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Introduction

It is known that there exist four simple Lie groups of type E, up to local
isomorphism, one of them is compact and the others are non-compact. We
have shown that in [3], [S] the group

E; = {aelsoc(PBC, P)|a(Px Q™! = aP xaQ, (aP, Q) = (P, 0}
= {xelsoc(PC, P€)[aME = MC, {aP, aQ} = {P, 0}, <aP, Q) = <P, Q)}

is a simply connected compact simple Lie group of type E, and in [4], [5] the
group

E;,, = {aelsoc(PC, PO)|a(Px Q)a~! = aP xaQ, {aP, aQ), = (P, )}
= {xeIsoc(PC, PE)|aC = MC, {aP, aQ} = {P, 0}, {aP, aQ), = (P, 0D}

is a connected non-compact simple Lie group of type E, _,s, and its polar decom-
position is given by

E;, ~(U(1)xEg)|Z; x R34
In this paper, we show that the group
E;, ={aelsoc(PBC, PO |a(P x Q)a~! = aP xaQ, (aP, aQ), = (P, Q) }
={a e Isoc(BC, PC)|aME = MC, {«P, 2@} = {P, 0}, {aP, aQ), = <P, Q),}

is a connected non-compact simple Lie group of type E, s, with the center
z(E; ,)={1, —1}. The polar decomposition of the group E, , is given by

E;, ~ (SU(2)x Spin (12))/Z, x R+,
To give this decomposition, we find subgroups
SU(Q2), Spin(12), (SU(2) x Spin(12))/Z,

in the group E, and the group E, , explicitly.
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1. Preliminaries

1.1. Cayley algebra € and exceptional Jordan algebra 3¢
Let € denote the Cayley algebra over the field R of real numbers and €€ its
complexification with respect to the field C of complex numbers. Let J€¢ denote
the Jordan algebra consisting of all 3 x3 Hermitian matrices X with entries in
(UL
§1 x3 X,
X = )_63 52 X1 | éiec, xieqcs

Xy Xy I

with repect to the multiplication XoY=(XY+ YX)/2. In J¢, the symmetric inner
product (X, Y), the positive definite Hermitian inner product (X, Y) and the
crossed product X x Y are defined respectively by

(X, Y) = tr(XoY), <(X,Y>=@X,Y)=(X,7Y),
X x Y= (Q2XoY—tr(X)Y—tr(Y)X + (tr(X)tr(Y)—(X, Y))E)/2

where 7: J€—> J€ is the conjugation relative to the field C (zX is also denoted by
X) and E the 3 x 3 unit matrix. We use the following notations in J€:

1 00 00 0 000
E,=|0 0 0|, E,=|0 1 0|, E;=|0 0 0
00 0 00 0 0 0 1

1.2. Compact Lie group E; and its Lie algebra ¢, ([1], [7])

A simply connected compact simple Lie group of type Eg is given by

Eg = {0 e€Is0,(3€, IO | (aX, aX xaX) = (X, X x X), (aX, aY) =<X, Y)}
= {aeIs04(J¢, IO |tat(X xY) = aX xa¥, (aX, aY) =<X, Y)}

and its Lie algebra is
¢ = {¢p € Hom(3¢, J9)[(dX, X x X) = 0,{dX, Y) = — (X, ¢1)}.
The complexification e of the Lie algebra e¢g:
e§ = {¢ e Hom(3J¢, IO (¢ X, X x X) = 0}

is a simple Lie algebra over C of type E;. For A, Be 3¢, Av Be e§ isdefined by
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(Av B)X = ((B, X)/2)A + (4, B)/6)X — 2Bx(AxX), Xe3C.

1.3. Compact Lie group E, and its Lie algebra ¢, ([1], [3])
Let B be a 56 dimensional vector space over C defined by

Pc=JoJ@CaC.
X
An element P= ? of PB€ is often denoted by P=(X, Y, & ). In BC, the

n
positive definite Hermitian inner product (P, Q) and the skew-symmetric inner

product {P, Q} are defined respectively by

(P, Q> =<X,Z) + (Y, W) + & + fjo,
where P=(X, Y, §, n), Q=(Z, W, {, w) € PEC.

For ¢ee¢, A, Be3J¢ and veC, we define a linear transformation
(¢, A, B, v) of P€ by

X To—(v/3)1 2B 0 4|l X

Y 24 ! 3)1 B 0 Y
¢(¢a A’ Bs V) = ¢ +(V/ )

¢ 0 A v 0] ¢

n L B 0 0 —v g

CGX—(v/3)X+2BxY +nd
2AX X+ 'Y+ (v/3)Y+EB
(4, Y)+vE

L (B, X)—vn

where ¢’ € e denotes the skew-transpose of ¢ with respect to the inner product
(X, Y): (X, Y)+(X, ¢'Y)=0. Now, for P=(X, Y, ¢, n), 0=(Z, W, {, w) € BE,
we define a linear transformation P x Q of B¢ by

A= —-QRYXW— EZ — (X)/4,
B =(2XxZ — nW — wY)/4,
v=(X, W)+ (Z, Y) - 3¢o+{n)8.

{¢=—(XVW+ZVY)/2,

P x Q = &(¢, A, B, v), 1

And we define a submanifold ME of P¢, called a Freudenthal manifold, by
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IME ={PePC|PxP =0, P # 0}
XVY=0, XxX =nY, YxY=¢X,

= {P=(x, X & mepe
(X, Y)=3¢n, P #0

Now, as stated in the introduction, a simply connected compact simple Lie
group of type E; is given by
E; = {aelsoc(PC, PO) (P x Qo' = aP xaQ, {aP, Q> = (P, 0>}

= {aeIsoc(PBC, PE)[oME = MC, {aP, aQ} = {P, 0}, {aP, Q) = <P, O}

and its Lie algebra is
¢, = {P(¢, A, v)e Hom(PC, PC)|pees, AeJC, velC, vV = —v}
where &(¢, A, vV)=P(P, A, — A, v), so the action &(¢, 4, v) on P€ is defined by
X dX—(v/3)X—24AxY +n4

Y 2AX X+ ¢ Y. 3)Y—¢A4
(g, 4, v)| | || ZAXFFOTHORT=E

¢ (4, Y)+v¢

n —<{4, X>—vq

The Lie bracket [®,, ®,] in e, is given by
[D(¢1, A1, V1), D@2, Az, v2)] = D(, 4, V),
¢ =[¢, p]1 —24, VA, +24,VA,,
A = (¢1+2v1/3IDA; — ($2+(2v5/3)D4,,
v=1{(A, Ay) — {(A4,, A .

2. Subgroups (E;),, E, . 1, E, . 1,1 of E; and their Lie algebras

We define linear transformations o, x; of J€ respectively by

&1 x3 X, $1 —x3 —X,
o| X3 & xy |=| —X3 & x|,
X3 X1 &3 —x; X &3
$1 X3 X, & 0 0

Ky| %3 & x| =0 =& —x;

X, X & 0 —-% —&
and then define linear transformations o (denoted by the same notation as the
above), k, A of PBC respectively by
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X cX X W X nE,+2E,xY

Y oY Y 1? Y EE,+2E, x X
o = N K = _ N A =

¢ ¢ ¢ ¢ ¢ (Ey, Y)

n n n f n. (Ey,X)

Now, we define subgroups (E),, E, 15 Eq 2,1 Of the group E, by
(E7), = {a€ E;| 00 = ao},
Ea,x,/l = {aE(E7)g l Ko = oK, Ao = oz,l} ,

Ea,x.).,l = {“GEa,x,lla(El’ El’ 1, 1) = (El’ Els 1, 1)}

Our first aim is to show that these groups are isomorphic to the following groups
respectively :

(SU(2) x Spin(12))/Z,,, Spin(12), Spin(11).
The Lie algebras of these groups are easily calculated as follows.
PROPOSITION 1. (1) The Lie algebra (e,), of the group (E;), is
beeq, 0¢ = do,
(€7)s = {PeEes|0D = Do} =( D(¢, A, v)ee,; | AeIC, 04 = A,
veC, V= —v

(2) The Lie algebra e, ; of the group E,, , is

Copa = {DE(er), | KD = Pk, 1P = D]}
pees, 0P = ¢o,
=( &(¢, A, v)ee; | AeJC A = A4, (E,, A) =0,
v = —3(¢E,, E)/2

(3) The Lie algebra e, ., , of the group E,, ; , is

ea,x,).,l = {¢Eea,x,l| ¢(E1’ E19 1, 1) = 0}

¢Ee6a ¢E1 =0, }

=¢ & ,A,O)ee -
{ @ " A4eC, 2E, x A=A

(={Pee;|D(Es, Ef, 1, 1) =0} = (e9);  (see § 10)).

For veC, V= —v, we define a linear transformation ¢(v) of J€ by
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1 x3 X 4¢, X3 X3
M) X3 & x| =03 X3 -2, —2x
xz fl 53 x2 ‘_25C_1 ‘_263

Then ¢(v)=2vE,v E,ees and od(v)=¢(v)o. Further we define a Lie algebra
a; by

a; = {®(¢(v), aE;, v)ee,|a, veC, V= —v}.

This a, is a Lie subalgebra of (e,), and isomorphic to the special unitary Lie
algebra su(2)={4 e M(2, C)| A*= — A4, tr(A)=0} by the correspondence
v

—a —v

0, 2P(p(v), aE,, v) «—»[ ¢ } esu(2).

PROPOSITION 2. The Lie algebra (e;), is the direct sum of the Lie sub-
algebras ay and e, ; in e;:

(e7)a = al + ea’,x,).'
Proor. The correspondence
(e7)a' € ¢(¢a A’ V) — ¢(¢(V’), aEla V’) + ¢(¢' - ¢(vl)9 A—- aEla vV— V’) €a, + eo‘,x,).’

where v'=v/3+(E,, ¢E,)/2, a=(E,, A), gives an isomorphism between them.

3. Spinor subgroup Spin (11) of E,

We shall show that the group E,, ;; is isomorphic to the spinor group
Spin (11) (cf. Theorem 20). To show this, consider an 11 dimensional vector
space W over R defined by

W= {Pe®C€|oP =P, kP =P, )P =P, Px(E,, E;, 1, 1) = 0}

"EC’ ﬁ = -n,

=1 (ME;+X, —nE,—X, —n, 1) =
' ! XeJ¢, 2E,xX = —X

n 0 0 -n 0 O
z n, §EC, ﬁ=_”,
= 6 X |, 0 "é =X |, —nn
- xeC
0 x —¢ 0 —x ¢&

and let S be the unit sphere in W:
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S10={Pe W|{P, P)>=4}

n 0 O -n 0 0
- ,¢eC, ij=—n, xe@,
_ 0 ¢ x| 0 =& —x |, —n 7 1, ¢ f N, X
- M2 +1E12+x]2=1
0 x —¢&¢ 0 —x ¢

Remember that the spinor group ([7, Proposition 11])
Spin (10) = {a€ E¢|oo = a0, aE; = E;} = {a € Eq|aE, = E,}
acts transitively on the 9 dimensional sphere S° ([7, Lemma 10])

0O 0 O 0O 0 O
_ teC, xeC,
S9= 0 , |0 —=¢ —x1(, 0,0
. IE12+x]2=1
0 &) |0 -x ¢

s
=

=l

LEMMA 3. For ae€C, the linear transformation afa) (i=1,2,3) of BE
defined by

1+ (cos la|—1)p; (2a/|a]) sin |a|E; 0 —(al/lal) sin |a| E;
— (2a/|al) sin |a|E; 1+ (cos |a| —1)p; (a/lal) sin |a|E; 0
a;(a) =
0 —(d/lal) sin |a|E; cos |a| 0
(a/la|)sin |a|E; 0 0 cos |a|

(if a=0, then (a/|al) sin |a| means 0) belongs to the group (E,),, where the map-
ping p;: J€->J€ is

1 x5 X, ¢4 03iX3 0%, ‘
Pi| X3 &2 xi |=| 03 %; & duxy | (=1,2,3),
X, Xy & 0yiXy 01X, &3

and the action of afa) on PB€ is defined as similar to that of ®(¢, A, B, V) in
§ 1.3.  Furthermore, for a € C, a,;(a)=0a,(a)x;(a) belongs to the group E,, ;.

Proor. For &0, —aE;, 0) e (e,),, we have o,a)=exp (0, —aE;, 0) e(e,),,
i=1,2,3. For #(0, —aE,—aE;, 0)ee,, ; 1, We have
o,5(a) =ay(a)as(a) = exp (0, —akE,, O)exp ®(0, —aE,, 0) (cf. [3, Lemma 7])
= exp(®(0, —akE,, 0)+ (0, —aE,, 0))
(because #(0, —aE,,0) and #(0, —aE;, 0) are commutative)
exp ®(0, —aE,—akE;, 0)eE,, ; ;.
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LemmA 4. a€E,, ;; satisfies a(E,, —E;, —1,1)=(E,, —E,;, —1, 1) if and
only if «(0,0,1,0)=(0,0,1,0). In particular, we have the following
isomorphism:
{O(EEa,x,}.,l I‘x(Els _Ela _13 1) = (Els _Ela _la 1)} = Spln (10) .

PrOOF. Suppose that oeE, satisfies «(E,, E{, 1,1)=(E,, E;,1,1) and
«E,;, —E,, —1, 1)=(E;, —E;, —1, 1). Put «0, 0, 1, 0)=(X, Y, &, ). Then
{«(E,, E{, 1, 1), 2(0, 0, 1, 0)> =1, K(E;, —E,, —1, 1), 2(0, 0, 1, 0)> = —1 imply
(Ey, X)+(E{, N+ E+n=1, —(E;, X)+(E,, Y)+E—n=1 respectively. Further-
more {«(E,, E,, 1, 1), 2(0, 0, 1, 0)}=—1, {(E;, —E,;, —1, 1), (0,0, 1, 0)} =—1
lmply (El’ Y)_‘(Ely X)+’7—€=—1’ (Els Y)+(E15 X)—f]—€= -1 respectively.
Therefore we have

E=1, (E, X)=(E;, Y)=n=0.
Finally <«(0, 0, 1, 0), «(0, 0, 1, 0)> =1 implies (X, X>+<Y, Y>+1+0=1, hence
X=Y=0. Thus we have «(0, 0, 1, 0)=(0, 0, 1, 0). The proof of the converse is
similar. Since we have the identification
Eg = {0aeE;|x0,0,1,0)= (0,0, 1, 0)} ([13, Proposition 2])
and (Ela O, 03 O)=((E13 El’ 15 1)+(E1’ _Ela - 1’ 1)—2(0’ 0; 0’ 1))/2 (See [3; Lemma
1]), we have
{QEEa,x,l,l‘a(Eb _Ela _la 1) = (El’ _Els _13 1)}
= {aeE;|x0,0,1,0)=(0,0,1,0), «(E{,0,0,0)=(E,, 0,0, 0)}
= {aeEg|aE, = E,} = Spin (10).
LemMMA 5. The group E,, ;. acts transitively on S'© and the isotropy

subgroup of E,, ;1 at i(E,;, —E;, —1,1) is Spin (10). Therefore the homo-
geneous space E, . , 1/Spin (10) is homeomorphic to S°:

Eo‘,x,).,l/Spin (10) ~ S10,
In particular, the group E, . , 1 is simply connected.

Proor. Obviously the group E,, ; ; acts on S'0. In order to prove that
E, ...,1 acts transitively on S'9, it suffices to show that any element P of S!° can be
transformed in i(E;, —E;, —1, 1) S1° by a certain element « of E,, ; ;. Now,
n 0 O -n 0 0
for a given element P= 0 ¢ x|, 0 —-¢ —x |, —n,n) eSO
0 x-¢ 0—-x ¢
choose a e R, n/4=a=0, such that

tan 2a = 2n/({-¢)



Non-compact simple Lie group E; s, 67

and operate a,3(a)€E,,;; of Lemma3 on P. Then the n-part of a,;(a)P
becomes ((¢ —&)/2)sin 2a+ncos 2a=0. Hence

o,3(a)P e S°.

Since the group Spin (10)c E, , ; ; acts transitively on S°, there exists f € Spin (10)
such that

Baaz(@)P = i(E;+Ej, E;+ E3, 0, 0).
Again operate a,3(n/4) of Lemma 3 on it. Then we have
ay3(n/4)Boy3(a)P = i(Ey, —E;, —1, 1).

This proves the transitivity of E, ; ; ;. On the other hand, Lemma 4 shows that
the isotropy subgroup of E, , ; | at i(E,, —E, —1, 1) is Spin (10). Thus we have
the required homeomorphism E, , ; /Spin (10)~S*°.

ReMARK. The transitivities in Lemma 5 and the following Lemma 8 are
easily obtained by another way. In fact, since the compact Lie group E,, ,,
acts on S'°, an orbit E, . ; ,i(E;, —E;, —1,1)(~E,, ; {/Spin (10)) is 55-45=10
dimensional compact submanifold of S'°, hence it must coincide with S10:

E, .1.1/Spin (10)~S'°. However, here, we gave their elementary concrete
proofs.

THEOREM 6 (cf. Theorem 20). The subgroup E, ., of E; is isomorphic to
the spinor group Spin (11):

E, 11 = Spin(11).

ProoF. Let SO (11)=S0 (W)={a' e Isog(W, W) | o'P, «'Q>=<{P, Q>, det o’
=1} be the rotation group in W. For each a€E,, ,,, the restriction a'=a|W
obviously belongs to O (11)=0 (W)={a' € Isog(W, W)|<a'P, «'Q>=<{P, Q>}.
Hence we can define a homomorphism p: E,, ; ;-0 (11) by p(@)=o'. Since
E, 1,1 is connected (Lemma 5), p induces a homomorphism

P E;\ 21— SO (11).

We shall show that p is onto. Recall that p’=p|Spin (10): Spin (10)—SO (10)
=SSO0 (W’) (where W' ={Pe W|P=(X, —X, 0, 0)} is onto ([7, Proposition 11]).
By using the five lemma, from the commutative diagram

1 — Spin(lO) —_ Ea,x,ﬂ.,l e SlO — %

o)

1— SO(10) — SO(11) —> S0 — «
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we see that p is onto. Finally it is easy to see that Ker p={1, 6}. Therefore
E, .1 is a universal covering group of SO (11). Thus we have proved that
E, .1, is isomorphic to the spinor group Spin (11).

From now on, we identify the group E,, ; ; with the group Spin (11).

4. Spinor subgroup Spin (12) of E,

We shall show the group E,,; is isomorphic to the spinor group
Spin (12). To show this, consider a 12 dimensional vector space V over R
defined by

V={PePC|cP = P, kP = P, AP = P}
= {(”El +A’a ﬁEI _X5 ﬁ$ 77) I’IECa XGSC, 2'El X X=— X_}

nm 0 O 7 0 O
_ _ ¢, ned,
= 0 ¢ x|, |0 —=¢ —x|, 1,1
xeC
0 J—C—f 0 —Xx

and let S'! be the unit sphere in V':
St = {PeV|{P, P) =4}.

LemMa 7. For veC, v=—v, a linear transformation a(v) of B¢ defined by

&1 X3 X, N Y3 ¥

e | X3 & x1|s | V3 N2 yi|s &M
X X; &3 Y2 Vi M3
el e'x; e'X, e>n; eVys ey,
=] eX & x|, | e N2 yi |, e ey
e'x; X &3 ey, Vi 13

belongs to the group E, . ,.

Proor. For ¢(v)ees defined in § 2, we have &(¢(v), 0, —2v)ee,, , and
a(v)=exp &(¢(v), 0, —2v), hence a(v) € E, . ;.

LemMMA 8. The group E, . , acts transitively on S'! and the isotropy sub-
group of E, ., at (Ey, E{, 1,1) is Spin (11). Therefore the homogeneous space
E, ../Spin (11) is homeomorphic to S**:

E, . :/Spin (11) ~ S'1,
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In particular, the group E, . ; is simply connected.
Proor. Obviously the group E,, ; acts on S'i. In order to prove that

E, .., acts transitively on S'!, it suffices to show that any element P of S'! can be
transformed in (E, E;, 1, )€ S'* by a certain element « of E,, ;. Now, for a

n 0 0 7.0 0
given element P={| 0 ¢ x|, [0 -& x|,#,n )eS', choose veC,
0 x —¢ 0 —x ¢

= —v such that
v = i(n/4—06/2)

where 0 is the argument of 7: n={nle’, and operate a(v) of Lemma 7 on P.
Then the #-part of a(v)P becomes e2'n=ei"2e~%=iln|. Hence

a(v)P € SO,

Since the group Spin (11)=E, , , acts transitively on S19, there exists f e Spin
(11) such that

ﬂa(v)P = i(Ela —El, _la 1)
Again operate a(—in/4) of Lemma 7 on it. Then we have
o —in/4)po(v)P = (Ey, Ey, 1, 1).

This shows the transitivity of E,, ;. The isotropy subgroup of E,, ; at (E,,
E,, 1, 1) is Spin (11) by the definition. Thus the proof of Lemma 8 is completed.

THEOREM 9. The subgroup E, . ; of E, is isomorphic to the spinor group
Spin (12):

E, .. = Spin(12).
PrOOF. The proof is similar to that of Theorem 6 according to Lemma 8.
From now on, we identify the group E, , , with the group Spin (12).

ReMARK. The group Spin (12) has the center z(Spin (12))={1, —1, 6, — 0}
={l,0}x{l, —o}=Z,xZ,. And we have
Spin (12)/{1, 6}= S0 (12). Hence Spin (12)/{1, —a}=Ss (12).

5. Special unitary subgroup SU(2) of E,

THEOREM 10. The group E, contains a subgroup
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SUQ) = {0, €E,| AeSUQ)}

which is isomorphic to the special unitary group SUQ)={Ae M(2, C)|A*A=
E,det A=1}. Here, for AeSU(2), «, is defined by

& ox3 X, N1 ys V2

aq | X3 & x5 | Y3 m2 yi|s &
X, X &3 Y2 Y1 M3

’ ’ =/

!’ ! el )
1 X3 X2 N Y3 V2
—_ =’ ’ ’ =7 ! ’ ’ ’
- X3 2 X1 | y3 P Y1 |» 5 ’ "
’ = ’ ’ o7
X2 X1 63 Y2 V1 N3

[l [ 5o [
LAl D=0 -

Proor. For A=exp[ _Z_ _i{le SUQ2), (a,veC, v=—v), wehave a,=
exp P(p(v), aEq, v)e SUQ2).

6. Connectedness of (E,),

We shall prove that the group (E,), is connected. We denote, for a while,
the connected component of (E,), containing the identity 1 by ((E-),)o-

LemMA 11. Any element X €(J3€),={X eJ¢|ocX =X} can be transformed

in a diagonal form by a certain element o of the group (Eg),={a€ E¢| co=00}:

& 0 0
aX=|0 & 0|, ¢&eC.
0 0 &

Proor. In the proof of [7, Proposition 5], if we remember that i(E, — E,),
i(E,—E5), iF(a), A,(a)e(eq),={p ces|o¢p=¢o} (which is the Lie algebra of
the group (Eg),), then we can prove this lemma by the same way as [7, Proposition

5].

We define the spaces (9t€), and (M,), respectively by
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(M), = {PeM|oP =P}, (M), = {Pe(M),|<P, P) =1}.

LemMa 12.  Any element P of (IRC), can be transformed in a diagoanl form
by a certain element o of (E1),)o:

P=(X,Y,¢&n), X, Y are diagonal forms.
Moreover we can choose o € ((E;),)o so that & is a positive real number.

Proor. By making use of Lemma 11, we can prove this lemma by the same
way as [3, Proposition 8].

PROPOSITION 13.  The group (E,), acts transitively on (IR,), (which is con-
nected) and the isotropy subgroup of (E;), at (0,0, 1,0)e(M,), is (Eg),- There-
fore the homogeneous space (E;),/(Eg), is homeomorphic to (MM,),:

(E7)0‘/(E6)d‘ = (mtl)a'
In particular, the group (E,), is connected.

Proor. For aeC, remember &0, —aE, 0)e(e,),, i=1,2,3. Then by
the use of Lemmas 12 and 3, we can prove the homeomorphism (E;),/(E¢),~
(M), by the same way as [3 Theorem 9]. Now, since the group (Eg), is iso-
morphic to the group

(Eg), = (UQ1) x Spin (10))/Z, ([7, Theorem 137),

(Eg), is connected. Therefore the group (E), is also connected.

7. Isomorphism (E;), = (SU(2) x Spin (12))|Z,
THEOREM 14. The subgroup (E,),={x€ E,;|ca=0ac} of E, is isomorphic
to the group (SU(2) x Spin (12))/Z,:
(E7)s = (SUQR)x Spin (12))/Z,  where Z, = {(1, 1), (=1, —0)}.

Proor. We define a mapping

¥: SUR)x Spin (12) — (E7)gs  ¥(, ) = of.

Since the Lie algebra (e,), is the direct sum of Lie algebras a, and e, , ; as ideals
(Proposition 2), e SU(2) and e Spin (12) are commutative. Hence we see
that ¢ is a homomorphism. Moreover ¥ is onto, because the group (E,), is
connected (Proposition 13). Kery=Z,={(1,1), (—1, —0)} is easily obtained.
Thus the proof of Theorem 14 is completed.
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8. Lie group E; , and its polar decomposition
We define an inner product (P, @), in B¢ by
(P, @5, = <oP, Q) = (P, 0@}
and a group E, , by (cf. [3], [5])
E;, = {xelso®(BE, P)¢| oM = ME, {«P, 2Q} = {P, 0}, {aP, aQ), = (P, Q),}.

(Later, we see that this group E,, is connected (Theorem 17), therefore it may
also defined by (see [5])

E;, = {aelsoc(PBE, PO |a(P x Q)" = aP x aQ, {aP, aQ), = (P, @),}.)
In order to give a polar decomposition of the group E, ,, we use

LEMMA 15 ([2, p. 345]). Let G be a pseudoalgebraic subgroup of the general
linear group GL(n, C) such that the condition Ae G implies A¥€G. Then G
is homeomorphic to the topological product of the group Gn U(n) and a Eu-
clidean space R¢:

G~ (GnUMm)) x R?
where U(n) is the unitary subgroup of GL(n, C).

LemMA 16. The group E,, is a pseudoalgebraic subgroup of the general
linear group GL(56, C)=Iso(*BE, PE) and satisfies the condition that a€E,,
implies a* € E; ,, where a* is the transpose of a with respect to the inner product

(P, @): KaP, @5 =<P, a*Q).

Proor. Since {a*P, 0> =<(P, aQ> ={cP, aQ>,={a"t6P, Q),=<ca"'6P, Q)
for a € E, ,, we have

o* = oo loeE, .

It is obvious that E,, is pseudoalgebraic, because E,, is defined by pseudo-
algebraic relations a9 =INC, {aP, aQ}={P, Q}, (aP, aQ>,=<P, Q),.

Let U(56)=U(PC)= {axeIso(PE, BC)|<aP, Q> =P, Q>} denote the
unitary subgroup of the general linear group GL(56, C)=Iso(RC, BC€). Then

E;, N U(S6) = {ex€E;,|oa = ac} = {a€ E,; |00 = ao}
~ (SU(2)x Spin(12))/Z,  (Theorem 14).

Since it is easy to see that E, , is a simple Lie group of type E; (see [3], [4]), the
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dimension of E, , is 133. Hence the dimension d of the Euclidean part of E, ,
and the Cartan index i are calculated as follows:

d =dim E, , — dim (SU(2) x Spin(12)) = 133 — (3+66) = 64,
i =dimE;, — 2dim(SU (2) x Spin(12)) = 133 — 2(3+66) = — 5.
Thus we have the following

THEOREM 17. The group E, , is homeomorphic to the topological product
of the group (SU(2) x Spin(12))/Z, and the Euclidean space R%*:

E,, ~ (SU(2) x Spin(12))/Z, x R6*.

In particular, the group E, , is a connected non-compact simple Lie group of
type E;_s).

9. Center z(E;,,) of E, ,

THEOREM 18. The center z(E,,) of the group E,, is the cyclic group of
order 2:

Z(E7,a) = {13 _1} .

Proor. Let a€z(E,;,). From the commutativity with 6€E, ,, « is con-
tained in the center z((E,),) of the group (E,),: a€z((E)),)={1, —1, 0, —0o}
(cf. Theorem 14). Obviously, o, —o&z(E, ,), so we have z(E,; ,)={1, —1}.

10. Remark on the definition of Spin (11) in E,
We shall show that

(E7)1 = {aEE7|a(E15 E1, 17 1) = (E1’ E‘l’ 19 1)} = Spln(11)7

that is, in the definition of the group E_, ,,, the conditions ca=0a0, xKa=oax,
Ao=al are of no use.

We see that the Lie algebra (e,), of the group (E,), coincides with the Lie
algebra e, ; ; of the group E, , ; , (Proposition 1, (3)). So, if we prove that the
group (E,), is connected, then we can conclude (E;), =E, , ; 1.

We consider a vector space W€ which is invariant by the group (E),:

We={PeRC|P x (E,, E;, 1, 1) = 0}
-¢ 0 O & 0 0

= 0 & x|, |0 & —x|,¢& =€
0 x & 0 -x &

fa 529 63 EC’
xe@c¢
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This W€ is the complexification of Win § 3 and of course W€ has the positive
definite Hermitian inner product {P, Q> which is invariant by the group (E;);.
We shall define one more inner product (P, Q) in W€ which is also invariant by
the group (E,);. '

LEMMA 19. If a€E, satisfies (E,, E{, 1,1)=(E,, E{, 1, 1), then o(E,,O0,
1,0)=(E,, 0,1, 0). Therefore this o also satisfies

o(E,, iE(, 1,i) =(E,, iE, 1,i) and «(E,, —iE,, 1, —i) = (E{, —iE,, 1, —1i).
PrOOF. The proof is similar to that of Lemma 4.

We define vector spaces US (¢e=1, —1) and U€ which are invariant by the
group (E,), respectively by

U = {PeBC|P x (E,, &iE,, 1, &i) = 0}

-¢& 0 0 &il 0 0

» &2, £3€C,
= 0 & x|, | 0 —eily eix |,¢& — il b beG |

xe@c
0 2 63 0 Eif —aiéz
U€=U¢$+ U§ (which is the direct sum)
& 00 n, 0 0
0 é O é €i9 "ieca
= X | s T 61y T
2 Ny y 1 M x, yeGe

0 X & 0 y ns /
We define a linear involutive transformation ' of U¢ by
(& 000 n, 0 0
K10 & x|, |0 n, y|, =&, —n
0 X & 0y ns

= O i”S —iy N 0 —iés ix y T i’lly iél
Then U¢=U¢+ U¢, is the decomposition into the eigen spaces of k'. Therefore
we have, for any a €(E,),,

K'a = ok’ on U¢€.

Now, we define an inner product (P, Q) in U€ by
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(P, Q) = i{x'P, Q}.

Then (P, Q) is a symmetric non-degenerate inner product in U€ (of course so is in
W€(< U€)) which is invariant by the group (E,),: («P, aQ)=(P, Q) for a e (E,);.
Furthermore the two inner products <P, Q), (P, Q) coincide on W:

(P,Q)=(P,Q) for P,QeW.

Let p’ be the natural homomorphism
P’ (E7)y — O(W€) = {aelsoc(WE, WE)|(aP, Q) = (P, Q)}.

Since p’((E;),) is a compact subgroup of O(W€), it is contained in a maximal
compact subgroup of O(W€). On the other hand, maximal compact subgroups
of O(W€) are conjugate to each other ([6, Theorem 3.1]), so there exists « € O(W€)
such that

P'(E7)y) = aO(W)at.

Let e,,..., e;; be an orthogonal basis in W and put w,=ale,),..., w1 =
afe ) € WE.

Case 1. {w,, wp=0 for all k, [ (k#]). In this case, {W;, w)=(w,, w)=
0= W, wp[{wy, w,> for all I, so we have w,=w,/[{w,, w,y (for w=u+ive
W€ (u,ve W), w means u—iv). Hence w,e W, k=1,..., 11, so a € O(W), that is,
aW=W. Therefore the group (E;); acts on W. Then by the same arguments
as those in § 3, we can conclude that the group (E,), is connected.

Case 2. There exist wy, w; (k#1) such that {w,, w,>#0and (E,), is not con-
nected. Since Ker p’={1, 6} =((E,),)o (Which denotes the connected component
of (E;); containing the identity 1), p'((E,),) is not also connected, so
P'((E7),)=aSO(W)a~! does not occur. Hence we have

P'(E;),) = aO(W)a™! = O(aW).
Let e O(aW) be the reflection in W€ satisfying
Bwy) = —wy, B(w;) = w; (j#k).

Then we have <{wy, w)={Bw,, Bw,>={—w,, w;>, hence <w,, w>=0. This
contradicts the hypothesis.
Thus we have

THEOREM 20. The subgroup (E;);={a€E;|(E,, E{, 1,1)=(E,, E;, 1, 1)} of
E, is isomorphic to the spinor group Spin(11):

(E7)y = Spin(11).
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