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Introduction

In the paper [2], we introduced the notion of weakly ascendant subgroups
which is weaker than that of ascendant subgroups, and mainly investigated the
relationship of these notions in generalized solvable groups. Recently in the
papers [1, 3], ascendancy has been studied in locally solvable, ideally finite Lie
algebras.

In this paper, following the line of the papers [1, 3] we shall investigate as-
cendancy and weak ascendancy in locally finite groups, especially in groups which
correspond to locally solvable, ideally finite Lie algebras.

Let G be a group and H be a subgroup of G. In Section 2 we shall show that
when G e L(H)g, H is weakly ascendant in G if and only if H is ω-step weakly
ascendant in G (Theorem 1). In Section 3 we shall show as the main result of the
paper that when GGL(<I)(E2I n 3r)> H is weakly ascendant in G if and only if H
is ascendant in G and if and only if H is ω-step ascendant in G (Theorem 3).
In Section 4 we shall study the cases where G belongs to L(sn)E9I and L(asc)£9I.
In Section 5 we shall present some characterizations of the class of groups
L(<a)(E9l Π S) (Theorem 5).

1.

Let G be a group. If X, Y are non-empty subsets of G, we denote by [X, 7]
the set of all [x, y2 = x~ίy~1xy with xeX and ye 7and we write [X, 0 7 ] = X,
[X, n+17] = [[X, „Y], 7] for an integer n > 0.

If H is respectively an ascendant subgroup, a σ-step ascendant subgroup
and a subnormal subgroup of G, we as usual write

iϊascG, # < ι σ G and #snG,

where σ is an ordinal.
Let H<G. As in [2], we call H a σ-step weakly ascendant subgroup of G,

if there is an ascending series (Sa)a^σ of subsets of G satisfying the following con-
ditions :

(a) S0 = H and Sσ = G.
(b) If α is any ordinal < σ, then u^Hu cSΛ for any u e SΛ+ί.
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(c) Sλ = Wα < Λ Sa for any limit ordinal λ < σ.

We then write H<σG. We call H a weakly ascendant subgroup of G if H<σ G

for some ordinal σ, and write i/wascG. When λ<ω, we call H a weakly sub-

normal subgroup of G and write H wsn G.

For a class 3£ of groups, we write G e L(H)X if for any finite subset X of G

there is an if-invariant S-subgroup of G containing X. For J = < ι , sn and asc,

we write G e L(Δ)X if for any finite subset X of G there is an X-subgroup H of G

containing X such that HAG.

As usual, 5, (5, $1, 91, (£ and E$ί( = P2I) are respectively the classes of finite,

finitely generated, abelian, nilpotent, Engel and solvable groups. EX( = PX)

and έ(<ι )X ( = PnX) (resp. έω(<i)X) are respectively the classes of groups having

ascending BE-series of subgroups and ascending X-series (resp. ω-length ascending

X-series) of normal subgroups. s£ is the class of subgroups of ΐ-groups. hX

and RX are respectively the classes of locally and residually 3£-grouρs.

2.

In this section we study weak ascendancy in locally finite groups. We begin

with the following

THEOREM 1. Let G be a group and H<G. Assume that GeL(H)g. Then

the following conditions are equivalent:

(1) H wasc G.

(2) H<ωG.

PROOF. Assume that H<σG. Then by Lemma 1 in [2] there is a weakly

ascending series (Sa)a^σ from H to G such that HSaH = Sa for any α < σ . Let

xeG. Then x is contained in an iϊ-invariant g-subgroup ^4(x) of G. For any

n e N , let μ(n) be the least ordinal such that

Since \_A(x), nH~\ is a finite set, μ(n) is not a limit ordinal. Observing that

[ 5 α + 1 , H]^Sa for any α<σ, we have μ(n + l)<μ(n) unless μ(n) = 0. Since the

ordinals < σ are well-ordered, μ(n) — 0 for some n = n(x) e N. It follows that

Especially, [x, nH~\^H. We now use Theorem 4 (b) in [2] to conclude that

H<ωG.

COROLLARY. Let G be a group and H<G. Assume that G e L(H)g n Min.

Then the following conditions are equivalent:
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(1) ΉascG.

(2) H wasc G.

PROOF. By Theorem 1, if if wasc G then H<ωG. By Corollary to Theorem

4 in [2], if H < ω G then H asc G.

THEOREM 2. Let G be a group and H<G. Assume that GeL(if)g. Then

the following conditions are equivalent:

(1) H<ωG.

(2) H <ω K for any subgroup K of G containing H.

(3) H<ω(H,x> foranyxeG.

(4) H < ω <#, [x, #]> /or any x e G.

(5) For any xeG, there is an n = n(x)eN such that H<ω(H, [x, ΠH]>.

PROOF. It is clear that (1)=>(2)=*(3)=>(4)=>(5). To show that (5)=>(1),

we assume (5). Then there is a weakly ascending series (Sa(x))a^ω from H to

</f, [x, „#]> such that HSa(x)H = Sa(x) for any α < ω . We put

Sω+i(x) = # ( S ω ( x ) U [x, „ _ ! # ] U ••• U [x, n-iH])H for 1 < i < n,

Sβ(x) = Sω+n(x) for ω + n< β <ω2.

Then for any β<ω2, if ueSβ+ x(x) then u^Hu c S^x). In fact, if u e Sω+1 + t(x)

(i < n), then we may assume that

u = htah2 with hl9h2sH and α e f c ^ i . j ί ί ] ,

It follows that for any heH

u~ιhu = h^a^h^hh^

eH[x, „_

We define

Sβ = WxeG Sβ(x) for any jβ < ω2,

Then S0 = H. We have S ω 2 = G, since x e Sω+n(x)(x). For any β<ω2, if w e 5^

then M e 5^+x(x) for some x e G and therefore

Hence we see that H<ω2G. By Theorem 1 we conclude that H<ωG.
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3.

In this section we consider the case where G belongs to L(<I)(E9I Π
First we show

LEMMA 1. (1) L(<I)E9I < E(<J)91.

(2) L(^)(E2lnS)<έ(^)(9ί n g ) .

PROOF. Assume that GGL(<J)E21 (resp. L(<0(E21 n S)). We have to con-
struct an 91 (resp. 21 n S)-series (Gα)α<σ of normal subgroups of G. We put Go = 1.
Suppose that we have constructed (Gβ)β<Λ for α>0. If α is a limit ordinal, put
Ga—\Jβ<ΛGβ. If α is not a limit ordinal and Gα_ tΦG, take xe G^Ga_1. Then
there is a solvable (resp. solvable finite) normal subgroup K of G containing x.
Since K<£Gα_1? we choose the largest integer i such that X ^ ί G ^ j . Here £<*>
is as usual the i-th commutator subgroup of K, e.g. K ( 1 ) = <[!£, X]>. Put Gα =

Then Gα<iG and

-± n XO) 6 « (resp. « n ί ) ,

since ^ ^ ^ c G ^ ! n X( i ). By set-theoretical consideration, we see that there is
an ordinal σ such that G = Gσ.

Lemma 1 tells us that we can now use Theorem 3 (a) in [2] to assert that when
G e L(<] )E% H wasc G if and only if H asc G. For G 6 L(<] ) (E$I n δ) we deduce
the following stronger result, which is the main result in this paper.

THEOREM 3. Let GGL(<3)(E91Π g) and H<G. Then the following con-
ditions are equivalent:

(1) HascG.
(2) i f<ι ω G.
(3) H wasc G.
(4) # ^ ω G .

PROOF. (2)=>(1)=>(3) is clear. Theorem 1 assures that (3)=>(4). Hence it
suffices to show that (4)=>(2).

Assume (4) and let (Sα)α^ω be a weakly ascending series from H to G. By
Lemma 1 in [2] we may assume that HSaH = SΛ and S"1 = Sα for any α < ω. Since

G = \JλeΛΛ(λ) with il(λ)o G and ^(A)GE9X n g.

Let

1 = Λ(λ, 0)



Ascendancy in locally finite groups 97

be a sequence of normal subgroups of G such that each A(λ, i)jA{λ, i — 1) is a
simple subgroup of G/A(λ, i — 1). Since A(λ, 1) and A(μ, 1) are minimal normal
subgroups of G, if \A{λ9 ϊ),A(μ, 1)]^1 then ([A(λ, 1), A(μ, 1)]>=A(A, 1) =
A(μ, 1), which contradicts the solvability of A(λ, 1). Hence

lA(λ9 1), A(μ, 1)] = 1.

We put Γ= A(λ9 j - l)A(μ, k -1). Then T-< G. Since A(λ9 j)T/Tand X(μ, k)Γ/Γ
are minimal or trivial in G/T, it follows that [,4(2, j)7; ,4(μ, /c)T] s T. Hence

We define Ω(0) = 1 and construct β(l) as follows. In the case where A(λ)<£H,
let r(λ) be the least integer such that A(λ, r(λ))£H and define

W(λ, l) = {ze/iμ, r(2))I z^Hz = ^} .

Then Wf(λ, 1)<G. We assert that W(λ9 l)ίff. In fact, since 4(λ, r(^))eg,
there is some n e N such that ,4(2, r(A)) s 5Π. Hence HA(λ, r(λ)) s Sπ. It follows
that H<n HA(λ, r(λ)) with a weakly ascending series

(S; n #^α, r(Λ))W

Take the least i such that S, Π Jϊi4(A, τ{λ))£H. Then 5f n ̂ 4(2, r(X))<£H. Hence
we can choose ze(Sfn^4(λ, r(λ)))^H. Then z"1 belongs to the same set. It
is immediate that

z^Hz, zHz-1 c Si_ι n ίf^(A, r(A)) c H.

Hence z^Hz^H and therefore z e

In the other case where A(λ)^H, let r(λ) = n(λ) and define f̂ (A, 1) as above.
In any case, W(λ, ϊ)^A(λ, r(λ)) and A(λ, r(λ)-l)^H. Hence

[W(λ, 1), W(μ9 1)] S [A(2, r(2)), A(μ9

Now define

Since each element of 0(1) normalizes # , we have HΩ(1)<G and
Furthermore [Ω(l), Ω(l)]^fί, which can be seen by observing that for zλe
W(λ, 1), zμ e W(μ, 1) and zv e ϊF(v, 1)
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It follows that

[HΩ{\)9 HΩ(1)'] c H.

Next let k>l and assume that we have constructed the ascending series
(Ω(ί))ι^k of subgroups of G such that for i<k

HΩ(ί) < G and [HΩ(ΐ)9 HΩ(i)] S if Ω(i -1).

We shall construct Ω(/c+l) as follows. In the case where A(λ)<£HΩ(k)9 let r(λ)
be the least integer such that A(λ9 r(λ))<£HΩ(k) and define

W(λ, k + l) = {ze A(λ9 r(λ)) \ z^Hz, zHz^ <Ξ HΩ(k)} .

Then PF(A, A:+l)^ifi2(fc). In fact, since A(λ,r(λ))e%9 A(λ, r(λ))<=Sm and
therefore HA(λ9 r(λ))^Sm for some meN. It follows that H<mHA(λ9 r(λ))
with a weakly ascending series

Take the least i such that Sf n HA(λ9 r(λ))£HΩ(k). Then 5f n A(λ9

HΩ(k). Hence we can choose ze(Sιf]A(λ9 r(λ)))^HΩ(k). Then z"1 belongs
to the same set and

1^Si.ί n HA(λ9 r(λ)) c HΩ(k).

Hence z e W(λ, k+l)^HΩ(k).
In the other case where A(λ)^HΩ(k)9 let r(λ) = n(λ) and define PF(2, k+ϊ)

as above.
In any case, W(λ9 k)^W(λ9 fc+1). In fact, since HΩ(k-l)<=HΩ(k), de-

noting r(λ) defined above by rk(λ) we have rfc-i(A)<rk(X). Hence >4(A, r^^λ))
<£A(λ9 rk(λ))9 from which it follows that W(λ9 k)^W(λ9 fe+1). Especially in
the first case W(λ9 k+ϊ)£W(λ9 k) and therefore W(λ9 k)^W(λ, fe + 1).

Since W(/l, fe+l)^^, r(A)) and >4(A, r(λ)-l)^HΩ(k)9 we have

, W(μ,

£ HΩ(fe).

Especially [Pf(A, fe+1), PΓ(μ, k)~\^HΩ{k) and therefore

We see that W(λ9 k+l)<G. In fact, for zl9 z2 e W(λ9 fe+1) and h eH we have

zϊίhz1 = h1u with h^^eH and ueΩ(k),
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and therefore

(Z1Z2)-
1/I(Z1Z2) = Z2\KU)Z2

e HΩ(k).

Similarly (zίz2)h(zίz2)-ί eHΩ(k). Hence zxz2 e W(λ, k +1). Since z^1 e

W(λ9 k +1), W(λ9 k +1) < G. Now we define

Ω(k+1) = (W(λ, k+l)\λeΛ}.

Each element of Ω(k+\) transforms both H and Ω(k) into HΩ{k) and therefore

normalizes HΩ(k). Hence HΩ(k +1) = HΩ(k)Ω(k +1) < G and HΩ(k)^ HΩ(k +1).

Furthermore [Ω(fc +1), Ω(/c +1)] £ #Ω(/c). It follows that

\ HΩ{k+V)] ^ HΩ(k).

Since W(λ, l)^W(λ, 2)^'-^W(λ, k)^W(λ, k + 1) if A(λ)<£ HΩ(k\ we have

A{λ) c HΩ(i) for i = M(A)|.

Hence G = \Jf=1 HΩ(Ϊ). Thus we conclude that i / o ω G.

As a consequence of Theorem 3, we have

THEOREM 4. Let G G L ( < 3 ) ( E 2 I Π $) and / ί < G . T/zen the following con-

ditions are equivalent:

(1) H<3ωG.

(2) H<zωK for any subgroup K of G containing H.

(3) # <iω <#, x} for any xeG.

(4) H<αω<H, [x, #]> /or αnj xeG.

(5) For any xeG, there is an n = n(x)eN such that i f o ω <#, [x, „#]>.

PROOF. Since L(<I ) (E51 n S) is s-closed, by Theorem 3 ω-step weak as-

cendancy can be replaced by ω-step ascendancy in Theorem 2.

As another consequence of Theorem 3, we have

PROPOSITION 1. Let G be a group and H<G. Assume that G G E 2 I ( L ( < ] )

n S)) and H e E2T. // H wsn G, then H^ ω G.

PROOF. There is a solvable normal subgroup K of G such that G/Ke

L ( < 0 ( E 9 I Π 5 ) . If H wsn G, then i ί wsn HK. Since # K 6 E9I, # sn i ίX

by Theorem 3 (c) in [2]. On the other hand, HKjK wsn G/K. By Theorem 3,

x <* GjK and therefore HK<\ω G. Thus if-α ω G.
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4.

In this section we consider the cases where G belongs to L(sn)5, L(sn)E2I
and L(asc)έ2ί.

PROPOSITION 2. Let G be a group and H<G. Assume that Ge L(sn)g
and He (S. Then the following conditions are equivalent:

(1) 1/ascG.
(2) iίsnG.
(3) iίwascG.
(4) iίwsnG.

PROOF. It suffices to show that (3)=>(2). By assumption, there is a sub-
group K of G such that

H<KsnG and K e g .

If iίwascG, then HwascK. Since X e g , it follows that HwsnK. Hence
H sn K by Corollary to Theorem 4 in [2]. Thus H sn G.

PROPOSITIONS. Lei G be a group and H<G. Assume that GeL(sn)E2I
and He®. Then the following conditions are equivalent:

(1) # s n G .
(2) iίwsnG.

PROOF. By assumption, there is a subgroup K of G such that

H<KsnG and

If if wsn G, then iί wsn K and hence ί ί sn K by Theorem 3 (c) in [2]. Therefore
iίsnG.

PROPOSITION 4. Let G be a group and H<G. Assume that one of the
following conditions is satisfied:

(a) G e L(asc) (E(<I )2I) and H e (5.
(b) G e L(asc)έ3I and He%.

Then the following conditions are equivalent:
(1) HascG.
(2) H wasc G.

PROOF. Assume (a) (resp. (b)). Then there is a subgroup K of G such that

H<KzscG and Keέ(<i)3I(resp. έ2I).

If UwascG, then HwascK and hence HSLSCK by Theorem 3 (a) (resp. (b)) in
[2]. Therefore H asc G.
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5.

In this section we shall study the class L ( O ) (E$I Π δ) a n d present some of its

characterizations.

LEMMA 2. L(

PROOF. In the proof of Theorem 3, we put H = ί. Then we see that

Ω(ί) <3 G and Ω(i + 1)/Ω(i) e 91 for any i < ω,

G= \Ji<ωΩ(ί).

Hence GeEω(<i)2ί.

We denote by Xo the class of groups in which every non-trivial finite sub-

group H satisfies the condition HΦH^ ( = <[#,

LEMMA 3. (1) {s, L, E, R}X0 = Xo.

(2) fi(<ι)(«t n S) < *

PROOF. (1) Assume that G e ΈX0 and let (Gα)α^σ be an 3£0-series of G. For

any non-trivial finite subgroup H of G, let α be the least ordinal such that H<Ga.

Then α is not a limit ordinal. Since GJG(X-ίe£0 and HGa^ί/Ga^ί is a non-

trivial finite subgroup of Gα/Gα_ l 5 we have / / ( 1 ) G α _ 1 / G α ^ 1 # / / G α _ 1 / G α ^ 1 , whence

H^ΦH. Therefore G e ϊ 0 . Thus we have EΪ O = Ϊ O .

Assume that Nλ-<ιG and G/NλeX0 for any ΛeΛ. Let H/Γ\λNλ be a finite

non-trivial subgroup of G/ΛA JVλ. If (H/Γ\λ Nλy^=H/r\λ Nλ9 then # ( 1 ) ( Λ Λ N J

= # . Choose A such that H<£Nλ. Then H^Nλ = HNλ from which it follows

that (HNλINλy^=HNJNλ. This contradicts the assumption that G/NxeX0.

Hence {Hlr\λNλ)^ΦHjr\λNλ and GjΓ\λNλeX0. Thus we have R £ 0 = X 0 .
It is immediate that s3£0 = £ 0 and LX0 = X0.

(2) Both έ(<α)(2In g) and Eω(<α)9I are contained in E2Ϊ. But by (1) we

have

THEOREM 5. For any class X of groups such that

«<O(St n 8f) n έω(<i)3l < ϊ <
we have

PROOF. Assume that GeX0 ΠL(<i)g and let X be any finite subset of G.

Then X is contained in a finite normal subgroup H of G. We use induction on

n = \H\ to show that i ϊeE2ί. It clearly holds for n = ί. Let n>2 and assume
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the case n — 1. Since GeX0, HΦH^. By induction hypothesis we have

ifί1) e E9I. Hence H eESI. It follows that G G L ( < ) ( E S I n ft). Therefore

Now let X be any class of groups such that

E(<I)(9I n ft) n έωH)2ϊ

Then by Lemmas 1 and 2 we have

n ft) < 6(<3)(«ί n ft) n

< x n LH)S

< i o n L(<03r

Therefore we have ϊ Π L(<α)gί = L(<i)(E^ί n 5).

COROLLARY. // 3E is one of the classes

έ% £(o)2l, έ(<a)(9ί Π ft), ELE^I, RLESI, RE(S

ίΛen X ίl L(<0ft = L(<0(E2l Π ft).

PROOF. Since LE21<3E 0, by Lemma 3 we see that

E ( < 0 ( 2 T n ft) < E(<I)<H < E^I < ELESI < E^o = Xo and

Eω(<3)21 < LE l̂ < RLE9I < RX0 = Xo .

Since (£ Π ft<9l, we have (£<£ 0 - Hence by Lemma 3 we see that

E ( < I ) ( 9 I Π ft) < έ(g < RE® < RE3E0 = Xo.

Thus by Theorem 5 we have the assertion.
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