we obtain a function a ( / ) :
E-+F such that

<f\ = /» A id: En = En A S1 A J+ —+ Fn A S* A /+ = FH9

and this a induces

Furthermore, we see easily that the diagram

3 - [£, F] -

is commutative by the definition of K and T in the proof of (1). Thus, I is an
isomorphism.

(3) We can prove (3) by the same proof as that of Corollary 2.13 (2).
q.e.d.

The rest of this section is devoted to the proof of Theorem 3.5.

DEFINITION 3.9. Let E be a CWcospectrum such that each E is finite and
En = * for n<0. Then, we define E{n} to be the union of cells e of E with en = *.
We see easily that E/E{n} is finite and

LEMMA 3.10. Let E and £{w> be as in the above definition. If F(n) is a

null subcollection of each E{n\ then F = \Jn^0F(ri) is null in E.

PROOF. Let e ^ * be any cell in E. Then, there is an integer N>0 with
E{n)3>e for n>N since r\B2>0 E

{n) = *. Thus E{N}=>VJn:tN F(ri)^)e. Also

\jo^n<NF(n)t>e by Lemmas 1.9 (1) and 2.3 (1). Therefore, F = \JnF{n)^be\
hence F is null by Lemma 2.3 (1). q. e. d.

PROOF OF THEOREM 3.5. We may assume that En = * for n < 0 by Lemma
1.13. By the assumption n*(E) = 0, Lemma 2.9, Corollary 2.13 (2) and the five
lemma, we see immediately that [E, F ] L = 0 for any finite CW cospectrum F.
Hence, [£, E^>/£^+1>]L = 0, because £{»}/£<»+1> is finite. By using the exact
sequence of Corollary 2.13 (2) for E{n+1]c:E{n\ we can find inductively locally
finite functions

hn: E A /+ > EW/F(n) (F(n): null in £<">)

for n > 0 such that fig = id, hn
1(E)czE^+iyF(n)(]E^+1^ and fig+1 = fi;, (h» = hn\E

A {t}+ for r = 0, 1). Now, we have locally finite functions
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fi»: E A J+ JL> EM/F(n) - ^ E^/F n £{n}

where F = \Jn^0 F(n) is null in E by the above lemma, and

Hn: E A 1+ > (£/F)/(E^+l}/£{n+l} n F )

such that ff"|EA [l-Cr+l)""1, l - ( r + 2)"1]+ for r > 0 is equal to

ptoErojr (0 < r < n), * (r > n)

where j r : [1 —(r+1)"1, 1 — (r + 2)"1]->[0, 1] is a homeomorphism. Because
each En is finite, there is p(n) for each n such that (£(*(»)>/£<*(»)> n F)n = *. More-
over, we can take P(ri) so that jS(n') > p(n) if n' > n. Thus, we can find a homotopy

H:EAI+ > E/F9 Hn =

with i70 = id and Ht = *. q.e.d.

§ 4. The representation of homology theories by CW cospectra

In the first place, we notice that any CPFcospectrum E defines a homology
theory £*( - ) on the homotopy category NCW of nice complexes and nice maps
which is equivalent to the homotopy category CW of CW complexes by Pro-
position 1.3.

For any CFFcospectrum E, any nice complex X and any integer n, we consider
the CW cospectra InE and E(X) in Example 1.6, and the homotopy set

(4.1) En(X) = [Zn E, X] (where X stands for E(X))

of maps between CW cospectra. Then, we have the following

PROPOSITION 4.2. For any CWcospectrum E, £* ( - ) in (4.1) forms a reduced
homology theory on NCW.

This proposition is an immediate consequence of the following

LEMMA 4.3. (1) The homotopy suspension

I: IE, X] > [ E A S M A S 1 ] , Zf = f A id.

is a bijection.

(2) / / / : X-+Yis a nice map, then the sequence

[£, X] J ^ [£, 7] _!*-. [£, C/]

is exact, where Cf is the mapping cone off and i: YaCf is the inclusion.
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PROOF. (1) Consider the commutative diagram

where £' are also the homotopy suspensions and T and T' are the switching
maps. (We see that I"°(7VT*) = I because id A# = (T" Aid)°(id A p " 1 ^ Aid)°
(id A p)o(TA id) where p: S1 A S ^ S 1 AS 1 , p(f, s) = (s, 1 — 0, is homotopic to the
identity.) In this diagram, Proposition 1.15 means that

(4.4) [£, X] = dir lim {[£„, S«X], fijd} ;

and therefore

[£ A S1, X A S1] = dir lim {[£„ A S1, 5WX A S1], (en A id)*oZ}.

Thus, the assertion (1) follows immediately from the above diagram.
(2) We can prove (2) by the same proof as that of Corollary 2.13 (2).

q.e.d.

We are in a position to prove the following representation theorem.

THEOREM 4.5. Let h* be a given reduced homology theory satisfying
(4.6) hm(Sn) is finitely generated for any n>0 and m, and there is an integer
N with hm(S°) = 0for m<N.

Then, there exist a CW cospectrum E of finite type and a natural equivalence

T+: E*(X) * hm(X)

for any finite nice complex X, where E* is the homology theory given in Pro-
position 4.2.

As an application of this theorem, we have a CWcospectrum which is "dual"
to a given CW spectrum with certain conditions by the following corollary. (For
the notion of CW spectra and the notations, see [1] or [7, Ch. 8].)

COROLLARY 4.7. Let E be a CW spectrum whose homotopy group n*
satisfies the following condition:
(4.8) n*(E) is finitely generated and there is an integer N with nn(E) = 0 for
n<N.
Then, there exist a CW cospectrum E of finite type and a natural equivalence

[I* E, X] s [I* S°, E A X] for any finite nice complex X.

PROOF. E*(X) = [E* S°, EAX~\ is a reduced homology theory (cf., e.g..
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[7, 8.33]) and it satisfies (4.6) by the assumption (4.8). Thus, the corollary follows
immediately from the above theorem. q. e. d.

The rest of this section is devoted to the proof of Theorem 4.5.
For a given reduced homology theory h%, nice complexes X, Yand an element

u e hn{X), we consider the map

(4.9) Tu: IX, Y] — hn(Y), TJJ) = /*(u).

If Y=Sk, d imX<2( /c - l ) and k>2, then the cohomotopy set IX, Sfc] is an
abelian group and Tu is a homomorphism (cf., e.g., [5, p. 421, p. 458]).

LEMMA 4.10. Let h* be a reduced homology theory satisfying (4.6) with
N = Q, X be a finite nice complex with d imX<2r and ueh2r(X) where r > l .
Assume that Tu of (4.9) is isomorphic for k>r + l and epimorphic for k = r + l.
Then, there exist a nice mapf: X-+W(W= v *-=1S}+1 is the wedge sum of t copies
Srj+1 of Sr+1) and an element u eh2r+l(X)(X = Cf is the mapping cone off)
satisfying the following conditions:

1) pr^w) = a{u), where pr: X-+SX is the projection and o\ h2r(X)^
h2r+i(SX) is the suspension isomorphism.

2) Ta: IX, Sfe]->/z2r+1(5
fc) is isomorphic for k>r + 2.

PROOF. We notice that [X, Sk~\ is finitely generated for k>r+l, because
X is finite and the homotopy groups of Sk is finitely generated. Suppose that
Ker Tu of (4.9) for /c = r + l is generated by {gl9...9gt} and set W=VjSrj+1

(Srj+1 = Sr+1) and / = i ^ + • • • + itogt: X-+ W(ij :Sr+1 = S?1 c W). Then, in the
exact sequence

±> h2r+1(SX)J¥)±+h2r+1(SW) — > . . . ,

we see that (Sn*Wu)) = *U+(u)) = ^
Hence, there is an element ueh2r+1(Cf) with prHc(i/) = o'(i/). Now, consider the
the commutative diagrams

[SW, S*] (5/)*> ISX, Sk~] -H!, [ C / 5 S
fc] > \_W, S*] ( = 0)

h2r+i(Sk)—h2r+1(S
k),

for k>r+2, where the first line is exact. If fc>r + 3, then Tu is isomorphic by
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assumption and so is pr* because [SW9 S
fc] = 0; hence so is Ta. For the case

/c = r + 2, Im/5|c = KerTM by the definition o f / and so Ker Ta(u) = Im(S/)* =
Ker pr*. Thus, Ta is isomorphic and (2) is proved. q. e. d.

PROOF OF THEOREM 4.5. We prove the theorem for the case N = 0 in (4.6).
Then, the one for the general case follows easily.

We shall construct a CW cospectrum E = {En, sn} of finite type and elements
un e hn(En) satisfying the following conditions:

(4.11) En = * for n<2 and dimEn<n,

(4.12) TUn: [£„, Sfc]-»/iw(Sfc) is isomorphic for /c>[n/2] + l and epimorphic
for fe = [n/2] + l, and

(4.13) (T(un) = en*(un + l) where a: hn(En)->hn+1(SEn) is the suspension iso-

morphism.

Then, after getting E and un satisfying above conditions, we have the map

Tfe = dirlimnTMn+k: [IfeE, X]=dirl imJEn + f c , S«X] > dirlimnhn+k(S»X) = hk(X)

for any nice complex X, and this is a natural transformation between the homology
theories on the category of nice complexes and nice maps. In the case X = S\ Tk

is an isomorphism because TUn+k: [En+k, Sn+i]-J>hn+k(S
n+i) is so for n>k — 2i

+ 2 by (4.12). Thus, T*: E*(X)^>h*(X) is a natural equivalence for any finite
nice complex X by the five lemma; and the proof of the theorem is reduced to
the construction of En and un.

Now, assume inductively that we have finite nice complexes En and elements
unehn(En) with (4.11-12) for n < 2 r ( r > l ) . (Since hn(S

k) = 0 for k>n by (4.6)
with iV = 0, (4.12) holds for En = *(n< 2).) Then, the assumptions in Lemma
4.10 hold for X — Elr and u = u2r. Thus, by Lemma 4.10, we can find a finite
nice complex E2r (which is the mapping cone Cf of a nice map / : E2r-+ VjSrj+1)
and u2r = ueh2r+1(E2r) such that pr^(u2r) = (j(u2r) for pr: E2r-*SE2r and Ta:
[£2r , Sfc]->/i2r+1(S

fc) is isomorphic for /c>r + 2. Now, let h2r+l(S
r+1) be

generated by {al5..., as} by (4.6), and set

E2r+1 = £ 2 r v

(w = u2r, i: E2rcE2r+1, hi Sr+x = Sr
t
+1czE2r+1). Then, for /c>

is isomorphic, because so is i* by the definition. For fc = r + l , TM2r+1 is clearly
epimorphic by the definition. Thus, (4.12) holds for n = 2 r + 1 .
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For n = 2r + 2, set

E2r+2 = S£ 2 r + 1 and u2r+1 = cr(u2r+1)eh2r+2(E2r+2).

Then, (4.12) holds for n = 2r + 2 by the right square of the lower diagram in the
proof of Lemma 4.10.

Thus, we obtain finite nice complexes En and elements un e hn(En) satisfying
(4.11-12) by induction. Furthermore, in the above construction, let s2r: E2r+1-+
E2r^>SE2r be the composition of the projections shrinkig v,Sj+ 1 and v^Sy1"1

to * respectively, and e2 r + 1=id. Then, (4.13) holds for n = 2r, 2 r + l by the
definition. Moreover, we have a CPTcospectrum E = {En9 en} which is given in
Example 1.6 (1). Therefore, by Example 2.6 and (4.4), we may take E of finite
type.

These complete the proof of Theorme 4.5. q. e. d.
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