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1. Introduction

The space M of non-zero cotangent vectors to the unit sphere Sn is an

SO(n + l, 2)-homogeneous symplectic manifold. The geometry of the

SO(n + 1 , 2)-action is studied by several authors. (See Akyildiz [1], Onofri

[10], [11], Rawnsley [14], Souriau [19] and Wolf [24], [25].) The present note

is motivated by Wolf [24], [25]. We consider the problem of "quantizing"

this SO(n 4-1,2)-action. The standard procedure of geometric quantization

does not work because there are no SO(n + l, 2)-invariant polarizations. (See

Elhadad [2], Ozeki and Wakimoto [12], Wakimoto [22] and Wolf [24].) We

will work in the framework of Lie algebras rather than groups. The Lie algebra

so(n + l, 2) is realized as a Poisson subalgebra (5. By integration of the Hami-

ltonian vector fields associated with elements of (5, we get the symplectic action

of SO(n + l, 2) on M. To construct a representation of so(n + l, 2), we use a

pair of transversal polarizations: one is the vertical polarization Q and the other

is a partially complex polarization P invariant under the geodesic flow. The

space ΓQ(L®LQ) of smooth Q-horizontal sections of a complex line bundle

L®LQ over M is naturally identified with C°°(SW). While there exist no smooth

P-horizontal sections in Γ(L®LP) except for zero-section, so we must consider

"singular" sections. The supports of singular P-horizontal sections are in a

disjoint union of hypersurfaces M m (m = 0, 1, 2,...) in M. Each Mm is identified

with the Stiefel manifold SO(n + l)/SO(n-l), which is an SO(2)-ρrincipal bundle

over the Grassmann manifold SO(n + 1)/(SO(2) x SO(n-l)) . The Grassmann

manifold is an S0(n + l)-homogeneous complex manifold. Let Lm be the

SO(n +1, C)-homogeneous holomorphic line bundle over the Grassmann manifold

given in Kowata and Okamoto [8]. Holomorphic sections of Lm are identified

with functions on SO(n + l)/SO(n-1). If we identify M m with this Stiefel mani-

fold, then holomorphic sections of Lm are identified with functions on Mm. Since

L®LP is a trivial bundle over M, these functions are identified with singular

sections of L®LP with supports in Mm. These sections are P-horizontal. The

correspondence: a holomorphic section of LTO»-»a P-horizontal section of L®LP

with support in Mm, is bijective. Thus, the consideration of the P-horizontal

sections is equivalent to that of all the holomorphic sections of Lm(m = 0, 1, 2,...)
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simultaneously. In Section 6, we construct, using the formalism of Gawedzki
[3], a Fourier-like transformation (or a pairing) & from a space of P-horizontal
sections to a space of β-horizontal sections. (Cf. Rawnsley [14].) The restri-
ction of IF to the space of P-horizontal sections with supports in Mm, which is
identified with the space of holomorphic sections of Lm, coincides, up to constant
multiple, with the "modified Poisson integral" defined in Kowata and Okamoto
[8]. By means of this intertwining operator ^*, we get, after some modifications,
an irreducible representation of so(n+l, 2) by skew-Hermitian operators on S".
It seems to the author that the choice of a suitable inner product in the
representation space is interesting. (Cf. Takahashi [21].) The quantization
obtained here is also the one in the sence of Omori [9], that is, the quantization
of a function φ is a pseudo-differential operator φ (of order one) with principal
symbol φ. (See also Akyildiz [1], Guillemin and Sternberg [5] and Rawnsley
[14].)

For symplectic geometry and geometric quantization, see Gawedzki [3],
Guillemin and Sternberg [4], Kostant [7], Simms and Woodhouse [15], Sniatycki
[16], Souriau [18], Weinstein [23] and Woodhouse [26].

The author expresses his hearty thanks to Professor K. Okamoto for his kind
advice and useful discussions.

The author thanks J. H. Rawnsley, who kindly sent to the author his reprints
[13], [14]; he had studied the half-form pairing of two polaraizations of the
Kepler manifold. Instead of using the partially complex polarization P, he used
a totally complex one, which is excellent for some purposes.

2. Preliminaries

Let Rn+1 and T*Rn+1 be the (n + l)-space and its cotangent bundle with
c o o r d i n a t e s x = (xί9..., xn+ι) a n d (x, y) = (xl9...9 xn+ί9 yu..., yn+ί), r e s p e c t i v e l y .

Let us denote y={yu..., yn+ί), |x|2 = Σ * M ^ I 2 = Σ y)> *\V = Σ * Λ , Xj^d/dxj
and Yj = d/dyj. The bundle of non-zero cotangent vectors to the unit n-sphere
Sn = {jce/?W+I||x| = l} is written by M = T*Sn-{0-section} = {(*, y)e T*Rn+1

|x| = l, x-y = 0, \y\^0} with the projection π: M-^S"; π(x, y) = x. The action
form, the symplectic form and the Liouville form on M are given by ω= Σ yjdxp
Q= -dω=ΣdxjΛ dyj and Θ =(-l)n(n~1)/2(n\)-ί Ωn, respectively. Let
C°°(M; R) be the space of all real-valued smooth functions on M. For each
φeC^iM; R), a vector field ξφ on M is defined by ξφjΩ = dφ, which is called
the Hamiltonian vector field associated with φ. The space C™{M R) is a Lie alge-
bra over J? under the Poisson bracket operation given by {φ, φ} = ξφφ= —Ω(ζφi

ξψ). It is called the Poisson algebra of the symplectic manifold (M, Ω). Let
Φjk = Φjk(x> y) ( l^ ./<k^tt + 3) denote the functions on M defined by φjk =
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and φn+2,n+3:=\y\' The linear subspace (S spanned by the functions {φjk} is a
Poisson subalgebra. It is isomorphic to so(n+l, 2) under the correspondence:
φjkt-»Ejk-Ekj (1^7<fe^n + l or n + 2 ^ j</c^n + 3) and φjk*-+Ejk + Ekj ( 1 ^ ; ^
n-f1 and n + 2g/c<^n + 3), where £,*. is the (n + 3)x(n + 3)-matrix which is 1 in
the (j, /c)-th position and 0 elsewhere. The Hamiltonian vector fields ζjk as-
sociated with φjk are given as follows:

kixj-δiJxk)Xi + ( ί w Λ -

= Σ {(5y-x«xy)^ + (xjyt-xtj

Yi) (l ^ j ^ π

Note that £n+2,«+3 generates the geodesic flow on the unit sphere S\
The linear map φjk^ξjk is a Lie algebra isomorphism of (5 into the Lie

algebra of vector fields on M. Since {ξJk} are complete vector fields, they generate,
by integration, a symplectic action of SO(n + l, 2) on M. It is well-known that
this action preserves no polarizations on M. So, we cannot use the standard
method of geometric quantization to construct a representation of the Poisson
subalgebra (5. (See Wolf [24], [25].)

In the following sections, we shall employ mainly notions and notations
from Gawedzki [3].

3. Polarization P and half-forms

Let U be an open set in M and wα = (uf,..., wj + 1) ( l ^ α ^ n ) be JRΠ+^valued
smooth functions on U such that uι(x, y) = \y\~ιy and the matrix f(x, u1(x, y),
..., u"(x, y)) is in SO{n+1) for each (x, j/)e U. If (7, rβ) is another such a pair,
then a map g ^ : 1/ Π V^>SO(n) is defined by (V,..., I;II) = (M 1 , . . . , un)guv. For
each (x, j ) e I/, let P(x, j ) denote the complex subspace spanned by the tangent
vectors {ξn+2,n+3> u2'Z9...9 un-Z} to M at (x, y), where ufl Z=ΣM5Z J . with
Zj = Xj — ( — l)1/2!^]!^.. Then we have a polarization P on M, which is invariant
under the integral flows of ξjk ( l ^ j < / c ^ n + l or n + 2^j<k^n + 3)9 i.e.,
invariant under the action of SO(n + l)x SO(2). (See [6].) The frame bundle
πP: B(M\ P)-*M of P is a right principal GL(n, C)-bundle over M. Coordinate
functions are given by φυ\ U x GL(n, Q-^πp^U); φυ((x, y\ g)= ({n+2,Λ+3»
w2 Z,..., M" Z)g together with transition functions guv. The complex metalinear
group is weritten by

\ det ^ =

with the double covering map σ: ML(n, C)->GL(/t, C); σ(g)=g and with a
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holomorphic square root χ: ML(n, C)->CX; χ(g) = w. If we define transition

functions guv: U n V-^ML(n, C) by guv(x, y) — y*uv i ), then we have a metali-

near frame bundle πP: B(M; P)->M of P with coordinate functions φυ\U x

ML(n, C)^7Zpl(U) compatible with φυ. It is a right principal ML(n, C)-bundle

over M.

Note that, up to isomorphism, such a bundle is unique for n ^ 3 . (See

Gawedzki [3, III. 16].)

Let Lp(x, y) denote the one-dimensional complex vector space of all

complex-valued functions / on τtjι(x, y) such that f(Fg) = χ(g~ι)f(F) for any

Feπpix, y) and geML(n,C). Then Lp=[)Lp(x,y) is called the complex
line bundle of half-P-forms on M. It has a non-vanishing section v: M-+Lp

defined by v(φv((x, y), e))=\ for (x, y)e U, where e denotes the unit element in

ML(n, C).

Let Λ W(M; P) be the bundle of complex n-covectors tangent to M, vanishing

after contraction with any vector from P. Then LP®LP is naturally isomorphic

to Λ W ( M ; P). The isomorphism Lp®Lp-+ Λn(M P) is given by v®v^v®v =

( ^ + 2 , « + 3 J β ) Λ ( " 2 2 - | β ) Λ Λ(w/I ^ - | β ) . Let Λ ^ - ^ M P Γ Ί P ) be the

bundle of complex (In— l)-covectors tangent to M, vanishing after contraction

with any vector from POP. It is a complex line bundle with a non-vanishing

section ξn+2,n+3^Θ' According to Gawedzki [3, (44)], we then have a pairing

of C°°(M)-modules < , >P: Γ(LP) x Γ(LP)^Γ(\ A 2n~\M\ P n P)|), where Γ( )

denotes the space of all smooth sections. For the notation | |, see Gawedzki

[3, Ch. II].

Note that

</v, gv>P =fg(2\y\y»-^2\ξn+2,n+3jΘ\

for any/, g e C^M).

4. Hubert space jfp and its inner product ( , ) P

A "quantum bundle" L for (M, Ω) together with a connection is given in

[6]. Since L is a trivial bundle, there is a non-vanishing section 1 eΓ(L). The

connection v and a v-invariant Hermitian structure ( | ) on L are given re-

spectively by V$l= — ( —1)1/2(£ J ω ) l and (fl\gl)=fg for any tangent vector

ξ to M and /, g e C«>(M).

For each non-negative integer m, let rm = m + (rc + l)/2 and Mm denote a

hypersurface of M given by Mm={(x, y)eM\\y\ = rm} together with the inclusion

ίm: Mm-+M. Let χm: M->JR be the characteristic function of Mm and «#*£ denote

the space of sections of L®LP spanned by the singular sections

{Th...im= XmZtr-ZtJ (8) v| 1 ^ ia ύ n + 1, 1 ύ a ^ m},
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where zf = jc, —(— l ) 1 7 2 ^ ! " 1 J f e

Note that Θ Σ / M ^ O ^ W *S the space of all "P-horizontal" sections. (See

Gawedzki [3, Ch. III.D] and [6].)

According to Gawedzki [3, (53)], we define a pairing

«., » P : Γ(L ® I/) x Π(L ® Lp) > Γ ( | Λ * » - I ( M P ίl P)|)

by C/l®v, ^l®v>p = (/l |#l)<v, v>p, where Γ'( ) denotes the space of not

necessarily continuous sections.

Note that

m,
Since we consider singular sections of L ® L P , whose supports are in M

we must modify the pairing as follows: Let Λ 2 " ~ 2 ( M ; {ξn+2tn + 3> */}) he the

bundle of complex (2n —2)-covectors tangent to M, vanishing after contraction

with ξn+2,n+3 and f/H VΓ1 Σ yjYj- It is a complex line bundle with a non-

vanishing section ^ J ξ B + 2 f B + 3 J θ . Let c: Λ 2 / 1 " 1 ( M ; P Π P)-> Λ 2 M " 2 ( M ;

{^π+2,/i+3» ^}) he a bundle isomorphism given by c(β) = η_\β. Then c induces a

bundle isomorphism

defined by |<|(|jϊ|) = k(/OI for any non-zero β. Let Λ 2 - 2 ( M m ; {ξn+2,n+3}) be the

bundle of complex {In — 2)-covectors tangent to Mm, vanishing after contraction

with the tangent vector ξn + 2,n + 3 to Mm. It is a complex line bundle over Mm

with a non-vanishing section ί | J ^ + 2 n + 3 J 0 . The pull-back

/*: Λ2«-2(M; {ξn+2,n + 3, η})-—> A 2 - 2 ( M m ; {ίπ+2,π+3})

induces a map |/ | : | Λ 2 - 2 ( M ; {ξn+2tH + 3, //})|-I Λ 2 " " 2 ( M W ; Kn+2,M + 3})|.

Now, Mm is S^fibered by the orbits of ξn + 2,n+3. Let MJS1 denote the

orbit space together with the projection πm: Mm-+MJSx. Then there exists a

unique symplectic structure Ωm on MJS1 such that π*ί2m=/*ί2. Let 0 m =

( - 1 ) ( » - I > ( » - 2 ) / 2 ( ( Π _ I ) ! ) - I Q Π - I betheLiouvil leformonMJS 1 . Then thevolume

of (MJS1, ΩJ is given by I M J S ^ T Ί S " " 1 ! |S"I IS 1 ! " 1 , where |S d | denotes

the volume of the unit sphere of dimension d. The bundle Λ 2n~2(MJSι) of

complex (2n — 2)-covectors tangent to MJS1 is a complex line bundle over

MJS1 with a non-vanishing section <9m. The pull-back π*: Λ2"-2(Mm/S ι)->

{ξ,l + 2>n+3}) induces a map | π * | : | Λ^MJS^ -> | Λ 2 - 2 ( M m ;

Note that | Λ 2 w " 2 (M m /5 1 ) | is the bundle of densities on MJS1.

LEMMA 1 (cf. Gawedzki [3, Prop. III. 17]). For any ^m, &"m 6 ̂ £ , there
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exists a unique smooth density <ζ^mi &"my on MJS1 such that |π* |

I'rol Kl \'yn» J m//P'

For the proof, it is enough to note that the function (ziι'"Zimzjι" zjm)oim is

constant along the orbits of ξn + 2tH+3 and &ξn + 2 n + 3(η-\ξn + 2,n + 3 J β ) = 0 on Mm,

where J?ξ denotes the Lie derivation with respect to a vector field ξ.

Note that

<Th...lm, Tj^.jjy = (2rJ<*-»'%...imJι...Jm\θm\,

where fir..imji..ΊmeCco(MJSί) is defined by fir. imjr..jm

oπm = (ziι- zlmzJί'''Zjm)oim.

Similarily as Gawedzkί [3, (76)], we define an inner product on jf^ by

(^"m, ^'in)P = ε m \ < ^ m , &~'my, where a positive constant εm will be determined
JAWS*

in Section 6. We say that a section 5 " = X ^ o ^ J m e ^ , of L®LP is of

finite norm if (.T, ^Γ)p = Σ(^ rm ϊ *̂m)p is finite. Let J^p = {^ = Σ^m\ of finite

norm}. Then Jfp is a Hubert space together with the inner product ( , Op-

Note that for m^mf, the subspaces jfζ, and £?*,. are orthogonal to each

other.

5. Vertical polarization Q

Let (I/, ua) be as in Section 3. The vertical polarization Q is spanned at

each point (x, y)eU by the tangent vectors {uaΎ=ΣuajYj\l^a^n} to M.

It is invariant under the intgeral flows of ξJk (1 ̂  y </c g n + 2), i.e., invariant

under the action of SO(n+l, 1). Coordinate functions \j/υ and transition

functions guv for the frame bundle πQ: B(M; Q)-+M of Q are given similarily

as in Section 3. The metalinear frame bundle π Q : B{M\ Q)^>M is defined simi-

larily as in Section 3 together with coordinate functions ψu and transition

functions guv. Up to isomorphism, such a bundle is unique for n ^ 3 . The

bundle LQ of half-g-forms has a non-vanishing section μ: M-+LQ defined by

KΨv((χ> J)» e)) = l f° r (χ> y)ε U- LQ(g)LQ is naturally isomorphic to Λ "(M; Q).

The isomorphism is given by μ<8>μi-^μ®μ = (uι 7 J Ω ) Λ ••• Λ(M" 7 J Ω ) =

(- l) Λ π*dS", where J 5 n = ( Σ X/A^ ) J(ί/x! Λ ••• Λ J X Π + 1 ) is the volume form on

Sn. According to Gawedzki [3, (44)], we have a pairing < , >Q: Γ(LQ)x

Γ(Le)->Γ(|Λ»(M;ρ)|).

Note that <μ, μ>Q = |π*ί/Sw |.

Let ΓQ{L®LQ) denote the space of all smooth "(MiorizontaΓ' sections of

L®L<2. Then ΓQ(L®Lβ) = {/oπl®μ|/6C 0 C (S»)}. (See [6].) According to

Gawedzki [3, (76)], an inner product is given by (/Όπl®μ, goπ\®μ)Q = \ JgdSn.

The completion of the pre-Hilbert space ( Γ Q ( J L ® L Q ) , ( , )Q) is denoted by
Q, ( , )Q). It may be identified with L2(Sn) under the correspondence



Fourier-like transformation and a representation of the Lie algebra δo(w-f 1, 2) 427

Let Λf,...fm be a spherical harmonic of degree m given by hiv..im =

(-\)m((n-\)Cn+\)' (2m + n-3))-ίXiι ->Xim(\x\'-")\s»9 and jfg the subsplce

of jfQ spanned by the sections {Hiι...im = hir..im°πl<g)μ\\^iiaζn+\, l ^ α ^ m } .

LEMMA 2. (1) (//ιV..Im, / / j V . . y J Q

Hiv~U~Ίm> HjvJn-ih

3))-'Σ^ιβι^^^

LEMMA 3. We

where

δm =

PROOF. The actions of SO(n+ 1) on ^ £ and on «̂ f ^ are naturally defined,

which are transitive and leave the inner products ( , )p and ( , ) Q invariant.

The isomorphism Jfy^jf® given by Tiv..im^Hiv..im is well-defined and com-

mutes with the actions of SO(n+l). It follows that (Γ l r..,m, 7}I...</JP =

const. (//IΓ../m, Hjv..jm)Q. The constant is determined by calculating (TV.!,

Since P and Q are transversal, (Lp®LQ)®(Lp(g)LQ) is naturally isomorphic

to the bundle Λ 2n(M) of complex 2n-covectors tangent to M. The isomorphism

is given by (v®μ)®(v®μ)H->(v(2>v)Λ(μg)μ) = <9. We shall choose v®μ as an

adjustment of Lp and LQ. For the adjustment, see Gawedzki [3, Def. IV.4].

6. Fourier-like transformation

Let L* be the dual bundle of L with a dual connection v * It has a non-

vanishing section 1* = ( 1 | •). Let pt: MxM-+M, ί = l , 2, be the projection onto

the ί-th factor. Let ίF=/??(L®Lp)®/?f(L*®LQ). Then W has a non-vanishing

section 2 : ((x, y), (x\ /))•-»l(x, j)®v(x, y)®l*(x'9 y')®μ(x\ y'). For each sec-

tion J T = / Ξ , 4\ M x M - » C , of ίF, and for each (x, y ) e M , sections of L®LP

and L*®LQ are defined by JΓP( , (x, j)) = ̂ ( , (x, >^))l®v and «^Q((x, j ) , •) =

^((x, y), )1*®^» respectively. By JΓΔ we shall denote a section of LP®LQ

given by JfΔ(*> y)=^((x, j ) , (x, y))v(x9 y)®μ(x, 3̂ ).
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DEFINITION. A not necessarily continuous section J Γ of W will be called a

distinguished kernel for the pair (P, Q) of polarizations if:

( i ) for each (x, y) e M, JΓP( , (x, y)) is P-horizontal,

(ii) for each (x, y ) e M , «3fρ((x, }>)> •) is Q-horizontal, and

(iii) JΓΔ = v®μ on U Mm.

(Cf. Gawedzki [3, Def. IV.5].)

From the definition, it follows that the support of a distinguished kernel JΓ

is ( U Mm) x M.

Note that \}Mm and M is the "Bohr-Sommerfeld sets" for P and Q, re-

spectively. (See Sniatycki and Toporowski [17, §2].)

LEMMA 4. There exists a unique distinguished kernel J>Γ = 4Ξ for (P, Q).

4 is given by

4((x9 y), (x\ / ) ) = Σm^o Σί,,.-.,ίm lXmZιr"zιJ ( χ ' ^Λ/j. . u 0 ^ ' * ^')

PROOF. For the existence, it is enough to show that ΛA = 1 on Mm, where

^Δ(*> 30 = ̂ ( ( * J );)» (̂ » y)) For 1 ^ j < / c ^ n + l, we have

and

It follows that < ^ y Δ ) = 0. Since 5O(n+l) acts on Mm transitively, we have

/£ Δ = const, on M w . Calculating ^ Δ ( ^? y) for x = (l, 0,..., 0) and j = (0, — rm,

0,..., 0), we have ^ Δ = l on Mm. The uniqueness follows from the fact that for

each fixed xeS", Σ cl 1.../mz/l z im = 0 for all y such that (x, y ) e M m implies

cfi....M = 0, where c i r . / m ε C are totally symmetric in all indices and with all pair

traces zero.

LEMMA 5. For each (x, y) e M, we have

(Tir..im( ),jrP(.,(x,y)))P

The lemma follows from Lemma 2 and Lemma 3.

Let δ: L*®LQ^>L®LQ be the bundle anti-isomorphism defined by

(5(cl*®μ) = cl(χ)μ for c e C . Now, following Gawedzki [3, (176)], let us define

a linear isomorphism &m\ ^ ^ - > j f g by

x, y) =<

= (JΓP(., (x, y))9
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LEMMA 6 (cf. Kowata and Okamoto [8]). &m is a unitary transformation
if and only if

In this case, !Fm induces a unitary transformation 1F\ «^p^^fQ, which gives a
unitary equivalence between Jίfp and JfQ.

We call J5* a Fourier-like transformation associated with the transversal
polarizations P and Q.

Note that

7. Representation of the Poisson subalgebra (S

By means of the polarization P, any function in the Poisson subalgebra
spanned by {φjk\ l ^ j<k^n+l or n + 2^j</c^n + 3} is geometrically quan-
tized. (See [6].) The Hermitian operator φp

k on jfp corresponding to φjk

is given as follows:

for 1^7<fc^n + l and

ΦP

+2,n + 3(Tir.,J = (m + (n-l)/2)η r.. ί m.

On the other hand, by means of the polarization Q, any function in the Poisson
subalgebra spanned by {φjk \ 1 ̂  j < k ̂  n -f 2} is geometrically quantized as follows:
For any vector field ξ on M, whose integral flow preserves Q, a ξ-derivation
Seψ on Γ(LP) is defined by 2(^y2μ)^μ = Lξ(μ^μ). (See Gawedzki [3, Prop.
IT. 6].)

LEMMA 7. We have &\fa = 0for 1 ̂  j<k£n + l, and g?\/*n+2μ= -(n/2)Xjμ
for ί^j^

Now, according to the usual method of geometric quantization, the Hermitian
operators φjk (\^j<k^n + 2) on 3^°- corresponding to φjk are given by φ% —
- ( - 1 ) 1I2{(Vξjk + (-l)ι/2Φjk)®'&ξ/j2

k} They span a Lie algebra isomorphic
to so(n + l, 1).

Note that for any fe C°°(S"),

for l^/<fc^n + l, and

Φ 7ί/ {δij-xixj)Xi-{nl2)xj)f}on\®μ
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for 1 ̂  jg n + 1. (See, for example, Sniatycki [16, (7.82)].)

LEMMA 8. We have SToφfcsr-t = φQk for l ^ ; < / c ^ n

In the following, φjk is written simply by φjk for l ^ j < / c g n + l. Now,

let us define

Then we have

where Δ is the Laplace-Beltrami operator on the unit sphere Sn. (Cf. Rawnsley

[14].) φn + 2,n+3 is a Hermitian, pseudo-differential operator of order one with

principal symbol φn + 2,n+3- Since (S is generated by {ψ/fc| l^./</c^w4 2 or

}, we expect that the Lie algebra generated by {(— \)ιl2φjk\

or n + 2 g ; < / c ^ n + 3 } u { ( - l ) 1 / 2 ^ , π + 2 | l g ; g n + l } is naturally

isomorphic to (5. But we have the following:

PROPOSITION 9. For each fixed λeC and l ^ j ^

for any fe C^iS"), and

Then we have

(-

if and only if λ= - (/ i± l)/2.

So, we shall modify φJfn + 2 ( l ^ J ^ w + 1) to define an operator φjfn+2 on

ΓQ(L®LQ) by

for any / e C°°(S"). Then, by analogy with φj,n + 3 = {φj,n + 2, Φn+2>n+3}^ we shall

define φJtn+3=(-l)1I2ίΦj,n+29 φn+2,n + 3] for l ^ j g n + 1. It is a pseudo-

differential operator of order one with principal symbol φj,n+$.

LEMMA 10. For 1 ^ j ^ w + 1 , we

. l W - 2 - i Σ?=ι δiajHiv..ίa...itn

and
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Let (5 (resp. (δ) denote the linear space over R spanned by the operators

jk (resp.(— iy/2φjk) ( 1 ^ j < / c ^ n + 3), and p : ®-»(5 be the linear map given by

Φ
LEMMA 11. (5 is a Lie algebra under the bracket operation, p is an

isomorphism of <& onto (5.

As operators on the Hubert space ^ Q , φjk(\ ^ j^n+ 1 and

are not Hermitian. To make them Hermitian, we shall modify (jfQ, ( , )Q) as

follows: Let < , > denote the inner product on ΓQ(L®LQ) defined by

, goπl®μ> = (foπ\®μ, φn + 2,n + 3(do^®μ))Q = \ f(Λg)dS\

where Λ = (Δ + (n —1) 2 /4) 1 / 2 . We assume here n^.2. Note that

Let H1/2(Sn) be the Sobolev space on S" with the inner product < , •>

given by

)s»

Then the completion of the pre-Hilbert space ( Γ Q ( L ® L Q ) , <•>•>) is identified

with (Hί/2(Sn), < , >) under the correspondence /oπl(χ)μ->/.

LEMMA 12. Each element of (5 is a Hermitian operator on Hι/2(S").

The lemma follows easily from Lemma 2.

THEOREM, p : (6->(S provides an irreducible representation of the Lie

algebra so(n + l, 2) on the Sobolev space Hί/2(Sn) by skew-Hermitian, pseudo-

differential operators of order one.

The irreducibility follows from the fact that the restriction of p to a subalgebra

isomorphic to SO(H + 1, 1) is irreducible. (See Akyildiz [1] and Takahashi [21,

§5].)

By integration, p gives rise to a "Fourier integral representation" of

SO(n +1,2) or its covering group. (Cf. Guillemin and Sternberg [5].) Note

that the period of the geodesic flow generated by ξw + 2,w + 3 is 2π, while the period

of the one-parameter group of unitary transformations generated by

(— l)1/20n+2,ιι+3 is 2π for odd n and 4π for even n. (Compare with Souriau

[20, §10].) '
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