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Introduction

The purpose of the present paper is to study Riemannian manifolds admitting

some linearly independent special concircular vector fields and determine geo-

metrical structures of such manifolds. Some results in this paper contain gener-

alizations of results due to Y. Tashiro (see Proposition 7.3 in [4] and Corollaries

2 and 3 in this paper).

We shall define an almost everywhere warped product and give a few ex-

amples in § 1. We also state some properties of this kind of product. In §2,

we shall determine structures of n-dimensional Riemannian manifolds admitting

n linearly independent special concircular vector fields and investigate some

relations between these vector fields and their associated scalar fields. In § 3,

we prove that any Riemannian manifold admitting some linearly independent

special concircular vector fields is an almost everywhere warped product, a part

of which is a space of constant curvature, and obtain some results on the given

manifold. Finally, in §4, we shall give geometrical structures of Riemannian

manifolds mentioned in § 3.

Throughout this paper, we assume that manifolds and quantities are differ-

entiable of class C00.

The author would like to express his sincere thanks to his teacher Y. Tashiro,

who suggested this problem and gave him valuable advice, and to Doctor N. Abe

for his pertinent criticisms in discussions.

§ 1. Almost everywhere warped products

Let Mί and M 2 be Riemannian manifolds of dimension m and n — m respec-

tively, a n d / a positive-valued differentiable function on Mx. The warped product

M — Mx x fM2 is by definition (see [1]) the product manifold M1 x M 2 endowed

with Riemannian metric

(X, X) = (πtX9 πxX) + /*(π 1x)(π 2X, π2X)

for any vector X e TX(M), x e M, where π α (α = l, 2) is the natural projection

M-^MΛ, the tangential map of πα is denoted by the same character, and ( , ) is

the Riemannian inner product.
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Let (xκ) = (xh

9 xp) be a local coordinate system of M, called a separate
coordinate system, where (xh) and (xp) are those of Mί and M2 respectively.
Here and hereafter Greek indices K, λ, μ9 v,... run on the ranges 1, 2,..., n, and
Latin indices run on the following ranges

h, ί,7, /c,... = 1, 2,..., m,

respectively, unless otherwise stated. If the components of the metric tensors of
M, M1 and M2 are denoted by gμλ9 gμ and gqp respectively, then the metric form
of the warped product M = M1x fM2 is expressed by

(1.1) gμλdx^dxλ = gjidxJdx1 + U{^h)'\29qpdxqdxp

with respect to a separate coordinate system (xκ) = (xh

9 x?). The components
r̂̂ Λ of the metric tensor of M belonging to (xp) are equal to

(1.2) 9qp=f2gqP

Let M be an n-dimensional Riemannian manifold, Mx a submanifold of M,
/ a differentiable function on Ml9 N the zero-level hypersurface of M t defined by
/ = 0 and MJ a connected component of M^^—N. We assume that the gradient
vector of/ does not vanish on N. If M — N is diίfeomorphic to the product mani-
fold M? x M2 of M? with a certain Riemannian manifold M2, and if the metric
form of M is expressed by (1.1) on M — N, where gqpdxqdxp is a metric form of
M2, then we say that M has an almost everywhere warped product structure, or
simply, M is an almost everywhere warped product (briefly ΛEWP). Denoting
M? by Mt again, we also express M as Mγ x /M2.

We give two examples of AEWP structures on a space form Sπ(/c) of curvature
as follows:

EXAMPLE 1. Let (X°, X1,..., Xn) be a canonical coordinate system in Rπ+1

and M the hypersurface of Rn+1 defined by

(1.3) (sgn(fc))(X°)2 + (X1)2 + . . . + (χ»)2 = i/fc,

where kΦO and Z°>|/c|~1/2 when /c<0. Then M with the induced metric from
the metric form

2 + (dX1)2

on Rn+1 is a space form Sw(/c). We consider the following parametric equations

χo = [ l - (
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where we have put

(1.4) R\ = xιx\ Rl = xpxp, S1 = ί+ (k/4)R2, S2 = 1 + (fc/4)K|

and summation convention has been also applied to repeated upper indices.

Then the metric form of M is given by

ds2 = (1/S?)dx'dx' + {ίl-

The parts

ds\ =

are the metric forms of space forms Sm(k) and Sn~m(k) respectively, and hence M

has an AEWP structure Sm(/c) x /S
/ι"m(/c), where

In particular, for /c<0, the hyperbolic space M = Sn(k) is an ordinary warped

product of two hyperbolic spaces Sm(k) and S"~m(/c).

EXAMPLE 2. Let M be the hypersurface of R π + 1 defined by in Example 1.

We consider another parametric equations

where we have put

S 2 = 1 + (1/4)Λ§

and the others are the same as in (1.4). Then the metric form of M is expressed

in the form

ds2 = (l/Sfidxtdx* + l(xm)2/SU(llSl)dχPdχP.

The second part

~ds\ =

is the metric form of the spherical space S"~m(l), and M has an AEWP structure

Sm(fc) x ySw-m(l), where

f=xm/Sί.

Return to a general AEWP M = Mtx fM2. We denote the Christoffel

symbols of M, M x and M2 by Γκ

μλi {/J and {p

q} respectively. In a separate
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coordinate system we have the relations

(15) ί Γ 3'=0*ι} . Γ% = °> n9=-ffh9rq,

1 r'n = o, r>Jq = (iι/)fjδ>, r;, = {>},

where we have put/ 7 = Fjfax\dfh=gihfi.

For every point xeM — N, we denote by M2(x) the copy of M2 through x.

Then we obtain immediately from (1.5) the following

THEOREM 1. // M is an AEWP M t x fM2, then Mx is a totally geodesic

submanifold of M and each copy M2(x), xeM — N, is a totally umbilical sub-

manifold of M.

Denote the components of the curvature tensors of M, Mί and M2 by

Kvμλ

κ, Rkji

h and Rsrq

p respectively. Then we have the relations

h p h If h 1{ p IS h Π

(1.6)

V indicating the covariant differentiation with respect to {$}.

We shall denote the magnitude of a tensor by || ||. For example, that of the

curvature tensor Kvμλ

κ is defined by

II Jζ K: 112 IT JSvμλK

By means of the equations (1.6) we have

I|KV,AKII2 = WRkjtΎ + [ 4 ( n - m ) / / 2 ] | | F , g r a d / P

+ (I//4) I

If the function/has a zero-level surface N, then we make a point of M t tend to

a point of N and obtain the following

THEOREM 2. For an AEWP M = Mxx fM29 if the function f has non-empty

zero-level surface N and d i m M 2 > 2 , then M2 is a space of constant curvature

| |grad/| |2, that is,

(1.7) V = llgrad/||2(δ;^ - δ?gsq).

If an AEWP M = Mxx fM2 is of constant curvature /c, that is,

(1-8) KVflλ« = k(δ«vgμλ-δκ

μgvλ),

then we compare (1.6) with (1.8) and obtain the following
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THEOREM 3. An AEWP M=Mxx fM2 is of constant curvature k if and

only if the following conditions are satisfied:

(1) Mί of dimension > 1 is a space of constant curvature k, that is,

(2) Either M2 of dimension > 1 is α space of constant curvature kf2 +

||grad/||2, that is,

(1.10) Rsr/ = {kP + | |grad/| |2)(<5^ - 'δ*gj9

or M2 is 1-dimensional Euclidean space\

(3) The function f satisfies the equation

(l ll) rjfi=-kfgn.

A function / satisfying the equation (1.11) is called a special concircular

scalar field with characteristic constant k. For such a function/, we easily see

that kf2+ | |grad/| | 2 is a constant. Thus the following is immediate from Theo-

rems 2 and 3.

COROLLARY 1. Suppose that the function f has a non-empty zero-level

surface N on an AEWP M=MX x /M 2 . Then M is a space of constant curva-

ture k if and only if the following conditions are satisfied:

(1) Provided dim M x > 1, Mt is of constant curvature k;

(2) The function f on Mt is a special concircular scalar field with charac-

teristic constant k.

§2. Riemannian manifolds of dimension n admitting n special concircular

vector fields

On an n-dimensional Riemannian manifold M, a vector field V=(VK) is

called a special concircular vector field (briefly SCVF) if it satisfies the equation

(2.1) FxV=φX;ΓβV« = φδ*

for any vector X e TX(M), where φ is a scalar field on M. Locally an SCVF is a

gradient vector field of a scalr field p, that is, F = Fp, which satisfies the equation

(2.2) rμ?xP = Φgμλ

If M is simply connected, then such a scalar field p exists globally for an SCVF

V. If an SCVF has zero points, that is, stationary points of the scalar field p,

then the points are isolated and the number of them is at most two. Geodesies

issuing from a zero point of an SCVF V are trajectories of V.
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SCVF's F ( ί ) are simply said to be linearly independent in M if they are linear-

ly independent except a border subset of M. The scalar fields φ and p for every

SCVF F ( ί ) are also marked off by suffix in parentheses.

For some SCVF's F ( i ), the following lemmas are known ([4]).

LEMMA 1. If two SCVF's F ( 1 ) and F ( 2 ) have a zero point in common, then

they are linearly dependent and one is a constant multiple of the other.

LEMMA 2. // more than two SCVF's F ( i ) are linearly independent in a

Riemannian manifold M, then the scalar fields φ(i) are written in the form

(2.3) Fxφ(i) = - kg(X, F ( ί )); φ(i) = - kp(i) + bω

for any vector X e TX(M), where k is a constant in common with all the SCVF's

and b(ί) are constants.

Consequently p ( ί ) 's are special concircular scalar fields with the same con-

stant k, which is called the characteristic constant of F ( ί ) too.

In the remaining of this section, we shall consider an n-dimensional Rieman-

nian manifold M admitting n linearly independent SCVF's F ( i ) and the indices

h, i, j , k,... will run on the range 1, 2,..., n. We prove the following

THEOREM 4. // an n-dimensional Riemannian manifold M admits n

linearly independent SCVF's F ( ί ) with characteristic constant k, then M is of

constant curvature k. In addition, if M is complete and simply connected, then

M is a space form Sw(fc).

PROOF. Computing (FVwPVu)-FVu)FV(k)-F[Vih)>Vu)1)V(i) and using (2.1)

and (2.3), we have

Va))V(t) = klg(Vω, Vw)Vm - g(Vm, F ( ί ))F ( j,] .

Since F ( ί ) are linearly independent, M is a space of constant curvature k.

Now we locate ourselves in a local coordinate system (xh) of a manifold M

of constant curvature k, where the metric tensor is expressed as

(2.4) gji = (llS2yδJi9 S = l + (k/4)R2,

The Christoffel symbol is there given by

(2.5) Γ)t = - (k/2S) (χJδih + x*δJh -

From (2.2) and (2.3) we have the equation

(2.6)
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which is reduced to

djdiP + (kl2S)(χJdiP + x>djp - δjμ^p) = (l/S2H-kp + b)δn.

The general solution of the equation above is given by

(2.7) p = (1/5) [,4(1 - (k/4)R2) + Bhx» + (b/2)R^,

where A and BA's are constants ([4]). We put

(2.8) P (0) = (l/S)[l-(fe/4)Λ2], P w = x*/S, P(Oo) =

The gradient vector fields corresponding to these scalar fields have covariant

components as

j F(0)ί = - (/c/S2)*'-, F(Λ)ί = (1/S*) [ S ί w - (fc/2)x*x< ] ,

and we have, from (2.4), (2.5), (2.8) and (2.9), the equations

(2.10) F,F(α)/ = (-/c P ( α ) + b ( α ) )^, ,

where α = 0, 1,..., n, oo. This equation shows that these n + 1 vector fields F ( α )

are also SCVF's on M. In the case kΦO, the constant b(a) in (2.10) is equal to

zero for F ( 0 ) and F(Λ)'s, and F ( o o ) is parallel to F ( 0 ) . In the case k = Q, we have

(2.H) F ( Λ ) ί = ^ f , V(aQ)ί = x\

the first n vector fields of which are parallel and the last is a concurrent vector

field. Any SCVF is represented by a linear combination of these n + 1 vector

fields with constant coefficients.

We shall investigate the zero-level hypersurface of p ( α ) and the zero points of

the SCVF's F ( α ) corresponding to these functions p ( α ) . In the case /c>0, the zero-

level hypersurface of p ( 0 ) is the equatorial hypersphere and that of p ( Λ ) the longi-

tudial hypersphere defined by xh = 0. The vector field F ( o ) vanishes at the north

and south poles. Each vector field F ( Λ ) vanishes at the points belonging to an

intersection of the equatorial hypersphere with one of the longitudial hyper-

spheres except the one defined by xh = 0 . In the case k<0, p ( 0 ) vanishes nowhere

and p ( Λ ) does on the hypersurface defined by xh = 0. The vector field F ( 0 ) vanishes

at the point xh = 0 for all h and F ( Λ ) does nowhere. In the case fc = 0, p ( Λ ) vanishes

on the hyperplane defined by xh=0 and p ( o o ) does at the origin. The parallel

vector fields F (A) vanish nowhere and the concurrent vector field F ( o o ) does at the

origin.
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§ 3. Riemannian manifolds admitting some special concircular vector fields

In this section, we consider an n-dimensional Riemannian manifold M

admitting m>2 linearly independent SCVF's F ( i ). Then, for ΐ = l, 2,..., m and

any vector X e TX(M)9 xeM, we have the equations (2.1), (2.3) and

(3.1)

We define the distributions Dί and D2 by

I #1 = span {F(1), F ( 2 ),. . ., F ( m )},

except at the zero points of F ( ί )'s.

LEMMA 3. The distributions Dt and D2 are completely integrable.

PROOF. It follows from (2.1) that

(3.3) [ F ω , F ( 0 ] = φ(i)V(j) - φωV(i) e Dx

and hence D± is completely integrable. For every two vectors X, YeD2, we

obtain

(3.4) g&X, 7 ] , F(ί)) = 0

by means of (3.1). Hence the distribution D2 is also completely integrable.

Now we define a 1-form ω on M by

(3 5)
{ (X) 0 for XeD2.

LEMMA 4. dω = 0.

PROOF. For every two vectors F ( ί ), VU) eDu we have

> F( ί )) = F(i)(</.(0) - F^ίψϋ))

by use of (3.1), (3.3) and (3.5). For any vector X e D 2 w e obtain

, V(i)) = Vw(g(X, Vw)) = 0,

Vωl, F ω ) = g(φωX - FV(nX, F ( 0) = 0
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by means of (2.1) and (3.5). Using these equations, we have

2dω(X, V(i)) = X(ω(V(i))) - ω([X, F ( 0])

= - kg(X, V(i)) = 0.

For every two vectors X, YeD2, we have dω(X, 7 ) = 0 because of [X, Y]eD2.

Hence we have dω — 0 on M.

Let F be the set of all zero points of the SCVF's V(i). Then it is finite and a

border subset of M as we have already seen in § 2. We prove the following

THEOREM 5. Suppose that an n-dimensional Riemannian manifold M

admits m>2 linearly independent SCVF's with characteristic constant k and let

F be the set of all zero points of the SCVF's. Then M-F is locally an AEWP

M t x fM2 such that M t is an m-dimensional space of constant curvature k and

the function f on Mί satisfies the equation

(3.6) Pχgrad/= - kfX,

where XeTx(M^) and V is the covariant derivative on Mt.

PROOF. Lemma 4 shows that there exists a coordinate neighborhood U(x)

of xeM—F and a function ψ on U such that ω\υ = d\j/. Then the definition

(3.5) implies that

(3.7) V(i)(Ψ) = Φd), X(Φ) = 0 for any vector X eD2

on V. Since the distributions Dί and D2 are completely integrable, we can

choose U(x) such that it is diffeomorphic to Uί x l/2, where U1 and U2 are the

slices of Dγ and D2 through x, and a separate coordinate system (xh, x?) in U(x)

such that (xh) and (xp) are local coordinate systems in Uί and U2 respectively.

Since D^ and D2 are mutually orthogonal, the metric tensor g has components

such as

ji 0

Each V(i) of the SCVF's has components (V(i)

h, 0) with respect to this separate

coordinate (xh, xp).

Putting κ = p and μ=j in (2.1), we obtain

W = djVw' +r%v{l)" + r%v(l)" = o,

from which it follows that Γ^ Λ =0 and hence dpgjh=0. This means that the

components gjH are independent of xp and regarded as the metric tensors of Ut.
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We shall denote the slice Uί equipped with the metric tensors gβ by
Putting κ = p and μ = r in (2.1), we obtain

which implies the equation

By means of (3.7) and the linear independence of V(i), this equation is equivalent
to

dhgrq = 2(dhψ)grq.

Therefore, putting / = exp (ψ), we see that the components grq are written in the
form

where grq are dependent on xp only and regarded as the metric tensors of U2>
We also denote by M2 the slice U2 equipped with the metric tensors gqr

Since ψ and hence/ are functions on Ml9 the metric form of M are written
in the form

ds2 = dsl + [/(xh)]2dsl

in U9 where ds{ and ds\ are the metric forms of Mx and M2 respectively. There-
fore M-F is locally an AEWP Mt x fM2.

Putting κ = h and μ = r in (2.1), we have

W = ar V = o.

The equation (2.1) for κ = h and μ=7 yields

W = 5; V + ί'J* V = ("fePω + fc(o)^ί

The above two equations show that the SCVF's F ( o are regarded as those of Mx.
Therefore the m-dimensional part Mx admits m linearly independent SCVF's
and hence, by Theorem 4, Mt is a space of constant curvature k.

The equation (3.7) is reduced to

g(Vii)9 grad/) = / ψ ( i ) .

Differentiating this equation covariantly along Mί9 we obtain

0(P*7(l)f grad/) + ̂ (F ( 0, F^grad/) = (Xf)φ(i) +fFxφ(i)

for any vector X e TX(MX\ xeMu which implies
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(3.8) g(V(i)9 F xgrad/) = - kfg(V(i)9 X)

by means of (2.1) and (2.3). Since F ( 0 's are linearly independent, the equation

(3.8) is reduced to (3.6). Thus the proof is completed.

We have already seen in § 1 that, if/satisfies the equation (3.6), the function

/c/2 + | |grad/| |2 is a constant. The following are immediate consequences of

Theorems 2, 3 and 5.

PROPOSITION 6. Suppose that an n-dimensional Riemannian manifold M

admits m>2 linearly independent SCVF's with characteristic constant k and let

F be the set of all zero points of the SCVF's. Then the manifold M — F is locally

an AEWP Mx x /M 2 , and M is of constant curvature k if and only if M2 is a

space of constant curvature kf2+ | |grad/| |2.

PROPOSITION 7. Suppose that an n-dimensional Riemannian manifold M

admits n — \ linearly independent SCVF's. Then M is a space of constant

curvature.

PROPOSITION 8. Suppose that an n-dimensional Riemannian manifold M

admits 2<m<n—l linearly independent SCVF's and let F be the set of all zero

points of the SCVF's. If the function f appearing in the AEWP M-F = Mt

x fM2 has non-empty zero-level surface, then M is a space of constant

curvature.

§ 4. Structures of Riemannian manifolds admitting some linearly independent
special concircular vector fields

Suppose that an n-dimensional Riemannian manifold M admits m>2 linearly

independent SCVF's V(i) with characteristic constant k. Then M — F is locally

an AEWP Mx x fM29 where F is the set of all zero points of the SCVF's V(i), and

the integral manifold Mx of the distribution Dx defined by (3.2) is an m-dimen-

sional space of constant curvature k by Theorem 5. As we have seen in the proof

of Theorem 5, the SCVF's F ( ι ) and the associated scalar fields ρ(i) are regarded

as those of Mx.

We choose a local coordinate system (xh, xp) in M such that the metric

tensors for the local coordinate (xh) in Mx are given by (2.4), and consider the

equation (2.6) on M±. The general solution (2.7) of (2.6) is a linear combination

of the m + 1 scalar fields p ( 0 ) , p(h) and p ( o o ) on Mx given by (2.8) with constant

coefficients. The part Mt admits the m + 1 SCVF's F ( o ) and F(Λ)'s in the case

kΦO and F(Λ)'s and F ( o o ) in the case fc = 0 which are given by (2.9). When M

admits m linearly independent SCVF's, there occurs a problem such as which of

m + 1 vectors given by (2.9) are the m linearly independent SCVF's in M\ itself.
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First, we consider the case kΦO. Then the equation (2.6) represented by

the scalar fields p ( α ) are written as

(4.1) F μ p ( α ) λ = dμp(a)λ - Γι

μλpia)ι = - kp(a)gμλ

in M, where and in the sequel a indicates 0, 1,..., m and we have put P(a)λ = dλρ(a).

Since M-F is locally an AEWP, putting λ=p, μ = q into (4.1), we have the

equation

or, substituting (2.4) into this equation,

(4.2)

where and in the sequel summation convention is also applied to repeated lower

indices.

If the m SCVF's on M are the extensions of m linear combinations of V(a)'s

on Mt except F ( 0 ) with constant coefficients, then we may assume that the m

SCVF's are Vw themselves. Substituting

pih) = x*/S, pm = (1/S2) (Sδhi - (fc/2)x*x«)

into (4.2), we have the equation

(4.3) Sdhgqp - (/c/2)x"(xί3^,p) = (2klS)xhgqp.

By contraction of (4.3) with x\ we have

(4.4) x%gqp = - {2kR*ISlί - ( f c / 4 ) ^ ] } ^ .

Substituting again (4.4) into (4.3), we have the solution of (4.3)

gqP = {[1 -

where gqp is regarded as the metric tensor of M 2 . The set F is contained in the

zero-level surface N of p ( 0 ) for λ;>0 and is empty for /c<0, as we have seen in

the end of § 2. Thus the manifold M is locally an AEWP M x x pi0)M2. If fc> 0,

the zero-level surface N of p ( 0 ) is the equatorial hypersphere of M1. Therefore,

by Theorem 2, the (n — m)-dimensional manifold M2 is of positive constant cur-

vature | |F (o)||2 and hence M is a space of constant curvature k by Propositions 7

and 8. Moreover, we see that M is locally isometric to a space form Sn(k) given

by Example 1. If fc<0, the function p ( 0 ) vanish nowhere. Therefore M is

locally a warped product of an m-dimensional manifold Mx of constant curvature

k with an (n — m)-dimensional Riemannian manifold M 2 . If M2 is a space of

constant curvature fcp(0)

2 + | | F ( 0 ) | | 2 , then M is a space of constant curvature k by
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Proposition 6 and hence it is locally isometric to a space form Sw(fc) given by

Example 1.

If the m SCVF's on M are the extensions of m linear combinations of V(0)

and m— 1 F(Λ)'s on Mx with constant coefficients, then we may assume that the m

SCVF's are F ( 0 ) and F(Λ)'s (h = l, 2,..., m - 1 ) . We have the equation (4.3) for

Λ = l, 2,..., m - 1 . Substituting

, p ( 0 ) i = -

into (4.2) for α = 0, we also have

(4.6) x%gqp = (2/5) [1 - (k/4)R^gqp.

Substituting again (4.6) into (4.3) for Λ = l,..., m — 1, we have

Sβ*0«n = ~ kxhgqp

or

3 r f f P + (2/S)gqpdhS = 0.

Hence the components gqp are written in the form

where hqp are functions of xm, xm+1,..., xn. Substituting these expressions into

(4.6), we can easily see that hqp is written as (xm)2gqp with gqp depending on xm + 1,

..., xn only. Thus we have

(4.7) gqp = L(xm)2/S^gqp = p2

m)gqp,

where gqp is regarded as a metric tensor of M 2 . In this case, the set F is contained

in the zero-level surface N of p ( m ) as we have seen in § 2. Therefore the manifold

M is locally an AEWP Mt x p ( m ) M 2 . By Theorem 2 the (n — m)-dimensional

manifold M 2 is of positive constant curvature | |K ( m ) | |
2 and hence the manifold M

is of constant curvature k by Propositions 7 and 8. Moreover, the manifold M

with the metric tensor given by (2.4) and (4.7) is locally isometric to a space form

Sw(/c) given by Example 2.

Thus we can state the following

THEOREM 9. Suppose that an n-dimensional Riemannian manifold M

admits m>2 linearly independent SCVF's V(i) with associated scalar fields

p ( i ) and characteristic constant kφO. In the case where each p ( i ) is one of the

functions

[1 - (k/4)R2yS for fe> 0 and χ*/S,
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the manifold M is locally isometric to a space form Sn(k). In the case where one

of p(i)'s is the function

[1 - (/c/4)#2]/S for fc < 0,

the manifold M is locally a warped product Mx x p(i)M2 of m-dimensional mani-

fold M1 of constant curvature k with an (n — m)-dimensional Riemannian mani-

fold M2.

COROLLARY 2. Suppose that M is complete and simply connected in ad-

dition to the assumption of Theorem 9. In the case of k>09 the manifold M is

isometric to a sphere Sn(k). In the case of k<0, the manifold M is either iso-

metric to a hyperbolic space Sn(k) or a warped product M x x fM2 with f=

Next, we consider the case k==0. Then the equations of p(β) are given by

PμPmλ = dμp(β)λ - Γι

μλpm = bmgμλ,

which are reduced to

(4.8) Pm(di9qp) = 0,

where β indicates 1, 2,..., m, oo.

If the m SCVF's on M are the extensions of m linear combinations of Viβ)'s

on Mt except F ( o o ) with constant coefficients, then we may assume that the m

SCVF's are Vih) themselves. The part Mx is locally Euclidean. Since

(4.9) pm = δhi

and hence the equations (4.8) are reduced to digqp = 0, we see that gqp are inde-

pendent of xh. Since the parallel vector fields (4.9) vanish nowhere, the set F is

empty. Thus we obtain the well-known result that a manifold admitting m

parallel vector fields Vih) is locally the product space M1 x M2 of an m-dimen-

sional Euclidean space M1 and an (n — m)-dimensional Riemannian manifold M 2 .

If the m SCVF's on M are the extensions of m linear combinations of V(h)'s

and F ( o o ) with constant coefficients, then we may assume that the SCVF's are

m — \ F(ft)'s, say A = l, 2,..., m — 1 , and F ( o o ). Then we have the equations

Shgqp = 0

for Λ = l, 2,..., m — 1. For the vector F ( o o ) we have

xidigqp = 2gqp.

It follows from the above two equations that the components gqp are expressed

in the form



Special concircular vector fields in Riemannian manifolds 91

29 = P()9

where gqp are independent of xh and regarded as a metric tensor of an (n — m)-

dimensional manifold M 2 . As we have seen in §2, the set F is contained in the

zero-level surface N of ρ(m). Thus the manifold M is locally an AEWP Mγ x

p ( m ) M 2 . From Theorem 2 we see that M 2 is a space of constant curvature 1,

and from Propositions 7 and 8 that the manifold M is locally isometric to a

Euclidean space.

Thus we state the following

THEOREM 10. Suppose that an n-dimensίonal Riemannian manifold M

admits m>2 linearly independent SCVF's F ( ι ) with characteristic constant

k=0. If one of the SCVF's is concurrent and hence the others are parallel,

then the manifold M is locally isometric to an Euclidean space. If the SCVF's

are parallel, then M is locally the product space M x x M 2 of an m-dimensional

Euclidean space M1 and an (n — m)-dimensional Riemannian manifold M 2 .

In the case where M is a complete and simply connected manifold, we obtain

the well-known result.

COROLLARY 3. Suppose that M is complete and simply connected in

addition to the assumption of Theorem 10. // M admits a concurrent vector

field V, then M is Euclidean. If M admits m parallel vector fields F ( i ), then

M is the product space M t x M2 of an m-dimensional Euclidean space M1 and

an (n — m)~dimensional Riemannian manifold M 2 .
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