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1. Introduction

This paper is concerned with positive solutions of the semilinear elliptic

equation

(1) Δu - φ(x)\u\?sgnu = 0

in exterior domains, where φ is a positive continuous function, γ is a positive

constant and Λ = Σ?=i d2/δx? is t n e Laplace operator in Euclidean space Rn.

Equation (1) is called superlinear or sublinear according as y > l or 0 < y < l .

Recently equations including

(2) Δu + φ(x)\u\y$gnu = 0

have been considered by Noussair and Swanson [6, 8] and effective conditions

for (2) to have positive solutions in exterior domains have been established. For

other related results with regard to (2) the reader is referred to Kitamura and

Kusano [3], Noussair [4] and Noussair and Swanson [5, 7].

Our purpose here is to discuss the existence and asymptotic behavior of

positive solutions, defined in exterior domains, of equation (1) which has little

been studied in the literature. Employing the techniques of Noussair and

Swanson, we reduce the multi-dimensional problem under study to the problem

of one dimension and make extensive use of known results on the existence and

asymptotic behavior of positive solutions of ordinary differential equations of

the form

(3) f -p(t)\y\ysgny = O, p(t) > 0.

In Section 2 we prove a basic existence theorem for positive solutions of

equation (1). We distinguish the superlinear case (Section 3) and the sublinear

case (Section 4), and establish in each case effective sufficient conditions under

which equation (1) possesses positive solutions having various asymptotic prop-

erties as |x|-»oo.
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2. Reduction to ordinary differential equations

Let |x | denote the Euclidean norm of a point x = (xl9...9 xn) in Rn and put

Ga = {xeR»:\x\>a}, Ga = {xeRn:\x\^a}9

where a is some positive constant. For convenience we assume that a > 1.

For a constant αe(0, 1) and the closure M of a bounded domain MaGa9 let

C*(M) and C2+«(M) denote the usual Holder spaces.

We now consider equation (1) in Ga under the following assumptions:

( I ) The function φ: Gα->(0, oo) is continuous and there exists a constant

αe(0, 1) such that φ e Ca{M) for all bounded domains Mc:Ga.

(II) There exist two continuous functions p, P: [a, oo)->(0, oo) such that

p, PeC*(I) for some αe(0, 1) and for every bounded interval /ci[α, oo) and

(4) P(\x\) ύ Φ(x) ύ P(\x\), xeGa.

By a solution of (1) in Ga is meant a function u e C2+a(M) for some α e (0, 1)

and for every bounded subdomain Ma Ga such that u(x) satisfies (1) at every point

xeGa. Supersolutions and subsolutions of (1) in Gα, i.e. functions v(x) and

w(x) satisfying

Λv — φ(x) \v\γ sgn υ ^0 and Aw — φ(x) \w\γ sgn w ^ 0

in Ga, respectively, are defined similarly.

The result of Noussair and Swanson [8, Theorem 3.3] is applied to our

problem.

THEOREM 0. Let assumption (I) be satisfied. If there exist a supersolution

v(x) and a subsolution w(x) of (1) in Ga such that 0<w(x)^v(x) in Gα, then (1)

has a positive solution u(x) in Ga such that w(x) ^u(x)^v(x) in Ga.

The following existence theorem is basic to our considerations in the sub-

sequent sections.

THEOREM 1. Let assumptions (I) and (II) be satisfied. Suppose that the

ordinary differential equations

(5) i ( A " " " 1 - $ - ) - rn~"P^)Py = °> r

(6)

have positive solutions p(r), η(r) respectively such that p(r)^η(r) for all r^a.
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Then (1) has a positive solution u(x)in Ga such that η(\x\)f^u(x)^p(\x\), xeGa.

PROOF. Put v(x) = p(r) and w(x) = η(r) where r = | x | . Using the first

inequality in (4), we have

Δυ - φ(x)vy ^ r1-" ^-(^rn-ί-^rλ - rn'ιp[f)p^ = 0

for xeGa9 and using the second inequality in (4), we have Aw — φ(x)wy^0 in Ga.

This implies that v(x) is a supersolution of (1) in Ga and w(x) is a subsolution of

(1) in Ga. Since 0 < w(x) ̂  v(x) for all x e Gα, the conclusion follows from Theorem

0.

EXAMPLE 1. Let φ(x) satisfy assumption (I). Suppose that there exist con-

stants c2>c1 >0 such that

|x|)- 2 ^ φ(x) ^ c2(\x\\og \x\)-\ n = 2,

Cl\x\'2 ^ φ(x) ^ c2\x\~\ n ^ 3 ,

for xeGa. Then the linear equation

Δu - φ(x)u = 0

has a positive solution u(x) in Ga such that

(log M)-*2 ^ u(x) ^ (log \χ\)'\ xeGa, n = 2,

(i=l,2) for n ^ 3 .

We change the variables in order to transform (5), (6) into simpler forms.

Substituting r = ef, y(t) = p(et) for n = 2 and r = β(t) = [tl(n-2)γ'("-2\ y(t) =

tp(β(t)) for n ̂  3 in (5), we have

(7) y" - P(t)yy = 0 , t > t09

where p(t) = e2tp(et), t0 = loga for π = 2 and

(n — 2)an~2 for n ^ 3 . Similarly, substituting z(ί) = *?(£*) for n = 2 and z(ί) =

for n ^ 3 in (6), we have

(8) z" - P(t)zy = o, t > t09

where P(t) = e2tP(et) for n = 2 and P(t) = Γ3'y\β(ty]2n'2P(β(t)) for n ^ 3 . From

assumption (II) it follows that p, PeC*(l) for all bounded intervals /c:[ί 0, oo)

and satisfy
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(9)

It is convenient to use (7), (8) instead of (5), (6).

3. Superlinear equations

We now discuss the superlinear case, thus we assume that γ > 1 in (1) through-

out this section.

LEMMA 1. Suppose (9) holds and let y(t) and z(t) be positive decreasing

solutions of (7) and (8) on [ί0, oo), respectively. If y(to) = z(to), then y(t)*z

z(ϊ)for all t^tΌ.

For the proof of this lemma see Taliaferro [9, Lemma 1.2].

THEOREM 2. Let assumptions (I) and (II) be satisfied. (A) //

(10) [™ r(\ogr)p(r)dr = oo, n = 2,

J a

Γ 0 0

(11) \ rn"1"^n'2^p(f)dr = oo, n ^ 3,
J a

then (1) has a positive solution u(x) in Ga satisfying

(12) u(x) > 0 as \x\ > oo, n = 2,

(13) \x\"-2u(x) > 0 as \x\ > oo, n ^ 3.

(B) If

(14) Γ r(log r)P(r)dr < oo, n = 2,

(15) (°° r"- 1-^ l |- 2>P(r)dr < oo, n ;> 3,

ί/zen (1) /tαs α positive solution u(x) in Ga satisfying

(16) m g M(X) ^ M, n = 2,

(17) m\x\2~n g ιι(x) ^ M\x\2~\ n > 3,

/or some positive constants m and M.

PROOF. (A) By the change of variables of the previous section, equation

(5) becomes (7) and conditions (10), (11) reduce to

(18) Γ tp(t)dt = oo.
Jto
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Then, by Taliaferro's theorem [9, Theorem 1.1], for each λ>0 there exists a

positive decreasing solution y(t) of (7) such that y(to) = λ and lim^oo j(ί) = 0.

Therefore equation (5) has a positive solution p(r) which satisfies

(19) l i π w p(r) = 0 (n = 2), l i m , ^ r»~2p(r) = 0 ( π ^ 3 ) .

Similarly, since

Γ ίP(ί)Λ = oo
Jίo

by (9) and (18), there exists a positive decreasing solution z(t) of (8) such that

z(to) = y(to) and l im^^ z(f) = O. Accordingly, there exists a positive solution

η(r) of (6) such that

(20) l i n w η(r) = 0 (n = 2), l i m f . β r«-2>/(r) = 0 (n £ 3).

On the other hand, by Lemma 1 the inequality y(t)^.z(t) holds for all t^.t0, so

that we have p(r)^η(r) for all r^a. Applying Theorem 1 and taking (19), (20)

into account, we see that equation (1) has a positive solution u(x) satisfying (12)

or (13).

(B) The conditions (14), (15) reduce to

(21) Γ tP{t)dt
Jto

< oo.

Then, again by Taliaferro's theorem [9], for a positive constant λ there exists a

positive decreasing solution z(t) of (8) which satisfies z(to) = λ and tends to some

positive constant as ί->oo. The solution η(r) of (6) corresponding to z(t) has the

following asymptotic behavior:

(22) l i m ^ η(r) = K± (n = 2), l i m ^ r^η{r) = K[ (n ^ 3),

where K1 and K[ are some positive constants. On the other hand, by (9) and

(21) we obtain

(23) Γ tp(t)dt
Jίo

< OO.

Therefore, we see that there exists a positive solution ρ(r) of (5) such that p(a) =

η(a) and

(24) l i n w p(r) = K2 (n = 2), l im^^ r^p{r) = Kr

2 (n ^ 3),

where K2 and K'2 are some positive constants. By Lemma 1 we have p(r)^η(r)

for all r^.a. From Theorem 1 and (22), (24) it follows that equation (1) has a

positive solution u(x) satisfying (16), (17).
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In the remainder of this section we replace assumption (II) by the following

more restrictive one:

(III) There exists a continuous function p: [α, oo)->(0, oo) such that

p e Cα(ΐ) for some α e (0, 1) and for every bounded interval /<=[#, oo) and that

(25) p(\x\) ̂  φ(x) ^ Cp(\x\\ xeGα,

for some positive constant C ^ l .

Then, equation (6) becomes

(26)

and its reduced equation (8) becomes

(27) z" - Cp(t)Zy = 0, t > t0.

The relationship between the solutions of (7) and (27) is described in the

following

LEMMA 2. Let C > 0 . Then y(t) is a solution of (7) if and only if

is a solution of (21).

THEOREM 3. Let assumptions (I) and (III) be satisfied. If

(28) Γ rflog r)yp(r)dr < oo, n = 2,
J a

(29) Γ rp(f)dr < oo, n ^ 3,

(1) /zαs α positive solution wx(x) fn Gα satisfying

(30) m log |x| ^ u±(x) ^ M log |x|, n = 2,

(31) m ^ Mx(x) ^ M, n ^ 3,

/or some positive constants m and M. Moreover, (1) has a positive solution

u2(x) in Ga such that

(32) w2(x)/log |x | • oo as \x\ > oo, n = 2,

(33) w2(x) > oo as \x\ > oo, n ^ 3.

PROOF. The conditions (28), (29) imply

C°°
(34) \ typ(t)dt < oo.



Positive solutions of semilinear second order elliptic equations 147

According to Taliaferro's theorems [9, Theorems 2.4 and 3.2], if (34) holds, then

(7) has positive solutions yx{t) and y2(t) on t^t0 satisfying

0 < l i m , ^ y[(t) < oo and l i m , ^ y'2(t) = oo,

respectively. To the functions yλ(f) and y2{t) there correspond positive solutions

px(r) and p2(r) of (5) satisfying

lim^oo Pi(r)/log r = K (n = 2), l i m ^ P l ( r ) = £ ' (π ^ 3),

and

lim^oo p2(r)/log r = oo (n = 2), l i rn ,^ p2(r) = oo (n ^ 3),

respectively, where K and Kr are some positive constants. On the other hand,

by Lemma 2, zi(t) = Cί/(1-^yi(t) (ί = l, 2) are solutions of (27), and since y > l

and C ^ l , we have ^(O^z^ί) (i = l, 2) for all ί^ί 0 . Consequently we see that

(5) and (26) have positive solutions pt{r) and ηi(r) = C1/{ί~y)pi(r), respectively,

such that ρi(r)'^.ηi{r) (Ϊ = 1,2) for all r^a. Now the conclusion follows from

Theorem 1.

REMARK 1. Under assumptions (I) and (III), if (28), (29) hold, then equation

(1) also has a positive solution u(x) in Ga satisfying (16), (17). In fact, it is obvious

that conditions (28) and (29) imply (14) and (15) with P(r) = Cp(r), respectively.

EXAMPLE 2. Suppose that φ(x) satisfies assumption (I) and there exists a

number σ such that in Ga

|)*, n = 2,

for some positive constants cu c2. If σ ^ — n + y(n — 2), then equation (1) has a

positive solution u(x) in Ga satisfying (12), (13). If σ < — n + γ(n — 2), then

equation (1) has a positive solution u(x) in Ga satisfying (16), (17). If σ< — 1 — γ

for n = 2 and σ<— 2 for n ^ 3 , then equation (1) has positive solutions uλ(x)

satisfying (30), (31), u2(x) satisfying (32), (33) and u(x) satisfying (16), (17) in Ga.

4. Sublinear equations

In this section we consider the sublinear case, i.e. equation (1) with 0<<y<l.

THEOREM 4. Let assumptions (I) and (II) be satisfied.

(A) //(14), (15) hold, then (1) has a positive solution u(x) in Ga satisfying

(16), (17).

(B) //
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(35) Γ r(log r)yp(r)dr < oo, n = 2,
J a

(36) Γ rP(r)rfr < oo, n ̂  3,
Jα

ί/ierc (1) ftαs α positive solution u^x) in Ga satisfying (30), (31).

PROOF. (A) Conditions (14), (15) imply (21). It is well-known (see, for
example [2]) that for any positive constant c there is a positive decreasing solution
z(ί) of (8) such that l i m ^ z(t) = c. Since (23) holds by (9) and (21), there is a
positive decreasing solution y(t) of (7) such that lim,^*, y(t) = z(tQ) > 0. Then it
is clear that y(t)^z(t) for all t^t0. Arguing as in the part (B) of Theorem 2, we
see that the conclusion of (A) holds.

(B) In view of (35), (36) we have

(37) Γ vP{i)dt
Jto

< OO.

By the proof of Canturija's theorem [1, Theorem 6], if (37) holds, then every
unbounded positive solution of (8) is asymptotically linear as ί->oo, that is, if
z(ί) is an unbounded positive solution, then there exists a positive constant c such
that lim^oo z'(t)Sc Since z"(ί)>0, z\t) is increasing, so we have z'(ί) = c f° r

all ϊέit0. Integrating over [ί0, f], we get

(38) z(t) S c(t - t0) + z(t0)

for ί^ίo If y(f) i s a n unbounded positive solution of (7) satisfying

y(t0) = z(ί0) > 0, /( ί 0 ) έ c,

then y'(t)^c for all ί^ί0. Therefore it is easily derived from (38) that z(ί)^
y(i) for all t^t0. On the other hand, since (34) holds by virtue of (9) and (37),
y(t) must be asymptotically linear as t -> oo. Proceeding as in the proof of Theorem
3, we get the conclusion of (B).

REMARK 2. Conditions (14) and (15) imply (35) and (36), respectively.
Therefore, if (14), (15) hold, then (1) has a positive solution wx(x) in Ga satisfying
(30), (31) as well as a positive solution u(x) in Ga satisfying (16), (17).

EXAMPLE 3. Suppose that φ(x) satisfies assumption (I) and there exists a
number σ such that in Ga

0 < φ(x) ̂  c2|x|-2(log M r , n = 2,

0 < φ(x) ̂  c2\x\σ, n ̂  3,
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for some positive constant c2. If σ < — 1 — y for n — 2 and σ< — 2 for n ^ 3 , then

(1) has a positive solution u^x) in Ga satisfying (30), (31). If σ< —n + y(n — 2),

then (1) has positive solutions u(x) and wx(x) in Ga satisfying (16), (17) and (30),

(31), respectively.
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