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Introduction

E. L. Lima [3] defined a direct spectrum {E;, ¢;: E,~E,,,} and an inverse
spectrum {F;, ¥;: F;,,—F;}. The former has been developed by many authors
into the theory of CW spectra, which is now the basic notion in the cohomology
theory ([1], [6], [7], [8]). In this paper, we shall define the notion of CW cos-
pectra corresponding to the latter, and argue the homotopy category of CW
cospectra by treating it as dual to that of CW spectra.

In this paper, a CW complex is called a nice complex if each cell is a sub-
complex, and a map between nice complexes is called a nice map if each
cell is mapped onto a subcomplex. By using the category NCW of nice complexes
and nice maps, we define a CW cospectrum E as a collection

E = {E, ¢, E,., — SE,|neZ}

in NCW where S denotes the suspension and g, is the projection shrinking a
subcomplex of E,, ; to *, and a map

f:E={En58n}__’F=~{Fm8;|}

between CW cospectra is a collection of f,: E,—F,/F, in NCW commuting with
¢, and ¢,, where F'={F,} is a null subcollection of F, (see Definitions 1.1, 1.4
and 1.10). Further, a homotopy is a map h: EAI*—F where I"={x} U [0, 1]
(disjoint union) and (E, A I*),=E, A I* (see Definition 1.14).

Thus, we obtain the homotopy category of CW cospectra. Furthermore,
by considering the notion of cells in a CW cospectrum, we define a CW cospectrum
E of finite type and the cohomotopy group

n"(E) = [E, 2"S°] (homotopy set) forany neZ

where (2"S%),=* (i<—n), =S"*! (i> —n), (see Definitions 2.1, 2.4 and 3.3).
Then, we have the following

THEOREM 3.5. Assume that a CW cospectrum E of finite type satisfies
n"(E)=0 for any n. Then, E is contractible in the homotopy category of CW
cospectra.

COROLLARY 3.8. Let E be a CW cospectrum of finite type. Then, there is
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a natural homotopy equivalence EAS'~3'E, where (EAS!),=E,AS! and
(Z*E)n=En+*'

Moreover, any CW cospectrum E defines a homology theory
E.(X) = [2*E, E(X)] (homotopy set) for XeNCW,

where E(X) is the CW cospectrum of X given by E(X),=#(n<0), =S"X(n>0).
Conversely, we have the following representation theorem of homology theories
by CW cospectra.

THEOREM 4.5. Let hy be a given reduced homology theory satisfying the
following condition:
(4.6) h,(S") is finitely generated for any n>0 and m, and there is an integer
N with h,(S°) =0 for m<N.

Then, there exist a CW cospectrum E of finite type and a natural equivalence

T: Ey(X) = he(X)  for any finite nice complex X.

This paper is organized as follows. In §1, we introduce the notion of nice
complexes and nice maps, and define the homotopy category of CW cospectra and
maps. In §2, we consider the notion of cells in a CW cospectrum and of locally
finite maps, and prove the homotopy extension property and the homotopy
excision theorem. By using the results in §2, we prove Theorem 3.5 in §3.
Finally, Theorem 4.5 is proved in §4.

The author wishes to express his hearty thanks to Professors M. Sugawara
and T. Matumoto for thier valuable suggestions and discussions.

§1. CW cospectra

In this paper, we are concerned with nice complexes defined as follows:

DEerINITION 1.1 A CWcomplex X with base point * is called a nice complex,
if each cell e in X is a subcomplex of X (“‘cell’’ means “closed cell’’ in this paper).
For nice complexes X and Y, a continuous map f: X— Y preserving base points
is called a nice map, if the image f(A) of each subcomplex A4 of X is a subcomplex
of Y. Two nice complexes X and Y are said to be isomorphic, written frequently
X =Y, if there is a homeomorphism f: X — Y preserving the cell structures and base
points.

Then, we can consider the category NCW of nice complexes and nice maps;
and we see easily the following

ExaMmPLE 1.2. Let X and Y be nice complexes.
(1) Any subcomplex A(3 *) of X and the CW complex X/A obtained from



On CW cospectra 349

X by shrinking A to * are nice complexes, and the inclusion i: Ac=X and the
projection pr: X—X/A are nice maps. Moreover, cells e'(##) in X/A are in
1-1 correspondence with cells e(¢ 4) in X by e’ =pr(e), and pr-i(B’) is a sub-
complex of X for any subcomplex B’ of X/A.

(2) The product complex X x Y (with the weak topology), the wedge sum
X v Y and the smash product XA Y=X x Y/X v Y are nice complexes.

(3) We consider the n-sphere S" as the nice complex S"={*}Ue" and
(n+1)-disc D"*! as that D"ti=S7yert!={*}Ue"Ue""!. Then, the sus-
pension S"X =S"A X of X is a nice complex, and S A S/=Si*/ for any integers
i, j>0. Moreover, S"X(n>1) has a single O-cell *, and cells e'(#%) in S"X are
in 1-1 correspondence with cells e(##) in X by e'=S"e (where S"e denotes
pr(S” x e) for the projection pr: S" x X »S"X).

(4) We consider the interval I=[0, 1] as the nice complex I={0}u {1} u I
with base point 0. Then, the mapping cone C;,=Y U XAl of a nice map
f: X->Yis a nice complex.

(5) For any nice complex A without considering base point, we can consider
the nice complex A*={+}U A (disjoint union). Then, the mapping cylinder
M ;=Y U XAI* of a nice map f: X—Y is a nice complex. Furthermore, the
nice homotopy of X to Yis defined to be a nice map h: X AI*>Y.

We notice that the inclusion of NCW to the category CW of pointed CW
complexes and continuous maps induces an equivalence of associated homotopy
categories; i.e., we have the following

PrOPOSITION 1.3. (1) Any continuous map f: X—Y between nice com-
plexes X and Y such that f| A is nice for a subcomplex A=X is homotopic rel A
to a nice map f': X-Y.

(2) Any CW complex is homotopy equivalent to a nice complex.

(3) Two maps between nice complexes are homotopic (rel *) if and only
if they are nicely homotopic (rel ).

Proor. (1) for the case X =D" and A=S""!: Since f(D") is contained in
a finite subcomplex of Y, we may assume that Y is finite. If f(D")=Y, then fis
clearly nice. If f(D")&Y, then Y contains a cell e f(D"), and we take e of
maximum dimension among such cells. Thus, Y=Y, U e where ez f(D") and
Y, is a subcomplex of Y with Y,70e. We notice that f(S"!)c Y, because f|S"~!
is nice by the assumption. Now, we can find a point x in the open cell of e such
that xe f(D"), i.e., f(D")= Y—{x}. Since Y, is a deformation retract of Y—{x},
we see that f is homotopic rel S*~! to a map f,: D"—>Y,<Y; and we obtain the
desired homotopy by induction on the number of cells in Y.

(1) for the general case can be proved inductively by using the above result
on cells in X.
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(2) The desired nice complex is obtained by deforming inductively the
attaching maps of a given complex to make them nice.
(3) This follows immediately from (1). q.e.d.

Now, we define the notion of CW cospectra.

DEFINITION 1.4. (1) A CW cospectrum is a collection {E,, g,/ne Z} of nice
complexes E, and maps ¢,: E,,.,—>SE, where SE,=S!AE,, satisfying the fol-
lowing condition:

(1.5) There is a subcomplex E,, (3 *) of E,, such that ¢,: E,, ,—E, . {/Ens1=
SE, is the composition of the projection and an isomorphism between nice
complexes.

(2) A subcollection F={F,} of E consists of subcomplexes F,(€=*) of
E, such that ¢,(F,.,)<=SF, for each n. Moreover, if ¢,(F,,,)=SF, for each n,
then F is called a subcospectrum of E; and (E, F) is called a pair of CW cospectra.

(3) Let E={E,, ¢,} and F={F,, ¢,} be CW cospectra. Then, a function
f={f,}: E-F is a collection of nice maps f,: E,—~F, with &,of,.,=Sf,°¢, for
each n. A function f:(E, E")—(F, F’) between pairs of CW cospectra is a
function f: E—~F with f(E")cF'.

ExampLE 1.6. (1) Let {(E,, E,), n,: E,~E,.,/n€Z} be a collection of
pairs (E,, E;) of nice complexes and nice maps #, such that E,,, =C, , the map-
ping cone of n, Then, by taking ¢,:E,,;=C, —C, [E,,;=E,AS'=8'A
E,=SE, to be the projection shrinking E,., to *, we have a CW cospectrum
{En’ Sn}'

(2) If X is a nice complex, then we can define a CW cospectrum E(X) of X
by taking

EX), = * (n<0) 8,,=[* (n<0)
N ¢ (n>0), id (n=0).
We notice that E(X) is a CW cospectrum given by taking E,=*(n<0), E,=
X(n=0), E,,=x* and n,=x* in (1).

(3) For any CW cospectrum E={E,} and integer k, we can define a CW
cospectrum X* E by taking (2% E),=E, ,,.

(4) Given a function f:E—F between CW cospectra, we can define new CW
cospectra M, (the mapping cylinder of f) and C, (the mapping cone of f), by
taking (M,),=M,, and (C,),=C/, respectively. The cone CE of E is the map-
ping cone C;q4 of the identity function id: E—E.

LeMMA 1.7. Let E be a CW cospectrum.

(1) For subcollections F={F,} and G={G,} of E, FUG={F,UG,} is a
subcollection of E. Moreover, if F and G are subcospectra of E, then so is
FuG.
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(2) For any subcospectrum F={F,} of E, F={F,, &,|F,+.} is a CW cos-
pectrum and the inclusion F c E consisting of the inclusions F,<E, is a function.

(3) For any subcollection F={F,} of E, E[F={E,[F,, ¢,} is a CW cos-
pectrum where ¢,: E,.,|F,.,—SE,/SF,=S(E,/F,) is the map induced from
&,: E,.—SE, (¢,(F,+1)<SF,), and the projection E—E|F consisting of the
projections E,—E,[F, is a function.

(4) In addition to (3), let G be a subcollection of E[F. Then, there is a
subcollection G’ of E with G'>F and G'|F=G.

(5) Let f: E5F be a function between CW cospectra. Then, for any
subcollection G of E, f(G)={f,(G),} is a subcollection of F. Moreover, if G is
a subcospectrum of E, then f(G) is a subcospectrum of F.

Proor. The lemma can be proved easily by definition and by Example 1.2.
For example, (3) is shown by noticing that ¢;1(SF,) is a subcomplex of E,.,
containing E,,,UF,,,; and that E,.,/E,,,=SF, induces E,,,/e;!(SF,)=
SE,/SF,=S(E,/F,); and G'={G]} in (4) is given by G,=pr,;(G,) where pr,:
E,—E,[/F, is the projection. q.e.d.

In order to construct the category of CW cospectra, we need to specify the
morphisms, called maps.

DEerINITION 1.8. We say that a subcollection F={F,} of a CW cospectrum
E={E,, ¢,} is null in E, if for each n, there is an integer k>0 such that &(F, ;. ;)=
*, where ¢ denotes the composition g, 0S¢, 4 x— o+ oS¥e,.

By the definition, we see easily the following

LEMMA 1.9. (1) In Lemma 1.7 (1), if F and G are null in E, then so is
FuG.

(2) In Lemma 1.7 (4), if F is null in E and G is null in E[F, then so is
G inE.

(3) In Lemma 1.7 (5), if G is null in E, then so is f(G) in F.

(4) For any CW cospectrum E and reZ, the subcollection E®™, given by

(E™),=E, for n<r,=x for n>r,

is null in E. Moreover, for the CW cospectrum E(X) of a nice complex X given
in Example 1.6 (2), F is null in E(X) if and only if F is contained in E(X)™
for some r.

We define a map as follows.

DEerINITION 1.10. (1) A map f: E-F between CW cospectra E and F is an
equivalence class of a function fz.: E—F/F’ such that F’ is a null subcollection of
F, where
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(1.11) two functions fp,: E-F[F; (F;: null in F; i=1, 2) are equivalent if and
only if there is a function fy: E-F[F; (F5: null in F) with F,UF,cF5 and
priofr, =praofr,=f3(pr;: F/[F;—>F|F3 are the projections). (We see that (1.11)
defines an equivalence relation by Lemma 1.9.)

(2) A map f: (E, G)—(F, H) between pairs of CW cospectra is a map f:
E—F with f(G)c H which means that for some representative fz.: E->F/F' (F':
null in F) of f, feAG)cH/H N F'. Then, the restriction f|G: G—H is the map
represented by fr.|G: G-H/HNF'.

DERINITION 1.12. The composition gof : E»G of maps f: E»F and g:
F—G between CW cospectra is defined as follows: Let f and g be represented
by functions f: E-»F/F' (F':nullin F) and g: F—G/G’(G’: null in G), respectively.
Then, by Lemma 1.9 (3) and (2), g(F’) is null in G/G’ and there is a null sub-
collection G” of G with G" > G’ and G"/G' =g(F’). Thus, we obtain the composed
function

g'f: E-L, FIF' £, (G|G)/g(F") = G|G",

where g’ is the function induced from g; and we can define the composition gof
as the map represented by g'of.

By the definition of maps, we see easily the following

LEMMA 1.13. In the category of CW cospectra and maps, the projection
E—E|E' is an equivalence for any null subcollection E' of E. In particular,
E is equivalent to E/E™ where E™ is that given in Lemma 1.9 (4) and
(E/E™),=E, for n>r, =% for n<r.

Now, we define a homotopy of functions and maps.

DEerFINITION 1.14. (1) If E={E,, ¢,} is a CW cospectrum and X is a nice
complex, then we can define a new CW cospectrum E A X, the smash product
of E and X, by taking (EA X),=E,A X (with the weak topology) and ¢, Aid:
E,.,,AX->SE,AX=S(E,AX). Given a function or a map f: E»F of CW
cospectra and a nice map g: X —Y, we get a function oramap fAag: EAX—>FAY
of CW cospectra naturally.

(2) A homotopy of functions or maps between CW cospectra E and F is a
function or a map h: EAI*—>F, where I*=Iy {*}. There are two functions
it E=EA{t}*>EAI*(t=0,1) induced by {t}*<I*, and we write h, for
hei(t=0, 1). Then, we say that two functions or maps f,, f;: E-F are homo-
topic if there is a homotopy h: E A I*—F with h,=f(t=0, 1).

(3) It is easy to-see that the homotopy defines an equivalence relation, and
we denote by [E, F] the set of all homotopy classes of maps from E to F.

(4) A homotopy of functions or maps between pairs (E, G) and (F, H) of
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CW cospectra and the homotopy set [E, G; F, H] are defined in the same way.

ProvpositioN 1.15.  For any CW cospectrum E={E,, €,} and a nice complex
X, consider the direct system {[E,, S*X], e¥oX|n>0} of the (pointed) homotopy
set [E,, S"X] and the compositions

eoX: [E,, S"X]1 2 [SE,, S"1X] 25, [E,,,, S"™*1X]
(Z': the homotopy suspension). Then, there is a natural bijection
LE, E(X)] = dirlim [E,, S"X]

of the homotopy set of maps of E to the CW cospectrum E(X) of X in Example
1.6 (2) onto the direct limit of {[E,, S"X]}.

ProoOF. By Lemma 1.9 (4) and the definition of functions and maps, we see
that any map f: E-»E(X) is represented by a function f: E—E(X)/E(X)™ for
some r>0, and that the latter is just a nice map f,: E,—»E(X),=S"X together with
all f,=S""f,e: E,»S"TE,»S"X, and it determines the element {[f,]|n>r}
in dir im[E,, S"X]. We see easily that this correspondence gives the desired
bijection by using Proposition 1.3. q.e.d.

We can see easily the following lemma (cf. [7, Lemma 2.36]), and this is
used to prove Theorem 3.6.

LEMMA 1.16. Let f: E-F be a function of CW cospectra. For any CW
cospectrum G, a sequence

[c,, 612, [F, 61 L4 [E, 6]

is exact, where i: FcF U ;EAI=Cy is the inclusion.

§2. Cells in CW cospectra and locally finite maps

We introduce the notion of cells of CW cospectra.

DEerFINITION 2.1. Let E={E,, ¢,} be a CW cospectrum. Then, there is the
subcospectrum F of E such that F,=x* for all n; we denote F by * also and call
1a cell of dimension —oo. If e, is any d-cell of E, (other than *, if d=0), then
there exists a unique (d+1)-cell e,,, of E,,; such that ¢(e,.,)=Se,, and in
general there exists a unique (d+m)-cell e,,,, of E,,, such that g(e,.,,)=S"e,.
The d-cell e, cannot be “desuspended’” more than d times, since &(e,) =S/E,_;
is a d-cell S/e,_; or *, where e,_; is a (d—j)-cell of E,_;. Therefore, we obtain
a collection e={:-, €, €4 1,---» €y-..} such that
2.2) e,=% for m<k and e, is a (d—n+m)-cell in E,, with g,(e,+1)=Se,
for m>k and ¢,_(e))=+*.
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We call this subcospectrum e of E a cell of dimension d—n in E. Thus, we see
that each cell (#*) in each complex E, is a member of exactly one cell (5 *) of
E, and that E is the union of all cells of E.

LeEMMA 2.3. Let E be a CW cospectrum.

(1) For a subcollection F of E such that each F, is finite, F is null in E
if and only if any cell e# x of E is not contained in F.

(2) Assume that each E, is finite and that there is given an integer n,
for each cell e of E. Then, F= U ,cg e is null in E, where e is the sub-
collection with (e),=e, for n<r, and=x* for n>r.

PROOF. (1) The necessity is clear. Now, for a subcollection F of E, assume
that each F, is finite and any cell e# % of E is not contained in F. For any fixed
n, let J, be the set of cells e in E with e,#* and e,=F,. Then, J;, is finite since
F, is finite and each cell (# #) in E, is a member of exactly one cellin E. Therefore,
there is k>0 such that e, , & F,,, for any eeJ, since ez F. Thus, &(F,+1)=
*x c F, by the definition of cells; hence F is null in E.

(2) For any fixed n, the set J, of cells e in E with e, * is finite. Therefore,
there is an integer k>0 such that n+k>n, for any eeJ,, and (e("?),,,==* for
eel, Also ge),  ,=xcE, for any e¢J, by the definition of J,. Thus,
&F, )=*<E,, and F is null in E. g.e.d.

DErINITION 2.4. (1) Let E be a CW cospectrum. We say that E is finite
if the number of cells in E is finite, and that E is locally finite if any cell in E is
finite as a CW cospectrum. Moreover, we say that E is of finite type if each E,
is finite and E is locally finite.

(2) A function f: E—F is said to be locally finite if f(e) is finite for any cell
e of E, and a map f is said to be locally finite if some representative of f is locally
finite. We denote by [E, F], the set of all locally finite homotopy classes of
locally finite maps of E to F.

ExampLE 2.5. (1) For any nice complex X, the CW cospectrum E(X) of X
is locally finite, and for any CW cospectrum E any function f: E— E(X) is locally
finite by the definition. Thus, we have [E, E(X)],=[E, E(X)].

(2) Let C,=x*for n<0, C4=S° C,,,=CC, for n>0and ¢,: C,,;,=CC,—
C,AS'=SC, be the projection shrinking C, to * for n>0. Then, {C,, ¢,} is a
CW cospectrum which is not locally finite. In fact, the cell e in {C,, ¢,} with
e, # *( € S°) contains infinitely many cells.

By (2) of the above example, a CW cospectrum E is not necessarily locally
finite even if each E, is finite. But, we have the following

ExAmpLE 2.6. Let {(E,, E}), n,: E,—E,.} be a collection with E,,,=C,
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and E={E, ¢} be a CW cospectrum with the projection ¢,: E,,;=C, —
C,./E,+1=SE, given in Example 1.6 (1). Then, we set for n<0,

(En, E}) = (Ey, E), fly-1 = Ny—1, Py = id: E,~E, and C, =%,
and for n>0, we set by induction as follows:
E,., = M,  (the mapping cylinder of n,: E,~E,.,), i,: E, < E,,,,
Cn+1 = C,, (the mapping cone of p,: E,~E,), E, < C,,,
fin = inopy: Ey——=E, < Epyy, Epyy = Cif, = Epy U Cyiyy Ey=Ejy 0 Coyy,
&: Evry — Evs1/Epsy = CysyJE, = G, JE, = SE, (the projection),
Past = Ensy — By 1/Coiy = EpasEy = M, [E, = C,, = E, ., (the projection).

Now, we have a locally finite CW cospectrum E={E,, &,}, which is of finite type
if each E, is finite, and a homotopy commutative diagram

En+1 -E—") SEn

Pn+11 lspn

En+1 —-—e—”—-—b SEn

where each p, is a homotopy equivalence.

In fact, we see easily that E is locally finite, because &,(C,.,)=SE,(n>0)
and & maps SC(<=C,.,<E,,,) identically onto SC,(=SE,) for k>n by the
construction. Further, we see immediately that C, is contractible and p, is a
homotopy equivalence by induction and that the above diagram is homotopy
commutative.

We see easily the following lemma by definition.

LEMMA 2.7. Any finite CW cospectrum E is equivalent to the CW cospectrum
2~t E(X) for some nice complex X and some integer i. More precisely, E[E() =
2~V E(E)) for some i.

Locally finite CW cospectra can be built up cell by cell just as CW complexes
and CW spectra can be built up.

DEerFINITION 2.8. (1) For a CW cospectrum E={E, ¢}, let e={..., *, e,,
en+15---} be a d-cell of E and f;: S¥*4- 1> E (k>m) be the attaching map of .
Then, gcof; . ; =Sf, by Definition 2.1, and the collection {f,} (with f,==* for k<m)
defines a function f: X~m Smtd-1 F and a map 24~ S E, which are called the
attaching function and map of e, respectively, (where X! S/ =X E(S/) is the CW
cospectrum such that (2:S7),==* for n< —i, =S/*"*i for n> —i).

(2) For a locally finite CW cospectrum E, we can define a filtration
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*=E°CE1C'--CE”C---CE=U,,20E"

as follows: For any cell e##* in E, let u(e) be the number of cells contained in
e, which is finite because E is locally finite; and define E” to be the union of *
and cells e# * in E with u(e)<n.

Then, we can see easily the following

LEMMA 2.9. For any n>0, let {e,|a€J,} be the set of cells of E"—E""!,
and for each aeJ, let f,: 2~m= Smatda=1E be the attaching function of e,.
Then, the function

g: Vus],, E"'Ma Sm.z+d¢—l —_ E’ g I Z‘—m, Sm,+d¢—1 = fo
factors through E"~1, and E" is the mapping cone
Cg = Er! Ug(vue.l,, Zme Sm¢+d,—-1) AT

For any locally finite CW cospectrum, we have the following homotopy
extension property.

PROPOSITION 2.10. Let E be a locally finite CW cospectrum and F be its
subcospectrum. Then, for any function f: E-G and any homotopy h: F A
I*>G of f|F, there is a homotopy H: EAI*—G of f with HIFAI*=h. More-
over, if f and h are locally finite, then we can take a locally finite homotopy H.

ProOF. At first, we prove the proposition for the case that E is the mapping
cone C,=F\U,F'AI of a function g: F'—»F. Let r: INI*">IA{0}* UIAT*
be a retraction (I={0, 1}). Define a function

W:FAIA{O}*UF AlAI"—G
by W|F'AIA{0}*=f|F'AI and W'|F'AIAI*=ho(g Aid), and a homotopy
H:(FU,FFADATI*— G

by H|FAI*=h and H,([x, s], )=h,([x, p,(r(s, 1))], po(r(s, 1)) for [x,s]e
Fi Al and tel*, where ps,, s;)=s(i=1,2) for [sy, s,]1€IA{0}* UIAT*.
Then, H is well defined and is the desired homotopy. The latter half is clear.
For the general case, we can construct inductively the desired homotopy by
using Lemma 2.9 and the above case. g.e.d.

Now, we see the following excision isomorphism theorem for the locally
finite homotopy sets.

THEOREM 2.11. Let G be a CW cospectrum, and H and K be subcospectra
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of Gwith G=HU K. Then, for any CW cospectrum E of finite type, the induced
map

i.:[CE, E;K,K n H], — [CE, E; G, H],

of the inclusion i: (K, K n H)<=(G, H) is bijective, where CE=E A is the cone
of E.

Before proving this theorem, we state some applications. The following
is the suspension isomorphism theorem.

THEOREM 2.12. Let E be a CW cospectrum of finite type and F be a CW
cospectrum. Then, the homotopy suspension

2. [E,F],— [E A S, F A S1],,
given by Xf=fnid for f: E—F, is bijective.

ProoF. It is clear that X is well defined (without assuming that E is of finite
type). Consider a commutative diagram

[E, F], —=%_ [CE, E; CF, F],

Ik
Z'J [CE, E; CFy C_F, C_F],
, lP*
[EAS!, FASY], —2* , [CE, E; FASY, x],

where cone is given in the same way as X, C_F is another cone of F, i is the in-
clusion, p: CFUC_F—(CFUC_F)JC_F=FAS! and p': CE5EAS! are the
projections. Then, p'* is bijective by the definition, and so is i, by Theorem
2.11. Furthermore, we can show that cone and p, are bijective as follows;
hence so is Z.

(1) cone is bijective: The restriction defines

a: [CE, E; CF, F]L —_— [E, F]L

with decone=id. For any locally finite map f: (CE, E)—(CF, F), we define a
map g: CEAI*UEAIt-CF by g|CEA{0}*=f, g|CE A {1}*=cone-d(f) and
gu(x, )=f(x) for [x, tJe E,AI*. Then, g is 0-homotopic since CF is con-
tractible, and we have a locally finite map h: CE A I*—CF with h|CEAI* UEA
I*=g by Proposition 2.10, which is a locally finite homotopy between f and
conecd(f). Thus coneod=id.

(2) ps is bijective: By using the fact that C_F is contractible, we can prove
the bijectivity of p, by the formally identical proof to that for CW complexes
(cf. [7, Prop. 6.6]). q.e.d.
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COROLLARY 2.13. Let E be a CW cospectrum of finite type. Then,

(1) for any CW cospectrum F, [E, F], has the structure of an abelian group
so that composition is bilinear, and

(2) for any locally finite map f: F—»G between CW cospectra, the sequence

[E, F1, - [E, G], - [E, C/],
is exact, where i: G=Cy is the inclusion.

ProorF. (1) The homotopy commutative comultiplication S2—S2?v S?
gives us a function

EAS2—EA(S2VS)=(EASY)vV(EAS?,

which induces the structure of an abelian group on [EA S2, FAS?];. Thus,
by using the bijection X2?: [E, F],~[E A S?, F A S?], of the above theorem, we
see (1).
(2) The equality iof , =0 is clear.
Let g: E—G be a locally finite map with i,(g)=0. Then, by dividing E A S!
to the union of two cones C_E and CE and by taking a locally finite map h:
C_E—C; which is a 0-homotopy of iog, we have a homotopy commutative
diagram
EASt_8Md g agst SN paos
id » Tid/\u
C.Ey CEXENY, ¢y G2, Fast
where p and p’ are the projections shrinking C, and CG to *, respectively, and
v(f)=1—1t for teS'. Thus, gAid is homotopic to (fAid)eg’ for some locally
finite map g’: EAS'->FAS!'. By the above theorem, take a locally finite map
g: E—F such that gaid is homotopic to g’. Then, g Aid is homotopic to

(f A g)eid; hence g is homotopic to fog by the above theorem. Therefore, g € Im f,
and (2) is proved. g.e.d.

In the rest of this section, we shall prove Theorem 2.11, by showing the
following

LEMMA 2.14; Let G, H, K and E be as in Theorem 2.11, F be a subcos-
pectrum of E, and f: CE—G be a locally finite map with f(E)=H and f(CF)<K.
Then, there is a locally finite homotopy

h:CEAT" — G

of maps such that (CE AI*)=f(CE), (EAIt)cH, h(CF AI*)cK, ho=f, hy(E)
<H N K and h is stationary on CF.
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ProoF oF THEOREM 2.11. By taking F=# in Lemma 2.14, we see easily
that the induced map i, in Theorem 2.11 is surjective. Furthermore, by consid-
ering EAI* instead E and by taking F=EA I* in Lemma 2.14, we can see that
iy is injective. Thus, i, is bijective. qg.e.d.

PrOOF OF LEMMA 2.14. We may assume f is a function.

(1) In the first place, we prove the lemma for the case that E=E(D"), F=
E(S™1). Consider the image L =f(E(D")AI) of f, which is a finite subcos-
pectrum of G. Then, by Lemma 2.7, there is k such that

Lr = S'—kLk, L,. n H,. = S'_k(Lk n Hk)’ L,. n K,. = Sr_k(Lk n Kk)’
and f, =Sk, for r>k;

and these are (r—k—1)-connected and L,=(L,NnH,)U(L,NK,). Therefore, by
the homotopy excision theorem (cf. e. g. [7, Th. 6.21]), there is r(>n+2k+3)
such that the map

fes (€D, D) — (L, L, 0 H)), f(CS™ )<L, nK,

is homotopic rel CS**r~! to a map (CD**r, D**")-»(L,NK,, L, N H,NK,). De-
noting this homotopy by h, and setting h,,=S™"h(m>r), h,,=*(m<r), we obtain
a function

h={h,}: ED") A I A I" — L/L® < G/L®

which is the desired homotopy.

(2) For the general case, consider the filtration {E"Uy F|n>0} where E"
is the one in Definition 2.8 (2). Assume inductively that there exist some integer
r, for each cell e in E" U F and a function

hn: C(E"U F) A I* — G/An,

where A"= U {f(e"))|e: cell in Ery F} is null by Lemma 2.3 (2), with the
following conditions:
1) h*(C(E"UF) A I*) = f(C(E" U F))|A", h*((E" U F) A I*) = H/H n A",
h"(CFAI*) = KIK n A",
2) hg=fIC(E"UF),
h¥(C(E*UF), ErUF)c(K/K n A", Hn K/Hn K n A",
3) A~ is stationary on CF.
Then, by Lemma 2.9 and by applying (1) for each cell e in E**'yF—E"|F,
we obtain r, for each e and a function h*+1: C(E"*1y F)AI*—>G[A"*! with the
above 1)~ 3) for n+1 instead of n. Thus, we have a desired homotopy h: CE A
I*->G/\U, A", because E=\U, E", where \U, A" is null in G by Lemma 2.3 (2).
This completes the proof of Lemma 2.14 and hence that of Theorem 2.11. g.e.d.
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§3. Cohomotopy properties

In this section, we study the cohomotopy groups of CW cospectra. For
any CW cospectrum E and any integer n, consider the cohomotopy set

3.1 n"(E) = [E, 2 S°] = [E, ¥" S°],,
where XZ"SO is the sphere CW cospectrum given by
(ZnS%), =% for i< —n,=S8"* for i> —n.
we notice that Proposition 1.15 means that
(3.1) =™(E) is the direct limit of {[E,, S**%], e¥-X}, where
groX: [E, S*+11 -2, [SE, S*+i+1] 2L, [E,, , Sv+i+1],
For a CW cospectrum E of finite type, by the two bijections
[E, 2" 5°1, -2, [EASY, E# SO A S'], %, [E A S1, 271897,

where X is the one in Theorem 2.12 and p: Z"*! S°— X" SOA St is the projection
shrinking the null subcollection (X1 S%(m in Xn+1 S0 to %, we obtain the
bijection

3.2) 2 = pyloX: "(E) —> n"t{(EA SY).

Furthermore, n"*2(E A S?) has the structure of an abelian group. Thus, by
using the bijection X2 we can see that n"(E) has the structure of an abelian gruop.

DEFINITION 3.3 For any CW cospectrum E of finite type and any integer n,
the n-th cohomotopy group n"(E) of E is the set n*(E) in (3.1) with the structure of
an abelian group induced by the bijection 2. Any map between CW cospectra
of finite type induces the homomorphism between cohomotopy groups.

REMARK 3.4. The cohomotopy group n"(E) can be defined for any CW
cospectrum E which is not necessarily of finite type. In fact, we can show that
the suspension X of (3.2) is bijective for any CW cospectrum E (cf. Lemma 4.3.)

We shall deal with a proof and applications of the following theorem in this
section.

THEOREM 3.5. Assume that a CW cospectrum E of finite type satisfies the
condition n*(E)=0. Then, E is contractible in the homotopy category of CW
cospectra and maps, i.e., the identity map id: E—E is homotopic to *.

By using this theorem, we have the ‘dual’ of the J. H. C. Whitehead theorem.
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THEOREM 3.6. Let E and F be CW cospectra of finite type and f: E-F
be a locally finite map. If f*: n*(F)—>n*(E) induced by f is an isomorphism,
then f: E-F is a homotopy equivalence in the homotopy category of CW cos-
pectra and maps.

PROOF. In the first place, we show that

(%) for any CW cospectrum G of finite type, there are a CW cospectrum G
of finite type and locally finite homotopy equivalence q: G—G A S1.

For G in (%), consider the filtration
*=GocG1c...CG"C...CU"G'I:G

given in Definition 2.8 (2). Then, we can constract inductively CW cospectra
G of finite type and locally finite homotopy equivalences g": G*—>G" A S! for
n>0 with G°=#*, G"cG"*! and ¢q"*!|G"=q". In fact, assume that we have
G and g" as desired. Then, for the big attaching map g: v K, A S!—>G"(K,=
Zd= S%) with G"*'=C, in Lemma 2.9, there are subcospectra L, of G" with
(q"g)(K,ASY)=L,AS! by Example 1.2 (3). Furthermore, by Theorem 2.12,
there is a locally finite map g: v ,K,—G" such that g Aid|K, A S! is homotopic
to q"og|K,AS! in L,AS'. Then, we can define G"*'=C; and g¢"*!: G**1=
C,—»G"1 A S1=C;, ;4 naturally.

By the above construction, we see (*) by taking G=\U,G" and q|G*=q".

Now, we prove the theorem. Let E and F be CW cospectra in (x) for G=E
and F in the theorem, respectively. Then, we have the bijections [E, F], &
[EASY, FASY],~[E, F]; by Theorem 1.12 and (*). Thus, for a given locally
finite map f: E—~F, we can find a locally finite map f: E—F which is mapped to
f by the composition of the above bijections; and f*: n*(F)—n*(E) is isomorphic
by (3.2), (*) and the assumption that f* is isomorphic. ~Hence, n*(C;)=
n*(Cy; A S')=0 by the exact sequence in Lemma 1.16, and these equalities imply
that [Cy;, H]=[C;AS*, H]=0 for any CW cospectrum H by Theorem 3.5.
Therefore, (fAid)*: [FAS!, H]-[EAS!, H] is isomorphic by the exact se-
quence in Lemma 1.16. These show that

(3.7  f*:[F, Hl — [E, H] is isomorphic for any CW cospectrum H.

By taking H=E in (3.7), we have a map g: F—E with [gof]=[id]. Further-
more, by taking H=F in(3.7), we see that f*[ fog]=[fogof 1=[f]=f*[id] and
so [fog]=[id]. Thus, f is a homotopy equivalence, and the theorem is proved
assuming Theorem 3.5. » g.e.d.

The following corollary ensures that the homotopy category of CW cospectra
of finite type and maps is ‘“‘stable”’.
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COROLLARY 3.8. Let E, F and G be CW cospectra of finite type.
(1) There is a natural homotopy equivalence E A S1~X1E.
(2) The homotopy suspension

Z:[E,F]— [EAS, FASY], Zg =g A id.

is an isomorphism.
(3) For any locally finite map f: F—G, there holds the following exact
sequence:

[E, F1 %, [E, G] — [E, C,].

ProoF. (1) Let H*l: SIASTAI*-S'ASIAI* be homeomorphisms with
H*1[x,y,0]=[x,y,0], H*'[x,y,11=["(y), x,1] and H™'[x, y,1]1=[y, v(x), 1]
where v: S1—-S! is given by w(x)=1-—x for xeS!. Then, we obtain a CW
cospectrum E={E,, £} of finite type such that E,=E,AS!'AI* and &, is the
composition of

E

i =E,.  ASUATF SN g1 A B oA st TAI
E,ASUASLA [+ MAHD B\ g1 A 51 [+ T2

SIAE,ASYATY

SE,,

where H(n)=H"VD" and T is the switching map. Furthermore, by using the
inclusions i,: E,ASYA{t}* cE,AS'AI*(t=0, 1), we have two locally finite
functions

1:EASt— E with 1,=1i, and
k:Z'E — E with «, = i;o(id A v")oTos,.
Now, we can show that the two induced homomorphisms
*: 1*(E) — n*(EA SY), «*: n*(E) — n*(Z'E),

are both bijective; hence t and x are both homotopy equivalences, which implies
(1). In fact, the bijectivity of x* is proved by (3.1) and by the commutative
diagram

[E,_y, S**v=1] 2, [SE,_,, §*+] &=, [E,, §*+n]

xﬁ_ll (1= (id A V”)V lx;;

[Ep, S*771] — [SE,, S*7] > [Epasy S*171,

where (i;o(id A v¥)oT)* is bijective; and the one of t* is proved more easily.
(2) For E and F, consider the CW cospectra E and F given in the proof
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of (1), respectively. Then, for any function f: E—F, we obtain a function a(f):
E—F such that

a(f)y=foAid: E,=E,AS'AI* — F,AS'AI*=F,

and this o induces

«: [E, F] — [E, F].
Furthermore, we see easily that the diagram

[Z1E, Z'F] <& [E, F] 2> [EAS!, FASY]

x*lE al . zlz*

[S'E, F1 — [E, F] > [EASY, F]

is commutative by the definition of x¥ and 7 in the proof of (1). Thus, ¥ is an
isomorphism.
(3) We can prove (3) by the same proof as that of Corollary 2.13 (2).
q.e.d.

The rest of this section is devoted to the proof of Theorem 3.5.

DErINITION 3.9. Let E be a CW cospectrum such that each E is finite and
E,=# for n<0. Then, we define E{*} to be the union of cells e of E with e,==x.
We see easily that E/E{" is finite and

E = E{o) oD E{l) D e C E(") D e D k= A”ZOE(").

LeMMA 3.10. Let E and E! be as in the above definition. If F(n) is a
null subcollection of each E™, then F=\U,so F(n) is null in E.

PrROOF. Let e##* be any cell in E. Then, there is an integer N>0 with
Empe for n>N since N, EM=x  Thus EMo\U,.y F(n)De. Also
Uo<n<ny F(n)De by Lemmas 1.9 (1) and 2.3 (1). Therefore, F=\U, F(n)2e;
hence F is null by Lemma 2.3 (1). g.e.d.

PrOOF OF THEOREM 3.5. We may assume that E,=* for n<0 by Lemma
1.13. By the assumption n*(E)=0, Lemma 2.9, Corollary 2.13 (2) and the five
lemma, we see immediately that [E, F],=0 for any finite CW cospectrum F.
Hence, [E, E/"/E+1}], =0, because E{"/E{n*1} is finite. By using the exact
sequence of Corollary 2.13 (2) for E**l}cE{  we can find inductively locally
finite functions

h*: E A It — E®/[F(n) (F(n): null in E{})

for n>0 such that h=id, hi(E)cE*1[F(n) n E®**1} and h3*tl=hy, (h*=h"|E
A{t}* for t=0, 1). Now, we have locally finite functions
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Bn: E A I M, EmF(n) PX, Em/F n E < EJF,
where F=\U,»o F(n) is null in E by the above lemma, and
H": E A I — (E[F)/(Et*+*V[E{»+1} 0 F)
such that H*|EA[1—(r+1)"1, 1—(r+2)~1]* for »>0 is equal to
prohtoj, 0 <r<mn), * (r>n)

where j,:[1—(r+1)"1, 1—(r+2)"1]-[0,1] is a homeomorphism. Because
each E, is finite, there is f(n) for each n such that (E{#("}/E¥EMm} n F) =%. More-
over, we can take f(n) so that f(n")> f(n) if n’ >n. Thus, we can find a homotopy

H:E A I+ — EJF, H, = (HF®™),,

with H,=id and H, =x. g.e.d.

§4. The representation of homology theories by CW cospectra

In the first place, we notice that any CW cospectrum E defines a homology
theory E,(—) on the homotopy category NCW' of nice complexes and nice maps
which is equivalent to the homotopy category CW' of CW complexes by Pro-
position 1.3.

For any CW cospectrum E, any nice complex X and any integer n, we consider
the CW cospectra 2"E and E(X) in Example 1.6, and the homotopy set

“4.1) E(X)=[2"E, X] (where X stands for E(X))
of maps between CW cospectra. Then, we have the following

PROPOSITION 4.2. For any CW cospectrum E, E,(—) in (4.1) forms a reduced
homology theory on NCW'.

This proposition is an immediate consequence of the following

LEMMA 4.3. (1) The homotopy suspension
2:[E, X]— [EASL, XASY], Zf=fAid.

is a bijection.
2) Iff: X—>Yis a nice map, then the sequence

[E, X1 L, [E, Y] %, [E, C,]

is exact, where C, is the mapping cone of f and i: Y= C; is the inclusion.
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PrOOF. (1) Consider the commutative diagram

z

[E,, S"X] [SE,, S™*1X] 3 [Enei, S™1X]
v| Ty >

1 n n 1 1 n 1
[E, 7S, S"XAS']—> [SE, A S, ST XA SY] e [Epay AL, STHXAS]

where X’ are also the homotopy suspensions and T and T’ are the switching
maps. (We see that X'o(T4T*)=2 because id A g=(T’ Aid)e(id A p~1)o(g A id)e
(id A p)o(TAid) where p: STAS'—-S1AS!, p(t, s)=(s, 1 —t), is homotopic to the
identity.) In this diagram, Proposition 1.15 means that

(4.9 [E, X] = dirlim {[E,, S*X], gf-X};
and therefore
[EASY, X ASY] =dirlim {[E,A S, S"X AS'], (g, Aid)*Z}.

Thus, the assertion (1) follows immediately from the above diagram.
(2) We can prove (2) by the same proof as that of Corollary 2.13 (2).
q.e.d.

We are in a position to prove the following representation theorem.

THEOREM 4.5. Let hy be a given reduced homology theory satisfying
(4.6) h,(S™) is finitely generated for any n>0 and m, and there is an integer
N with h,(S°) =0 for m<N.

Then, there exist a CW cospectrum E of finite type and a natural equivalence

Ty: Eo(X) & hy(X)

for any finite nice complex X, where E, is the homology theory given in Pro-
position 4.2.

As an application of this theorem, we have a CW cospectrum which is “dual”’
to a given CW spectrum with certain conditions by the following corollary. (For
the notion of CW spectra and the notations, see [1] or [7, Ch. 8].)

COROLLARY 4.7. Let E be a CW spectrum whose homotopy group mn,(E)
satisfies the following condition:
(4.8) n.(E) is finitely generated and there is an integer N with n,(E)=0 for
n<N.
Then, there exist a CW cospectrum E of finite type and a natural equivalence

[Z*E, X]= [2*S° EAX]  for any finite nice complex X.
PROOF. E.(X)=[Z*S% EAX] is a reduced homology theory (cf., e.g..
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[7, 8.33]) and it satisfies (4.6) by the assumption (4.8). Thus, the corollary follows
immediately from the above theorem. q.e.d.

The rest of this section is devoted to the proof of Theorem 4.5.
For a given reduced homology theory hy, nice complexes X, Yand an element
u € h,(X), we consider the map

(49) Tu: [X’ Y] — hn(Y)s Tu(f) =f*(u)

If Y=S*% dim X <2(k—1) and k>2, then the cohomotopy set [X, S¥] is an
abelian group and T, is a homomorphism (cf., e.g., [5, p. 421, p. 458]).

LemMAa 4.10. Let hy be a reduced homology theory satisfying (4.6) with
N=0, X be a finite nice complex with dim X <2r and u € h,(X) where r>1.
Assume that T, of (4.9) is isomorphic for k>r+1 and epimorphic for k=r+1.
Then, there exist a nice map f: X—>W(W= v'_,S7"1 is the wedge sum of t copies
S7*1 of S™*1) and an element @ € h,,,(X)(X=C, is the mapping cone of f)
satisfying the following conditions:

1) pre(t)=0(u), where pr: X—SX is the projection and o: hy(X)—
hy,+1(SX) is the suspension isomorphism.

2) T;:[X, S¥]-h,,, (SY) is isomorphic for k>r+2.

Proor. We notice that [ X, S¥] is finitely generated for k>r+1, because
X is finite and the homotopy groups of S* is finitely generated. Suppose that
Ker T, of (49) for k=r+1 is generated by {g,,...,g,} and set W= v ;S;!
(8571=8"*1) and f=ijog,+ -+ +ipg,: X>W(i;: S*1=S7"1<W). Then, in the
exact sequence

e h2r+ l(Cf) _pr_*) h2r+ 1(SX) Lf)*, h2r+ 1(SW) —_— %

we see that (Sf)w(0(w))=0(fx())=0(T=1(ijog)xu))=0(X5=11;+(T,(9)))=0.
Hence, there is an element i € hy, . ,(C,) with pr,(it)=0a(u). Now, consider the
the commutative diagrams

[sw, sk] 8D%, [sx, s8] B, [C,, S¥] — [W, S¥] (=0)

T,(u)l lT;

h2r+1(sk) h2r+l(sk),

[sw, s¥] L, [sx, 541 Lo, o (89

5= ME o=

[w, s11 L2, [x, s+11 T, py (S1)

for k>r+2, where the first line is exact. If k>r+3, then T, is isomorphic by
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assumption and so is pr* because [SW, S¥]=0; hence so is T;. For the case
k=r+2, Imfy,=Ker T, by the definition of f and so Ker T, =Im(Sf)*=
Ker pr*. Thus, T; is isomorphic and (2) is proved. q.e.d.

ProOF OF THEOREM 4.5. We prove the theorem for the case N=0 in (4.6).
Then, the one for the general case follows easily.

We shall construct a CW cospectrum E={E,, ¢,} of finite type and elements
u, € h,(E,) satisfying the following conditions:

4.11) E,==% for n<2 and dimE, < n,

4.12) T,:[E,, S¥]—h,(S*) is isomorphic for k>[n/2]+1 and epimorphic
for k=[n/2]+1, and

4.13) o(u,)=¢n(u,+1) where o: h(E,)—h,,(SE,) is the suspension iso-
morphism.

Then, after getting E and u, satisfying above conditions, we have the map

T,=dirlim, T, . : [Z*E, X]=dirlim, [E, 5 S"X] — dirlim, h, , (S"X) = hy(X)

n+k*®

for any nice complex X, and this is a natural transformation between the homology
theories on the category of nice complexes and nice maps. In the case X=S¢ T,
is an isomorphism because T, ., :[E, 4 S*"i]—h,(S") is so for n>k—2i
+2 by (4.12). Thus, T,: E.(X)—h(X) is a natural equivalence for any finite
nice complex X by the five lemma; and the proof of the theorem is reduced to
the construction of E, and u,.

Now, assume inductively that we have finite nice complexes E, and elements
u, € h,(E,) with (4.11-12) for n<2r(r>1). (Since h,(S¥)=0 for k>n by (4.6)
with N=0, (4.12) holds for E,=#(n<2).) Then, the assumptions in Lemma
4.10 hold for X=E,, and u=u,,. Thus, by Lemma 4.10, we can find a finite
nice complex E,, (which is the mapping cone C; of a nice map f: E,,— v;Sj1)
and ii,, =i € hy,,,(E,,) such that pry(ii,,)=0(u,,) for pr: E;,—~SE,, and Tj:
[E,,, S¥]1-h,,,,(S¥) is isomorphic for k>r+2. Now, let h,,,(S™*1) be
generated by {a,,..., a;} by (4.6), and set

E2r+1 = E2r \% (V"}=1S'II+1) (S'i+1=s’+1)’
Ugpyq = bx(@) + X5y ip(@) €hypy ((Egprq)

(ﬁ=ﬁ2,, i: EerE2r+l, i’: Sr+1=si+lcE2,+1). Then, fOl‘ kZ r+2,

T,

Uzr+1

. .
= Tyoi*: [Egps 1, SK1— [Eapy SK1 — hypes(S9),

is isomorphic, because so is i, by the definition. For k=r+1, T,
epimorphic by the definition. Thus, (4.12) holds for n=2r+1.

is clearly

2r+1
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For n=2r+2, set

Eyi2=SEp ., and u,,y =0(Us41)€hpi2(Esyr).

Then, (4.12) holds for n=2r+2 by the right square of the lower diagram in the
proof of Lemma 4.10.

Thus, we obtain finite nice complexes E, and elements u, € h,(E,) satisfying
(4.11-12) by induction. Furthermore, in the above construction, let ¢,,: E,,, ;—
E,—SE,, be the composition of the projections shrinkig v,Sj*! and v;S5+!
to * respectively, and ¢,,,,=id. Then, (4.13) holds for n=2r, 2r+1 by the
definition. Moreover, we have a CW cospectrum E={E,, ¢,} which is given in
Example 1.6 (1). Therefore, by Example 2.6 and (4.4), we may take E of finite

type.
These complete the proof of Theorme 4.5. q.e.d.
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