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Introduction

Recently Stitzinger [4] presented several equivalent conditions for a sub-
algebra to be an co-step ascendant subalgebra in a locally solvable, ideally finite
Lie algebra. On the other hand, Togo [5] introduced the concept of weakly
ascendant subalgebras generalizing that of ascendant subalgebras and Kawamoto
[2] considered E^-pairs of subalgebras to study ascendancy in Lie algebras.

The purpose of this paper is first to generalize and sharpen the results of
Stitzinger [4] by using the concepts of weakly ascendant subalgebras, E^-pairs
of subalgebras and others, and secondly to characterize the class of locally solva-
ble, ideally finite Lie algebras and similar classes.

Section 2 is devoted to searching several equivalent conditions for a sub-
algebra to be a weakly ascendant subalgebra in a certain Lie algebra (Theorems
2.1, 2.2, 2.3 and Corollary 2.4). In Section 3 we shall show that if L is a locally
solvable, ideally finite Lie algebra and if is a subalgebra of L, then the condition
H^<°L is equivalent to each of the following: (a) #ascL; (b) H^L; (c)
H wascL; (d) (if, L) is an £-pair; (e) (if, L) is an J^-pair; (f) L = H + L0(h) for
all h eH; (g) Lt(h)^H for all h eH; (h) H^<°K for any subalgebra K of L con-
taining H\ (i) H^v^H, x> for any xeL; (j) U o ^ i J , [x, #]> for any xeL;
(k) For any xeL, there exists an n = n(x) such that #<a^<if, [x, nHJ) (Theorems
3.1 and 3.2). This sharpens [4, Theorems 1 and 3]. We shall also give a simple
proof of [4, Theorem 2] in Proposition 3.3.

In Section 4 we shall show that all ideally finite Lie algebras belonging to a
class X are precisely locally solvable, ideally finite Lie algebras, if X is a class of
Lie algebras being between the class E(O ) (91 fl 5) fl EW(<I )9I and the class Xo of
all Lie algebras in which every non-zero finite-dimensional subalgebra is non-
perfect (Theorem 4.3). Finally in Section 5 we shall show that (a) the class of
locally nilpotent, subideally finite Lie algebras coincides with the class of Baer
algebras and (b) the class of locally nilpotent, ascendantly finite Lie algebras is
contained in the class of Gruenberg algebras (Theorem 5.3). We shall also give
two examples showing that there are no inclusions between the class of locally
solvable, ideally finite Lie algebras and the class of locally nilpotent, subideally
finite Lie algebras (Example 5.7).
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1.

Throughout the paper, Lie algebras are not necessarily finite-dimensional
over a field I of arbitrary characteristic unless otherwise specified.

Let L be a Lie algebra over I and let if be a subalgebra of L. For an ordinal
cr, H is a cr-step ascendant subalgebra of L, denoted by H<a a L, if there is a series
(Ha)a£<T of subalgebras of L such that

(1) H0 = H and Hff = L,
(2) if a<i Ha+1 for any ordinal a < a,
(3) Hk = \Ja<xHa for any limit ordinal A<<r.

# is a (7-step weakly ascendant subalgebra of L, denoted by H<aL, if there is an
ascending series (MJ^ f f of subspaces of L such that

(1) M o = # and Ma = L,
(2) [Ma + 1 , l / ] g M 4 for any ordinal a < c ,
(3) Mx = Wa < A Ma for any limit ordinal A < <r.

The series (Ma)a<^ is called a c-step weakly ascending series from H to L. /f is
an ascendant subalgebra (resp. a weakly ascendant subalgebra) of L, denoted by
ifascL (resp. if wascL), if H<za L (resp. H<a L) for some ordinal cr. When cr
is finite, if is a subideal (resp. a weak subideal) of L and denoted by if si L (resp.
ifwsiL).

Let us recall some classes of Lie algebras:
L e 21 iff L is abelian.
L e g iff L is finite-dimensional.
L e 91 iff L is nilpotent.
Le(£ iff for any x, yeL there exists a positive integer n = n(x, y) such that
[*,„)>] = 0.
L G gt iff L is the sum of the nilpotent ideals of L.
L G 93 (resp. ©r) iff <x> si L (resp. <x> asc L) for any xeL.
L G 3(o iff L=\JneN Cn(L) where (Cn(L))ne2V is the upper central series of L.

Let 3£, ?) be any classes of Lie algebras.
L G R3£ iff L has a family (Ia)aeA of ideals such that L//a G X for all a e A and

LELX iff every finite subset of L is contained in an ^-subalgebra of L. When
L G L91, L is called a locally nilpotent Lie algebra.
Letji (resp. Eff(o)£) iff L has an ascending series ( X J ^ ^ of subalgebras (resp.
ideals) such that

(1) Ko = 0andX f f = L,
(2) Ka<3 Ka+! and Ka + J i ^ G X for any ordinal a < c,
(3) KA = Wa < A Xa f ° r a n y limit ordinal A < a.

LeiX (resp. E(<J)3E) iff LeiJH (resp. E<7(<I)3E) for some ordinal cr.
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LeEX iff LeEnX for some finite ordinal n<co. When LeE$l, L is solvable.
3E is R (resp. L, E, Enclosed iff X = RX (resp. LX9 EX9 EX).
L e Xty iff L has an ideal I e X such that L/I e ?).

Now we introduce the following notations: Let A be any of the relations o ,
si, asc, wsi, wasc. We say a Lie algebra L to lie in L(A)X if for any finite subset
Yof L there exists an £-subalgebra K of L such that Y^KAL. When L e L(<I)g
(resp. L(si)gf, L(asc)g), L is called an ideally finite (resp. a subideally finite, an
ascendantly finite) Lie algebra. For a subset X of L, we say a Lie algebra L to
lie in L ( X ) £ if every finite subset of L is contained in an X-invariant £-subalgebra
of L. We say a Lie algebra L to lie in L(X-inv A)X if for any finite subset Y of L
there exists an X-in variant X-subalgebra K of L such that Y^KAL.

The Hirsch-Plotkin radical p(L) of L is a unique maximal locally nilpotent
ideal of L. If char 1 = 0, the Baer radical j8(L) of L is the subalgebra generated
by all nilpotent subideals of L and the Gruenberg radical y(L) of L is the sub-
algebra generated by all nilpotent ascendant subalgebras of L.

For each xeL, we use the following notations in [4]:

L0(x) = {z e LI z (ad x)k = 0 for some fe e iV},

L^x) = r\?= 1Im(adx) f e .

For a subalgebra H of L, (if, L) is an E^-pair [2] iff for each xeL there
exists a positive integer n = n(x) such that [x, n/z] e # for any h eH. As a gener-
alization of an 2^-pair we introduce an £-pair. Namely, we say that (H, L) is
an £-pair if for any xeL and any heH there exists a positive integer n = n(x, h)
such that [x, rt/i] e H.

In [3] L was called ideally (resp. subideally, ascendantly) finite if L has a
collection {LJfe/ of finite-dimensional ideals (resp. subideals, ascendant sub-
algebras) which generate L and have the property that whenever i, jel there
exists k e I such that <Lf, Lj} <Lk.

LEMMA 1.1. Let L be a Lie algebra over a field f. Then L G L ( < 3 ) 5 (resp.
L(si)J5, L(asc)5) if and only if L is ideally (resp. subideally, ascendantly) finite
in the sense of [3].

PROOF. Let LeL(o)g and let r be the collection of all finite subsets of L.
For any XeF there exists Lx minimal with respect to X^LX^L and L x e g .
Evidently L = <LX | X e T> and for any X, Ye T

\LX, LY) < L^uyj

by the minimality of Lx and Ly. Therefore L is ideally finite in the sense of [3].
The converse is evident. The other assertions are similarly proved.

Hence our definitions of ideally finite, subideally finite and ascendantly finite
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Lie algebras don't conflict with those in [3].

2.

We begin this section with

THEOREM 2.1. Let L be a Lie algebra over a field I and let H be a sub-
algebra of L. Assume that LeL(H)$. Then the following conditions are
equivalent:

(1) / /wascL.
(2) / /<*>L.
(3) (//, L) is an E-pair.
(4) (//, L) is an E-pair.
(5) L = H + L0(h) for all heH.

PROOF. By hypothesis we have

where A(X) is an //-invariant finite-dimensional subalgebra of L for each XeA.
(1)=>(2): Let (Ha)a^a be a weakly ascending series from H to L. For any

neN, let ^(n) be the first ordinal such that [A(X\ nH^^H^(ny Since A[X) is
//-invariant, \_A{1), „//] is finite-dimensional. Hence n(n) is not a limit ordinal.
Therefore ^(n + l)<ju(n) unless fi(n) = 0. Since the ordinals <o are well-ordered,
it follows that fi(ri) = 0 for some neN. Hence [A(X), nH~\^H0 = H. As L =
\JXeA A(X), for any x e L there exists a n n = n(x) e N such that [x, n / /] ^ / / . Thus
we put

Mn = {xeL\ [x, „//] c //} for each neiV,

Then we see that (Ma)a^w is an co-step weakly ascending series from H to L.
(2)=>(1) is clear.
(2)=>(4): For any xeL there exists an n = n(x)eN such that [x, nH~\

In particular [x, nK] e H for all h e H. Therefore (//, L) is an E^-pair.
(4)=>(3) is clear.
(3)=>(2): Let I e yl and for each neN put

Now suppose that A(X)$//„ for all neN. Since ^4(2) and Hn are //-invariant,
(A(X) + Hn)IHn is a non-zero finite-dimensional //-module. By using the fact
that (//, L) is an £-pair, ad h induces a nilpotent transformation on this space
for each h eH. Hence owing to Engel's theorem, there exists

z e A(X)\Hn such that [z, / / ] c / /„ .



Ideally finite Lie algebras 303

Hence zeHn+1. Therefore

A(X) n Hn g A(X) f) Hn+1 for all n e N.

This is a contradiction since A(X) e g. Thus there exists an n = n(x) e N such
that ^(A) <=//„. We put

Then we have if w = L, whence {H^^^ is a weakly ascending series from H to L.
(2)=>(5): Let heH. For any xeL, there is an //-invariant finite-dimen-

sional subalgebra A(X) of L containing x. Since HK^L and 4(A)e3f, there
exists an n e N such that [A(X)9 nH] s // . Especially, 4̂(A) (ad /i)n c / / . Therefore

A(X) = ilW^fc) + A(X)0(h) s / / + L0(fc).

It follows that L = H + L0(h).
(5)=>(3): For any x e L and any he//, there exists keH and y eL0(h) such

that x = k + y. Then we have j/(ad ̂ ) " = 0 ^or some neN. Hence

x(ad h)n = fe(ad h)» + j(ad h)n e //,

that is, there exists an n = n(x, h)eN such that [x, n/t] e / / . Therefore (//, L) is
an £-pair.

By making use of Theorem 2.1, we have

THEOREM 2.2. Let L be a Lie algebra over a field I and let H be a sub-
algebra of L. Assume that LEL(H)%. Then for any ordinals a f>co(l<i<5)
the following conditions are equivalent:

(1) H<^L.
(2) H<"2K for any subalgebra K of L containing H.
(3) //<a3<//, x}for any xeL.
(4) / / < ^ < / / , [x, HJyfor anyxeL.
(5) For any xeL, there exists an n = n(x)eNsuch that / / < a s <//, [x, „//]>.

PROOF. By Theorem 2.1 it suffices to show the statement in the case that

(1)=>(2)=>(3) is clear.
(3)=>(4) is clear since <//, [x, / / ]><<// , x>.
(4)=>(5): Put n = n(x) = 1 for all x e L.
(5)=>(1): Let x e L and let (H^x))^^ be an co-step weakly ascending series

from H to <//, [x, „//]>. We define

#*>+;(*) = HJx) + E U i [x, ,-fcfl] for 1 < i < n,

= //,,+^x) for co + n < p < col.
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Then we have

IHP+1(X)9H]CZHP(X) for any p< col.

Thus we define

for any p < col,

Then

[H,+ u if] c Hp for any £ < co2,

Therefore

By Theorem 2.1 we obtain

We strengthen the hypothesis of Theorem 2.1 to obtain the following

THEOREM 2.3. Lef L be a Lie algebra over a field I and let H be a sub-
algebra of L. Assume that L e L(H-inv wsi)J$f- Then the following conditions
are equivalent:

(1) ifwascL.
(2) H<°>L.
(3) (if, L) is an £-pair.
(4) (H, L) is an E^-pair.
(5) L = H + L0(h) for all heH.
(6) Lx(h)^H for all heH.

PROOF. In Theorem 2.1 we have already shown that all conditions from
(1) to (5) are equivalent.

(1)=>(6): For any heH, there exists a finite-dimensional weak subideal
A(h) of L containing h. Then

H fl A(h) wasc A(h) e g

and so

H n 4(/i) wsi A(h) wsi L.

It follows that

H n A(7t) <nL for some neiV,
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that is,

lL,nH fl A(h)-] c=H n A(h).

In particular,

[L,,fc]£H.

Therefore we have

(6)=>(5): Let heH. For any xeL, there exists an //-invariant finite-
dimensional subalgebra A(x) of L containing x. Since A(x) is stable by ad h9 for
all x e L

Therefore

L c L^/i) + L0(fc) ^ H + L0(fc).

As a special case of Theorems 2.2 and 2.3, we have

COROLLARY 2.4. Lef L be a Lie algebra over a field I belonging to L(<a)5,
and let H be a subalgebra of L. Then for any ordinals a f >co(l<i<5) the
following conditions are equivalent:

(1) ifwascL.
(2) H<**L.
(3) (H, L) is an E-pair.
(4) (H, L) is an E-pair.
(5) L = H + Lo(fc)/or all heH.
(6) LAfycHforallheH.
(7) H <ai K for any subalgebra K of L containing H.
(8) H<"*<H,x>foranyxeL.
(9) Jf < a< <JJ, [x, Jf]> /or anj x e L.

(10) For any xeL, there exists an n — n{x) e N such that H<*5(H9

Finally we show the following

PROPOSITION 2.5. Let L be a Lie algebra over afield I and let H be a sub-
algebra of L. Then there exists the largest subalgebra M of L such that

PROOF. Let r be the collection of all subalgebras K of L such that H
We put

M = (K\Kery.
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By [5, Lemma 6] we have

H <<°M.

3.

In this section we shall investigate the class L(<I ) (E$I n 5) of Lie algebras,
which is equal to 3 = LE$1 n L(<a)g in [4]. We first show the following theorem,
which sharpens [4, Theorem 1] where only the equivalence of (2), (7) and (8) is
proved.

THEOREM 3.1. Let L be a Lie algebra over a field I belonging to
L(<i)(E$ln g) and let H be a subalgebra of L. Then the following conditions
are equivalent:

(1) ifascL.
(2) H<\<»L.
(3) #wascL.
(4) H<<°L.
(5) (if, L) is an E-pair.
(6) (H, L) is an E^-pair.
(7) L = H + L0(h) for all heH.
(8) L±(h)^H for all heH.

PROOF. In Theorem 2.3 we have already shown that all conditions from
(3) to (8) are equivalent.

(2)=>(1)=>(3) is evident.
(7)=>(2): This is shown in [4]. For completeness sake, we give an outline

of that proof. By hypothesis we have

where A(X) is a finite-dimensional ideal of L for each XeA. For each XeA,
there exists an ascending chain

where A{k, i)<iL and A(l, i)\A{X, i — 1) is an irreducible L-module for 1 <i<n(X).
We first define

Q(0) = 0.

If A(X)£H, then we put rl(X) = min{reN\A(X, r)<£H}. If A(X)^H, then we
put rx(A) = n(r). We define

, 1) = {z e A(X9 r±(X)) \ [z, # ] £ # } ,
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Then

H

Next let k> 1 and suppose that we have constructed Q(i) for i<k so that

H = H + fl(0)<] # + G(l)o-..<! H + G(fc).

If ^l(A)$H + O(/c), then we put rk+1(X) = min{reN\A{X9r)£H + Q(k)}. If
A(X)^H + Q(fc), then we put rfc+ X(A) = n(A). We define

k, fc+1) = {zei(A, rt+1(A))|[z, fl] s ff + Q(k)},

Q(k+1) = (W(l, k+l)\XeA}.

Then

if + Q(k)<3H + Q(k+1).

Since we have

L = \Ji<OiQ(i) = VJi<(O(H + 0(0),

we conclude that

As a consequence of Corollary 2.4 and Theorem 3.1 we have the following
theorem. This sharpens [4, Theorem 3] which shows only the equivalence of
(1), (3), (5) and (7) in the case that a1=a3 = a5 = a7 = a).

THEOREM 3.2. Let L be a Lie algebra over a field I belonging to L(<J)

(E2I n ft) and let H be a subalgebra of L. Then for any ordinals af>a> ( l < i <
10) the following conditions are equivalent:

(1) fl<«iL.
(2) H<«*L.
(3) H<3a3 K for any subalgebra K of L containing H.
(4) H <<** K for any subalgebra K of L containing H.
(5) H o «s <fl, x} for any x e L.
(6) H < «* <H, x> /or any xeL.
(7) #<]«?<#, [x? if]>/oranj;x6L.
(8) if <a« <if, [x, if]> for any xeL.
(9) For any xeL, there exists ann = n(x)eNsuch that H^z"9 (H, [x,nif]>.

(10) For any xeL, there exists ann = n(x) eNsuch thatH<ai° (H, [x, nHJ).

As an immediate consequence of Proposition 2.5 and Theorem 3.1 we have
the following proposition ([4, Theorem 2]).

PROPOSITION 3.3. Let L be a Lie algebra over a field I belonging to L(<I)
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(E9I fl 5) and let H be a subalgebra of L. Then there exists the largest subalge-
bra MofL such that

Furthermore we shall show the following propositions.

PROPOSITION 3.4. Let L be a Lie algebra over afield i belonging to (E51)

(L(<3)(E21D 3f)) and let H be a solvable subalgebra of L. If H wsi L, then

PROOF. We shall show the proposition following the proof of [6, Lemma 6].
By hypothesis there exists a solvable ideal K of L such that L/K e L(<I)(E2I D g).
Then

H wsi H + K and (H + K)/K wsi LjK.

Since H, KEE% we have H + KEEM. By making use of [5, Theorem 1] it fol-
lows that H si H + K. On the other hand, by Theorem 3.1 we have (H + K)jK
<]» L/K. Thus we have Ho " L.

PROPOSITION 3.5. Let L be a Lie algebra over a field I belonging to L(si)
(E$1 n g) and let H be a finitely generated subalgebra of L. Then the following
conditions are equivalent:

(1) ifascL.
(2) tfsiL.
(3) tfwascL.
(4) tfwsiL.

PROOF. It is sufficient to show that (3) implies (2). Since He®, there
exists a solvable and finite-dimensional subideal K of L containing H. Then we
have H wasc K. Since K e E2I fl 5, by using [5, Theorem 1] we have H si K.
Therefore H si L.

PROPOSITION 3.6. Let L be a Lie algebra over a field I belonging to
(L(si)(E2lfl 5)) and tet H be a solvable and finitely generated subalgebra of L.
Then

(1) H wasc L i/ and only if H asc L,
(2) if wsi L if and only if HsiL.

PROOF. Assume that H wasc L. By hypothesis there exists a solvable ideal
K of L such that L/X 6 L(si) (E$1 fl g). Hence we have

H wasc H + X and (H + K)/K wasc L/K.

Obviously H + KEEW. By using [5, Theorem 1], we have H asc H + K. Since
(if + K)jK E ©, by Proposition 3.5 (if + K)/K si LjK. It follows that if + K si L.
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Thus we have H asc L. The converse is evident and (1) is proved. (2) is similarly
proved.

4.

In this section we shall give some characterizations of the class L(<I)(E$1 n g)
of locally solvable, ideally finite Lie algebras. We here need the following two
lemmas.

LEMMA 4.1. L(<I )g < E(<] )g.

PROOF. Let LeL(<0g. Define Lo = 0 and suppose that (L^)/?<a has been
defined for an ordinal a>0. If a is a limit ordinal, define La=\Jp<a Lp. Assume
that a is not a limit ordinal and La.1<L. Then we can find an xeL\ La_1.
Define La = La-x + <xL>. Since L e L(o)g,

L0C.1^La^ L and LJLa_t e g.

Now by set-theoretical considerations we can find an ordinal a such that
L = La. Therefore we have L e £(<a )g.

LEMMA 4.2. L ( ^ ) ( E 2 1 n g) < E(<a)(2X n g ) n ^(<a)9l.

PROOF. Let L G L ( < I ) ( E 2 1 fl g). By Lemma 4.1 we have an ascending g-
series (La)a^ff of ideals of L. Then for each OL<G

Therefore we can find an n(oc) e N such that L&(f)+1) <La. Furthermore

! <i L and L^JL^ e 21 fl g for 0 < i < n(a).

Hence we refine each factor La+1jLa by ( L ^ ) ? ^ to obtain L e£(<i)(2I fl g).
On the other hand, by putting if = 0 in the proof (7)=>(2) of Theorem 3.1,

we have

C(i)<3 U &(i +1)/^(0 e 91 (i < co) and L =

Therefore

Before stating the main theorem of this section, we introduce a new class of
Lie algebras. We denote by

the class of all Lie algebras in which every non-zero finite-dimensional subalgebra
is non-perfect. It is easy to show that



310 Shigeaki T6G6, Masanobu HONDA and Takanori SAKAMOTO

{S, L, R, EJ-XQ = 3tQ •

Therefore we also have DX0=X0. On the other hand, by making use of Engel's

theorem we obtain

<£<X0.

Hence this class is fairly large. In fact, the classes RLE5I, ELE2J, R(E and E(£ are
contained in Xo.

Now we have the characterizations of the class L(<I)(E9I 0 g).

THEOREM 4.3. For any class X of Lie algebras such that

*<•)(« n 8f) n 1^)21 < £ < x 0 ,
we have

x nL(^)5 = L(

PROOF. Let L e XO n Lg and let H be a finitely generated subalgebra of L.
Then Heft. So we use induction onn = dim H to show that H e E9I. It is trivial
for n < l . Let n>2 and suppose that every ftn-±-subalgebra of L is solvable.
H is a non-zero finite-dimensional subalgebra of L. Since LeX0, we have
H^^H. Hence dim J J W ^ n - 1 . By inductive hypothesis we have H^EE%
whence H e E9I. It follows that L e L(E$1 n 5). Therefore we obtain

x0 n Lg = L(E2in5).

Now let 3E be any class of Lie algebras such that

«<0(«n g) n E ^ ) ^ <2<£o.

Then by Lemma 4.2 we have

L(^)(E91 n g) < E(<3)(2I n ft) n E W (^)9I n L H ) S

< x n L(-a)g < x0 n L(<3)g = L(<O(ESI n g).

Thus

x n L(^)g = L(^)(E9in af).

As a special case of Theorem 4.3 we have the following result.

COROLLARY 4.4. IfX is one of the classes

E% E(<02t, E(o)(9r II g), RLE2I, ELE21, RE(E, Eg,

then X n L(<0g = L(<i)(E2I n g).

It is well known that if a Lie algebra L is locally solvable, then every minimal
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ideal of L is abelian. In an ideally finite Lie algebra the converse is also true under
a certain condition. That is, we show

PROPOSITION 4.5. IfX is a Q-closed class consisting of Lie algebras in which
every minimal ideal is abelian, then

x n L(<i)8f £ L ( < I ) ( E M n 8f).

PROOF. Let 0 ̂ F L e X n L(<I )g. Since L is ideally finite,

where each A(X) is a non-zero finite-dimensional ideal of L. Since A(X) is a finite-
dimensional L-module for each keA9 A(k) has a composition series

0 = A(k, 0) ^ A(k9 1) < g i4(A, rc(A)) = A(k)

where 4̂(A, i)/A(k9 i — 1) is an irreducible L-module for 1 <i<n(k). Then 4̂(A, i)j
A(A, i — 1) is a minimal ideal of h\A(X, i — 1). Since L/A(X9 i — 1) e Q3E = 3E, we
have A(k9 i)/A(X, i-l)e SI. It follows that A(X) e E9I. Therefore

n L(<i)8f = L(<I)(E91 n

Thus we have

5.

In this section we shall study the relation between locally nilpotent, sub-
ideally finite (resp. ascendantly finite) Lie algebras and Baer algebras (resp.
Gruenberg algebras). We need the following lemma.

LEMMA 5.1. Let L be a Lie algebra over afield I belonging to L(si)g (resp.
L(asc)5), and let H be an ascendant locally nilpotent subalgebra of L. Then
for any finite subset X of H we have <X> siL (resp. <X> ascL).

PROOF. Let X be a finite subset of H. Then there exists a finite-dimensional
subideal (resp. ascendant subalgebra) K of L containing X. HascL implies
H (]K asc K. Since Ke'S, we have H n K si K. On the other hand, we have
H n K e 91 since H e L91. Therefore <X> si if n K. Hence

si H fl X si K si L (resp. K asc L).

Thus we have <X> si L (resp. <Jf> asc L).

COROLLARY 5.2. O#er afield of characteristic zero,
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(1) if L E L(si)5 then P(L) = y(L) = p(L\ and
(2) if L e L(asc)$ then y(L) = p(L).

PROOF. Let LeL(si)g (resp. Le L(asc)g). Using [1, Theorem 6.2.1 and
Corollary 6.3.5] we obtain

P(L)<y(L)<p(L).

Let x e p(L). Since p(L) is a locally nilpotent ideal of L, by Lemma 5.1 we have
si L (resp. <x> asc L). It follows that x e jS(L) (resp. x e y(L)). Hence

p(L)<p(L) (resp. p(L) <

Thus we have

f}(L) = y(L) = p(L) (resp. y{L) = p(L)).

We now have the following main result of this section.

THEOREM 5.3. (1) (S n L(si)g = L(si)(9i n g) = 93.
(2) (£ n L(asc)g = L(asc)(5R n g ) < ©r.

PROOF. By Engel's theorem (£ n Lg = L t̂. Therefore we have

(£ n L(si)5 = L(si)(^ n g) and

(£ n L(asc)g = L(asc)(9l n g).

By using Lemma 5.1 we obtain

L(si)(9i n g) <93 and

L(asc)(9l n 5) < ©r.

Finally we shall show that

»<L(si)(9ln g).

Let L e 93 and let X be a finite subset of L. Put H = <Z>. By [1, Theorem 7.1.5]
we have L e 93 <L91, and so if e 91 n g. We use induction on n = dim i/ to show
that HsiL. It is trivial for n < l by the definition of 93. Let n>2 and assume
that the result is true for n-\. Since O^ i Je% we have H2<H. Therefore
we can find an ideal Ho of // such that H2<H0 and dim if/i/0 = 1. It follows
that dim Ho = n — 1, and we obtain if 0 si L by inductive hypothesis. Now we can
find a n x e L such that H = H0 + (x}. Since Le93, <x> si L. On the other
hand, Ho permutes with <x>. Therefore by [1, Lemma 2.1.4] we have

H = if o + <x> si L.

Hence if si L, as was desired. Thus H = (X} is a finite-dimensional nilpotent
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subideal of L, which shows that L e L(si) (9t n g). Therefore we obtain 93 <
L(si) (91 (1 g). This completes the proof.

REMARK 5.4. Using the results described in [1, p. 258], we obtain

L(si)(9t n g) = L91 n Ng = 93 and

L(asc)(9l n g) = L9I n N<5 = ©r

over a field of characteristic zero. On the other hand, by [3, Theorem 3.6] we
have

But in general

In fact, let Fbe a vector space with basis {v09 vu...} and think of Fas an abelian
Lie algebra. Then there is a derivation o of V such that

Vi\P = 0J V2k+\G = y2/t for fc > 0.

Form the split extension L = F + <c>. Then

L2 = F(T = <t;2fc | /c>0>.

Hence

L3 = <t;2fe|/c>0>(7 = 0.

Therefore we have

However

It follows that

Next we shall study the relations between Engel conditions and Gruenberg
algebras.

We denote by e(L) the set of left Engel elements of a Lie algebra L as usual.
Then we have the following

LEMMA 5.5. Let Lbe a Lie algebra over afield I. For any xeL, the follow-
ing conditions are equivalent:

(1) xee(L).
(2) <x> wascL.
(3)
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PROOF. (1)O(3) Js evident. (2)o(3) follows from [5, Theorem 4].

PROPOSITION 5.6. (1) (\jn^ (£„) n (E$Q (L(si) (E2I n g)) < ©.
(2) (S n

PROOF. (1) Let L e (\jn^ &n) n (E9I) (L(si) (E9I n g)) and let xeL. Then
L e (£„ for some n > 1. It follows that [L, nx] = 0. Hence <x> < n L. By Propo-
sition 3.6 we have <x> siL. Therefore L e S .

(2) Let Le(£n(E9I)(L(asc)E(<])2l) and let xeL. Since L = t(L\ we have
<x> wascL by Lemma 5.5. Now there exists a solvable ideal K of L such that

6 L(asc)E(<i )2T. Then

<x> wasc <x> + K and «x> + K)jK wasc L/K.

Clearly <x> + i£eE2I. Hence <x> asc <x>+X by [5, Theorem 1]. On the
other hand, we can find an ascendant subalgebra HjK of LjK which contains
«x> + K)jK and belongs to E(<I )9I. Then

«x> + K)/K wasc HjK'

By [5, Theorem 1] we have

«x> + K)/K asc H/K.

Hence

«x> + K)jK asc LjK.

It follows that

<x> + K asc L.

Therefore

<x> asc L.

Thus we have L e (E>r.

Finally we shall give two examples to show that L(<I)(E2X n g) doesn't coin-
cide with L(si) (91 n g). One of the examples also shows that a subideally finite
Lie algebra is not necessarily ideally finite.

EXAMPLE 5.7. Here we show that there are no inclusions between L(<I)

(E2Ing)andL(si)(5ftng). That is,
(1) L(
(2) L(
Let if be a two-dimensional non-abelian Lie algebra. Then if is a trivial ex-

ample for (1). On the other hand, let Ht (ieZ) be an isomorphic copy of if
and put L = 0 ieZ Ht. Then L E L ( < ) (E2I n g) but L $= L(si) (91 n g). Hence L
is an infinite-dimensional example for (1).
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Next let M be the McLain Lie algebra of type Z, i.e., M has a basis {etj \
i, jeZ, i< j} with multiplication

Then for each etj with i < j

Therefore

But . Therefore

3ft < B̂ = L(si) (91 n g).

g. Thus M is an example showing (2).
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