Fourier-like transformation and a representation of the Lie algebra $\mathfrak{n d}(n+1,2)$

Kiyotaka II
(Received January 14, 1982)

1. Introduction

The space M of non-zero cotangent vectors to the unit sphere S^{n} is an $S O(n+1,2)$-homogeneous symplectic manifold. The geometry of the $\operatorname{SO}(n+1,2)$-action is studied by several authors. (See Akyildiz [1], Onofri [10], [11], Rawnsley [14], Souriau [19] and Wolf [24], [25].) The present note is motivated by Wolf [24], [25]. We consider the problem of "quantizing" this $S O(n+1,2)$-action. The standard procedure of geometric quantization does not work because there are no $S O(n+1,2)$-invariant polarizations. (See Elhadad [2], Ozeki and Wakimoto [12], Wakimoto [22] and Wolf [24].) We will work in the framework of Lie algebras rather than groups. The Lie algebra $\mathfrak{s o}(n+1,2)$ is realized as a Poisson subalgebra $(\mathfrak{5}$. By integration of the Hamiltonian vector fields associated with elements of \mathfrak{G}, we get the symplectic action of $S O(n+1,2)$ on M. To construct a representation of $\mathfrak{s p}(n+1,2)$, we use a pair of transversal polarizations: one is the vertical polarization Q and the other is a partially complex polarization P invariant under the geodesic flow. The space $\Gamma_{Q}\left(\boldsymbol{L} \otimes L^{Q}\right)$ of smooth Q-horizontal sections of a complex line bundle $\boldsymbol{L} \otimes L^{Q}$ over M is naturally identified with $C^{\infty}\left(S^{n}\right)$. While there exist no smooth P-horizontal sections in $\Gamma\left(\boldsymbol{L} \otimes L^{P}\right)$ except for zero-section, so we must consider "singular" sections. The supports of singular P-horizontal sections are in a disjoint union of hypersurfaces $M_{m}(m=0,1,2, \ldots)$ in M. Each M_{m} is identified with the Stiefel manifold $S O(n+1) / S O(n-1)$, which is an $S O(2)$-principal bundle over the Grassmann manifold $S O(n+1) /(S O(2) \times S O(n-1))$. The Grassmann manifold is an $S O(n+1)$-homogeneous complex manifold. Let L_{m} be the SO($n+1, \mathrm{C}$)-homogeneous holomorphic line bundle over the Grassmann manifold given in Kowata and Okamoto [8]. Holomorphic sections of L_{m} are identified with functions on $S O(n+1) / S O(n-1)$. If we identify M_{m} with this Stiefel manifold, then holomorphic sections of L_{m} are identified with functions on M_{m}. Since $\boldsymbol{L} \otimes L^{P}$ is a trivial bundle over M, these functions are identified with singular sections of $\boldsymbol{L} \otimes L^{P}$ with supports in M_{m}. These sections are P-horizontal. The correspondence: a holomorphic section of $L_{m} \mapsto \mathrm{a} P$-horizontal section of $\boldsymbol{L} \otimes L^{P}$ with support in M_{m}, is bijective. Thus, the consideration of the P-horizontal sections is equivalent to that of all the holomorphic sections of $L_{m}(m=0,1,2, \ldots)$
simultaneously. In Section 6, we construct, using the formalism of Gawedzki [3], a Fourier-like transformation (or a pairing) \mathscr{F} from a space of P-horizontal sections to a space of Q-horizontal sections. (Cf. Rawnsley [14].) The restriction of \mathscr{F} to the space of P-horizontal sections with supports in M_{m}, which is identified with the space of holomorphic sections of L_{m}, coincides, up to constant multiple, with the "modified Poisson integral" defined in Kowata and Okamoto [8]. By means of this intertwining operator \mathscr{F}, we get, after some modifications, an irreducible representation of $\mathfrak{s p}(n+1,2)$ by skew-Hermitian operators on S^{n}. It seems to the author that the choice of a suitable inner product in the representation space is interesting. (Cf. Takahashi [21].) The quantization obtained here is also the one in the sence of Ömori [9], that is, the quantization of a function ϕ is a pseudo-differential operator $\hat{\phi}$ (of order one) with principal symbol ϕ. (See also Akyildiz [1], Guillemin and Sternberg [5] and Rawnsley [14].)

For symplectic geometry and geometric quantization, see Gawedzki [3], Guillemin and Sternberg [4], Kostant [7], Simms and Woodhouse [15], Śniatycki [16], Souriau [18], Weinstein [23] and Woodhouse [26].

The author expresses his hearty thanks to Professor K. Okamoto for his kind advice and useful discussions.

The author thanks J. H. Rawnsley, who kindly sent to the author his reprints [13], [14]; he had studied the half-form pairing of two polaraizations of the Kepler manifold. Instead of using the partially complex polarization P, he used a totally complex one, which is excellent for some purposes.

2. Preliminaries

Let \boldsymbol{R}^{n+1} and $T^{*} \boldsymbol{R}^{n+1}$ be the ($n+1$)-space and its cotangent bundle with coordinates $x=\left(x_{1}, \ldots, x_{n+1}\right)$ and $(x, y)=\left(x_{1}, \ldots, x_{n+1}, y_{1}, \ldots, y_{n+1}\right)$, respectively. Let us denote $y=\left(y_{1}, \ldots, y_{n+1}\right),|x|^{2}=\sum x_{j}^{2},|y|^{2}=\sum y_{j}^{2}, x \cdot y=\sum x_{j} y_{j}, X_{j}=\partial / \partial x_{j}$ and $Y_{j}=\partial / \partial y_{j}$. The bundle of non-zero cotangent vectors to the unit n-sphere $S^{n}=\left\{x \in \boldsymbol{R}^{n+1}| | x \mid=1\right\}$ is written by $M=T^{*} S^{n}-\{0$-section $\}=\left\{(x, y) \in T^{*} \boldsymbol{R}^{n+1}\right.$ $|x|=1, x \cdot y=0,|y| \neq 0\}$ with the projection $\pi: M \rightarrow S^{n} ; \pi(x, y)=x$. The action form, the symplectic form and the Liouville form on M are given by $\omega=\sum y_{j} d x_{j}$, $\Omega=-d \omega=\sum d x_{j} \wedge d y_{j}$ and $\Theta=(-1)^{n(n-1) / 2}(n!)^{-1} \Omega^{n}$, respectively. Let $C^{\infty}(M ; \boldsymbol{R})$ be the space of all real-valued smooth functions on M. For each $\phi \in C^{\infty}(M ; \boldsymbol{R})$, a vector field ξ_{ϕ} on M is defined by $\left.\xi_{\phi}\right\lrcorner \Omega=d \phi$, which is called the Hamiltonian vector field associated with ϕ. The space $C^{\infty}(M ; \boldsymbol{R})$ is a Lie algebra over \boldsymbol{R} under the Poisson bracket operation given by $\{\phi, \psi\}=\xi_{\phi} \psi=-\Omega\left(\xi_{\phi}\right.$, ξ_{ψ}). It is called the Poisson algebra of the symplectic manifold (M, Ω). Let $\phi_{j k}=\phi_{j k}(x, y)(1 \leqq j<k \leqq n+3)$ denote the functions on M defined by $\phi_{j k}=$ $x_{j} y_{k}-x_{k} y_{j}(1 \leqq j<k \leqq n+1), \phi_{j, n+2}=y_{j}(1 \leqq j \leqq n+1), \phi_{j, n+3}=|y| x_{j}(1 \leqq j \leqq n+1)$
and $\phi_{n+2, n+3}=|y|$. The linear subspace $\left(5\right.$ spanned by the functions $\left\{\phi_{j k}\right\}$ is a Poisson subalgebra. It is isomorphic to $\mathfrak{s p}(n+1,2)$ under the correspondence: $\phi_{j k} \mapsto E_{j k}-E_{k j}(1 \leqq j<k \leqq n+1$ or $n+2 \leqq j<k \leqq n+3)$ and $\phi_{j k} \mapsto E_{j k}+E_{k j}(1 \leqq j \leqq$ $n+1$ and $n+2 \leqq k \leqq n+3$), where $E_{j k}$ is the $(n+3) \times(n+3)$-matrix which is 1 in the (j, k)-th position and 0 elsewhere. The Hamiltonian vector fields $\xi_{j k}$ associated with $\phi_{j k}$ are given as follows:

$$
\begin{array}{ll}
\xi_{j k}=\sum\left\{\left(\delta_{k i} x_{j}-\delta_{i j} x_{k}\right) X_{i}+\left(\delta_{k i} y_{i}-\delta_{i j} y_{k}\right) Y_{i}\right\} & (1 \leqq j<k \leqq n+1), \\
\xi_{j, n+2}=\sum\left\{\left(\delta_{i j}-x_{i} x_{j}\right) X_{i}+\left(x_{j} y_{i}-x_{i} y_{j}\right) Y_{i}\right\} \quad(1 \leqq j \leqq n+1), \\
\xi_{j, n+3}=\sum\left(|y|^{-1} x_{j} y_{i} X_{i}-|y| \delta_{i j} Y_{i}\right) \quad(1 \leqq j \leqq n+1), \\
\xi_{n+2, n+3}=\sum\left(|y|^{-1} y_{i} X_{i}-|y| x_{i} Y_{i}\right) .
\end{array}
$$

Note that $\xi_{n+2, n+3}$ generates the geodesic flow on the unit sphere S^{n}.
The linear map $\phi_{j k} \mapsto \xi_{j k}$ is a Lie algebra isomorphism of \mathbb{G} into the Lie algebra of vector fields on M. Since $\left\{\xi_{j k}\right\}$ are complete vector fields, they generate, by integration, a symplectic action of $S O(n+1,2)$ on M. It is well-known that this action preserves no polarizations on M. So, we cannot use the standard method of geometric quantization to construct a representation of the Poisson subalgebra (5. (See Wolf [24], [25].)

In the following sections, we shall employ mainly notions and notations from Gawedzki [3].

3. Polarization \boldsymbol{P} and half-forms

Let U be an open set in M and $u^{a}=\left(u_{1}^{a}, \ldots, u_{n+1}^{a}\right)(1 \leqq a \leqq n)$ be \boldsymbol{R}^{n+1}-valued smooth functions on U such that $u^{1}(x, y)=|y|^{-1} y$ and the matrix ${ }^{t}\left(x, u^{1}(x, y)\right.$, $\left.\ldots, u^{n}(x, y)\right)$ is in $S O(n+1)$ for each $(x, y) \in U$. If $\left(V, v^{a}\right)$ is another such a pair, then a map $g_{U V}: U \cap V \rightarrow S O(n)$ is defined by $\left(v^{1}, \ldots, v^{n}\right)=\left(u^{1}, \ldots, u^{n}\right) g_{U V}$. For each $(x, y) \in U$, let $P(x, y)$ denote the complex subspace spanned by the tangent vectors $\left\{\xi_{n+2, n+3}, u^{2} \cdot Z, \ldots, u^{n} \cdot Z\right\}$ to M at (x, y), where $u^{a} \cdot Z=\sum u_{j}^{a} Z_{j}$ with $Z_{j}=X_{j}-(-1)^{1 / 2}|y| Y_{j}$. Then we have a polarization P on M, which is invariant under the integral flows of $\xi_{j k}(1 \leqq j<k \leqq n+1$ or $n+2 \leqq j<k \leqq n+3)$, i.e., invariant under the action of $S O(n+1) \times S O(2)$. (See [6].) The frame bundle $\pi_{P}: B(M ; P) \rightarrow M$ of P is a right principal $G L(n, \mathbf{C})$-bundle over M. Coordinate functions are given by $\varphi_{U}: U \times G L(n, \mathbf{C}) \rightarrow \pi_{P}^{-1}(U) ; \varphi_{U}((x, y), g)=\left(\xi_{n+2, n+3}\right.$, $\left.u^{2} \cdot Z, \ldots, u^{n} \cdot Z\right) g$ together with transition functions $g_{U V}$. The complex metalinear group is weritten by

$$
M L(n, \mathbf{C})=\left\{\left.\tilde{g}=\left(\begin{array}{ll}
g & \\
& w
\end{array}\right) \in G L(n+1, \mathbf{C}) \right\rvert\, g \in G L(n, \mathbf{C}), w \in \mathbf{C}^{\times}, \operatorname{det} g=w^{2}\right\}
$$

with the double covering map $\sigma: M L(n, \mathbf{C}) \rightarrow G L(n, \mathbf{C}) ; \sigma(\tilde{g})=g$ and with a
holomorphic square root $\chi: M L(n, \mathbf{C}) \rightarrow \mathbf{C}^{\times} ; \chi(\tilde{g})=w$. If we define transition functions $\tilde{g}_{U V}: U \cap V \rightarrow M L(n, \mathbf{C})$ by $\tilde{g}_{U V}(x, y)=\left(\begin{array}{ll}g_{U V} & \\ & 1\end{array}\right)$, then we have a metalinear frame bundle $\tilde{\pi}_{P}: \widetilde{B}(M ; P) \rightarrow M$ of P with coordinate functions $\tilde{\varphi}_{U}: U \times$ $M L(n, \mathbf{C}) \rightarrow \tilde{\pi}_{P}^{-1}(U)$ compatible with φ_{U}. It is a right principal $M L(n, \mathbf{C})$-bundle over M.

Note that, up to isomorphism, such a bundle is unique for $n \geqq 3$. (See Gawedzki [3, III. 16].)

Let $L^{P}(x, y)$ denote the one-dimensional complex vector space of all complex-valued functions f on $\tilde{\pi}_{P}^{-1}(x, y)$ such that $f(F \tilde{g})=\chi\left(\tilde{g}^{-1}\right) f(F)$ for any $F \in \tilde{\pi}_{P}^{-1}(x, y)$ and $\tilde{g} \in M L(n, \mathbf{C})$. Then $L^{P}=\cup L^{P}(x, y)$ is called the complex line bundle of half- P-forms on M. It has a non-vanishing section $v: M \rightarrow L^{P}$ defined by $v\left(\tilde{\varphi}_{U}((x, y), e)\right)=1$ for $(x, y) \in U$, where e denotes the unit element in $M L(n, \mathbf{C})$.

Let $\wedge^{n}(M ; P)$ be the bundle of complex n-covectors tangent to M, vanishing after contraction with any vector from P. Then $L^{P} \otimes L^{P}$ is naturally isomorphic to $\wedge^{n}(M ; P)$. The isomorphism $L^{P} \otimes L^{P} \rightarrow \wedge^{n}(M ; P)$ is given by $v \otimes v \mapsto v \otimes v=$ $\left.\left.\left.\left(\xi_{n+2, n+3}\right\lrcorner \Omega\right) \wedge\left(u^{2} \cdot Z\right\lrcorner \Omega\right) \wedge \cdots \wedge\left(u^{n} \cdot Z\right\lrcorner \Omega\right)$. Let $\wedge^{2 n-1}(M ; P \cap \bar{P})$ be the bundle of complex ($2 n-1$)-covectors tangent to M, vanishing after contraction with any vector from $P \cap \bar{P}$. It is a complex line bundle with a non-vanishing section $\left.\xi_{n+2, n+3}\right\lrcorner \Theta$. According to Gawedzki [3, (44)], we then have a pairing of $C^{\infty}(M)$-modules $\langle\cdot, \cdot\rangle_{P}: \Gamma\left(L^{P}\right) \times \Gamma\left(L^{P}\right) \rightarrow \Gamma\left(\left|\wedge^{2 n-1}(M ; P \cap \bar{P})\right|\right)$, where $\Gamma(\cdot)$ denotes the space of all smooth sections. For the notation $|\cdot|$, see Gawedzki [3, Ch. II].

Note that

$$
\left.\langle f v, g v\rangle_{P}=\bar{f} g(2|y|)^{(n-1) / 2} \mid \xi_{n+2, n+3}\right\lrcorner \Theta \mid
$$

for any $f, g \in C^{\infty}(M)$.

4. Hilbert space \mathscr{H}^{P} and its inner product $(\cdot, \cdot)_{P}$

A "quantum bundle" \boldsymbol{L} for (M, Ω) together with a connection is given in [6]. Since \boldsymbol{L} is a trivial bundle, there is a non-vanishing section $\mathbf{1} \in \Gamma(\boldsymbol{L})$. The connection ∇ and a ∇-invariant Hermitian structure $(\cdot \mid \cdot)$ on \boldsymbol{L} are given respectively by $\left.\nabla_{\xi} \mathbf{1}=-(-1)^{1 / 2}(\xi\lrcorner \omega\right) \mathbf{1}$ and $(f 1 \mid g 1)=\overline{f g}$ for any tangent vector ξ to M and $f, g \in C^{\infty}(M)$.

For each non-negative integer m, let $r_{m}=m+(n+1) / 2$ and M_{m} denote a hypersurface of M given by $M_{m}=\left\{(x, y) \in M| | y \mid=r_{m}\right\}$ together with the inclusion $i_{m}: M_{m} \rightarrow M$. Let $\chi_{m}: M \rightarrow \boldsymbol{R}$ be the characteristic function of M_{m} and \mathscr{H}_{m}^{P} denote the space of sections of $\boldsymbol{L} \otimes L^{P}$ spanned by the singular sections

$$
\left\{T_{i_{1} \cdots i_{m}}=\chi_{m} z_{i_{1}} \cdots z_{i_{m}} \mathbf{1} \otimes v \mid 1 \leqq i_{a} \leqq n+1,1 \leqq a \leqq m\right\},
$$

where $z_{i}=x_{i}-(-1)^{1 / 2}|y|^{-1} y_{i} \in C^{\infty}(M)$.
Note that $\oplus \sum_{m \geqq 0} \mathscr{H}_{m}^{P}$ is the space of all " P-horizontal" sections. (See Gawedzki [3, Ch. III.D] and [6].)

According to Gawedzki [3, (53)], we define a pairing

$$
《 \cdot, \cdot\rangle_{P}: \Gamma^{\prime}\left(\boldsymbol{L} \otimes L^{P}\right) \times \Gamma^{\prime}\left(\boldsymbol{L} \otimes L^{P}\right) \longrightarrow \Gamma^{\prime}\left(\left|\wedge^{2 n-1}(M ; P \cap \bar{P})\right|\right)
$$

by $\langle f \mathbf{1} \otimes v, g 1 \otimes v\rangle_{P}=(f \mathbf{1} \mid g 1)\langle v, v\rangle_{P}$, where $\Gamma^{\prime}(\cdot)$ denotes the space of not necessarily continuous sections.

Note that

$$
\left.\left.\left.《 T_{i_{1} \cdots i_{m}}, T_{j_{1} \cdots j_{m}}\right\rangle\right\rangle_{P}=\left(2 r_{m}\right)^{(n-1) / 2} \chi_{m} \bar{z}_{i_{1}} \cdots \bar{z}_{i_{m}} z_{j_{1}} \cdots z_{j_{m}} \mid \xi_{n+2, n+3}\right\lrcorner \Theta \mid .
$$

Since we consider singular sections of $\boldsymbol{L} \otimes L^{P}$, whose supports are in M_{m}, we must modify the pairing as follows: Let $\wedge^{2 n-2}\left(M ;\left\{\xi_{n+2, n+3}, \eta\right\}\right)$ be the bundle of complex ($2 n-2$)-covectors tangent to M, vanishing after contraction with $\xi_{n+2, n+3}$ and $\eta=|y|^{-1} \sum y_{j} Y_{j}$. It is a complex line bundle with a nonvanishing section $\left.\eta\lrcorner \xi_{n+2, n+3}\right\lrcorner \Theta$. Let $\quad \subset: \wedge^{2 n-1}(M ; P \cap \bar{P}) \rightarrow \wedge^{2 n-2}(M$; $\left\{\xi_{n+2, n+3}, \eta\right\}$) be a bundle isomorphism given by $\left.c(\beta)=\eta\right\lrcorner \beta$. Then \subset induces a bundle isomorphism

$$
|c|:\left|\wedge^{2 n-1}(M ; P \cap \bar{P})\right| \longrightarrow\left|\wedge^{2 n-2}\left(M ;\left\{\xi_{n+2, n+3}, \eta\right\}\right)\right|
$$

defined by $|c|(|\beta|)=|c(\beta)|$ for any non-zero β. Let $\wedge^{2 n-2}\left(M_{m} ;\left\{\xi_{n+2, n+3}\right\}\right)$ be the bundle of complex ($2 n-2$)-covectors tangent to M_{m}, vanishing after contraction with the tangent vector $\xi_{n+2, n+3}$ to M_{m}. It is a complex line bundle over M_{m} with a non-vanishing section $\left.\eta\lrcorner \xi_{n+2 n+3}\right\lrcorner \Theta$. The pull-back

$$
i_{m}^{*}: \wedge^{2 n-2}\left(M ;\left\{\xi_{n+2, n+3}, \eta\right\}\right) \longrightarrow \wedge^{2 n-2}\left(M_{m} ;\left\{\xi_{n+2, n+3}\right\}\right)
$$

induces a map $\left|i_{m}^{*}\right|:\left|\wedge^{2 n-2}\left(M ;\left\{\xi_{n+2, n+3}, \eta\right\}\right)\right| \rightarrow\left|\wedge^{2 n-2}\left(M_{m} ;\left\{\xi_{n+2, n+3}\right\}\right)\right|$.
Now, M_{m} is S^{1}-fibered by the orbits of $\xi_{n+2, n+3}$. Let M_{m} / S^{1} denote the orbit space together with the projection $\pi_{m}: M_{m} \rightarrow M_{m} / S^{1}$. Then there exists a unique symplectic structure Ω_{m} on M_{m} / S^{1} such that $\pi_{m}^{*} \Omega_{m}=i_{m}^{*} \Omega$. Let $\Theta_{m}=$ $(-1)^{(n-1)(n-2) / 2}((n-1)!)^{-1} \Omega_{m}^{n-1}$ be the Liouville form on M_{m} / S^{1}. Then the volume of $\left(M_{m} / S^{1}, \Omega_{m}\right)$ is given by $\left|M_{m} / S^{1}\right|=r_{m}^{n-1}\left|S^{n-1}\right|\left|S^{n}\right|\left|S^{1}\right|^{-1}$, where $\left|S^{d}\right|$ denotes the volume of the unit sphere of dimension d. The bundle $\wedge^{2 n-2}\left(M_{m} / S^{1}\right)$ of complex ($2 n-2$)-covectors tangent to M_{m} / S^{1} is a complex line bundle over M_{m} / S^{1} with a non-vanishing section Θ_{m}. The pull-back $\pi_{m}^{*}: \wedge^{2 n-2}\left(M_{m} / S^{1}\right) \rightarrow$ $\wedge^{2 n-2}\left(M_{m} ;\left\{\xi_{n+2, n+3}\right\}\right)$ induces a map $\left|\pi_{m}^{*}\right|:\left|\wedge^{2 n-2}\left(M_{m} / S^{1}\right)\right| \rightarrow \mid \wedge^{2 n-2}\left(M_{m} ;\right.$ $\left.\left\{\xi_{n+2, n+3}\right\}\right) \mid$.

Note that $\left|\wedge^{2 n-2}\left(M_{m} / S^{1}\right)\right|$ is the bundle of densities on M_{m} / S^{1}.
Lemma 1 (cf. Gawedzki [3, Prop. III. 17]). For any $\mathscr{T}_{m}, \mathscr{T}_{m}^{\prime} \in \mathscr{H}_{m}^{P}$, there
exists a unique smooth density $\left\langle\mathscr{T}_{m}, \mathscr{T}_{m}^{\prime}\right\rangle$ on $M_{m} \mid S^{1}$ such that $\left|\pi_{m}^{*}\right|\left\langle\mathscr{T}_{m}, \mathscr{T}_{m}^{\prime}\right\rangle=$ $\left.\left|i_{m}^{*}\right||c| 《 \mathscr{T}_{m}, \mathscr{T}_{m}^{\prime}\right\rangle_{P}$.

For the proof, it is enough to note that the function $\left(\bar{z}_{i_{1}} \cdots \bar{z}_{i_{m}} z_{j_{1}} \cdots z_{j_{m}}\right) \circ i_{m}$ is constant along the orbits of $\xi_{n+2, n+3}$ and $\left.\left.\mathscr{L}_{\xi_{n+2, n+3}}(\eta\lrcorner \xi_{n+2, n+3}\right\lrcorner \Theta\right)=0$ on M_{m}, where \mathscr{L}_{ξ} denotes the Lie derivation with respect to a vector field ξ.

Note that

$$
\left.《 T_{i_{1} \cdots i_{m}}, T_{j_{1} \cdots j_{m}}\right\rangle=\left(2 r_{m}\right)^{(n-1) / 2} f_{i_{1} \cdots i_{m} j_{1} \cdots j_{m}}\left|\Theta_{m}\right|,
$$

where $f_{i_{1} \cdots i_{m} j_{1} \cdots j_{m}} \in C^{\infty}\left(M_{m} / S^{1}\right)$ is defined by $f_{i_{1} \cdots i_{m} j_{1} \cdots j_{m}} \circ \pi_{m}=\left(\bar{z}_{i_{1}} \cdots \bar{z}_{i_{m}} z_{j_{1}} \cdots z_{j_{m}}\right) \circ i_{m}$.
Similarily as Gawedzki [3, (76)], we define an inner product on \mathscr{H}_{m}^{P} by $\left(\mathscr{T}_{m}, \mathscr{T}_{m}^{\prime}\right)_{P}=\varepsilon_{m} \int_{M_{m} / S^{1}}\left\langle\mathscr{T}_{m}, \mathscr{T}_{m}^{\prime}\right\rangle$, where a positive constant ε_{m} will be determined in Section 6. We say that a section $\mathscr{T}=\sum_{m \geqq 0} \mathscr{T}_{m}, \mathscr{T}_{m} \in \mathscr{H}_{m}^{P}$, of $\boldsymbol{L} \otimes L^{P}$ is of finite norm if $(\mathscr{T}, \mathscr{T})_{P}=\sum\left(\mathscr{T}_{m}, \mathscr{T}_{m}\right)_{P}$ is finite. Let $\mathscr{H}^{P}=\left\{\mathscr{T}=\sum \mathscr{T}_{m} \mid\right.$ of finite norm $\}$. Then $\mathscr{H}^{\mathbf{P}}$ is a Hilbert space together with the inner product $(\cdot, \cdot)_{p}$.

Note that for $m \neq m^{\prime}$, the subspaces \mathscr{H}_{m}^{P} and $\mathscr{H}_{m^{\prime}}^{\mathbf{P}}$ are orthogonal to each other.

5. Vertical polarization Q

Let $\left(U, u^{a}\right)$ be as in Section 3. The vertical polarization Q is spanned at each point $(x, y) \in U$ by the tangent vectors $\left\{u^{a} \cdot Y=\sum u_{j}^{a} Y_{j} \mid 1 \leqq a \leqq n\right\}$ to M. It is invariant under the intgeral flows of $\xi_{j k}(1 \leqq j<k \leqq n+2)$, i.e., invariant under the action of $S O(n+1,1)$. Coordinate functions ψ_{U} and transition functions $g_{U V}$ for the frame bundle $\pi_{Q}: B(M ; Q) \rightarrow M$ of Q are given similarily as in Section 3. The metalinear frame bundle $\tilde{\pi}_{Q}: \widetilde{B}(M ; Q) \rightarrow M$ is defined similarily as in Section 3 together with coordinate functions $\tilde{\psi}_{U}$ and transition functions $\tilde{g}_{U V}$. Up to isomorphism, such a bundle is unique for $n \geqq 3$. The bundle L^{Q} of half- Q-forms has a non-vanishing section $\mu: M \rightarrow L^{Q}$ defined by $\mu\left(\tilde{\psi}_{U}((x, y), e)\right)=1$ for $(x, y) \in U . \quad L^{Q} \otimes L^{Q}$ is naturally isomorphic to $\wedge^{n}(M ; Q)$. The isomorphism is given by $\left.\left.\mu \otimes \mu \mapsto \mu \otimes \mu=\left(u^{1} \cdot Y\right\lrcorner \Omega\right) \wedge \cdots \wedge\left(u^{n} \cdot Y\right\lrcorner \Omega\right)=$ $(-1)^{n} \pi^{*} d S^{n}$, where $\left.d S^{n}=\left(\sum x_{j} X_{j}\right)\right\lrcorner\left(d x_{1} \wedge \cdots \wedge d x_{n+1}\right)$ is the volume form on S^{n}. According to Gawedzki $\left[3\right.$, (44)], we have a pairing $\langle\cdot, \cdot\rangle_{Q}: \Gamma\left(L^{Q}\right) \times$ $\Gamma\left(L^{Q}\right) \rightarrow \Gamma\left(\left|\wedge^{n}(M ; Q)\right|\right)$.

Note that $\langle\mu, \mu\rangle_{Q}=\left|\pi^{*} d S^{n}\right|$.
Let $\Gamma_{Q}\left(\boldsymbol{L} \otimes L^{Q}\right)$ denote the space of all smooth " Q-horizontal" sections of $\boldsymbol{L} \otimes L^{Q}$. Then $\Gamma_{Q}\left(\boldsymbol{L} \otimes L^{Q}\right)=\left\{f \circ \pi \mathbf{1} \otimes \mu \mid f \in C^{\infty}\left(S^{n}\right)\right\}$. (See [6].) According to Gawedzki [3, (76)], an inner product is given by $(f \circ \pi \mathbf{1} \otimes \mu, g \circ \pi \mathbf{1} \otimes \mu)_{Q}=\int_{S^{n}} \bar{f} d S^{n}$. The completion of the pre-Hilbert space $\left(\Gamma_{Q}\left(\boldsymbol{L} \otimes L^{Q}\right),(\cdot, \cdot)_{Q}\right)$ is denoted by $\left(\mathscr{H}^{Q},(\cdot, \cdot)_{Q}\right)$. It may be identified with $L^{2}\left(S^{n}\right)$ under the correspondence

$f \circ \pi \mathbf{1} \otimes \mu \rightarrow f$.

Let $h_{i_{1} \cdots i_{m}}$ be a spherical harmonic of degree m given by $h_{i_{1} \cdots i_{m}}=$ $\left.(-1)^{m}((n-1)(n+1) \cdots(2 m+n-3))^{-1} X_{i_{1}} \cdots X_{i_{m}}\left(|x|^{1-n}\right)\right|_{s n}$, and \mathscr{H}_{m}^{Q} the subspace of \mathscr{H}^{Q} spanned by the sections $\left\{H_{i_{1} \cdots i_{m}}=h_{i_{1} \cdots i_{m}}{ }^{\circ} \pi \mathbf{1} \otimes \mu \mid 1 \leqq i_{a} \leqq n+1,1 \leqq a \leqq m\right\}$.

Lemma 2. (1) $\left(H_{i_{1} \cdots i_{m}}, H_{j_{1} \cdots j_{m}}\right)_{Q}$

$$
\begin{aligned}
= & (2 m+n-1)^{-1} \sum_{a=1}^{m} \delta_{i_{a} j_{m}}\left(H_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}}, H_{j_{1} \cdots j_{m-1}}\right)_{Q} \\
& -((2 m+n-1)(2 m+n-3))^{-1} \sum_{a \neq b} \delta_{i_{a} i_{b}}\left(H_{i_{1} \cdots i_{a} \cdots \hat{i}_{b} \cdots i_{m} j_{m}}, H_{j_{1} \cdots j_{m-1}}\right)_{Q}
\end{aligned}
$$

$$
\begin{align*}
& \sum_{j_{1}, \cdots, j_{m}}\left(H_{i_{1} \cdots i_{m}}, H_{j_{1} \cdots j_{m}}\right)_{Q} H_{j_{1} \cdots j_{m}} \tag{2}\\
& \quad=((n+1)(n+3) \cdots(2 m+n-1))^{-1}(m!)\left|S^{n}\right| H_{i_{1} \cdots i_{m}} .
\end{align*}
$$

Lemma 3. We have

$$
\left(T_{i_{1} \cdots i_{m}}, T_{j_{1} \cdots j_{m}}\right)_{P}=\varepsilon_{m} \delta_{m}\left(H_{i_{1} \cdots i_{m}}, H_{j_{1} \cdots j_{m}}\right)_{Q},
$$

where

$$
\begin{aligned}
\delta_{m}= & \left(2 r_{m}\right)^{(n-1) / 2} 2^{m}(n+1)(n+3) \cdots(2 m+n-3) \\
& (n(n+1) \cdots(m+n-2))^{-1}\left|M_{m} / S^{1}\right|\left|S^{n}\right|^{-1} .
\end{aligned}
$$

Proof. The actions of $S O(n+1)$ on \mathscr{H}_{m}^{P} and on \mathscr{H}_{m}^{Q} are naturally defined, which are transitive and leave the inner products $(\cdot, \cdot)_{P}$ and $(\cdot, \cdot)_{Q}$ invariant. The isomorphism $\mathscr{H}_{P}^{m} \rightarrow \mathscr{H}_{m}^{Q}$ given by $T_{i_{1} \cdots i_{m}} \mapsto H_{i_{1} \cdots i_{m}}$ is well-defined and commutes with the actions of $S O(n+1)$. It follows that $\left(T_{i_{1} \cdots i_{m}}, T_{j_{1} \cdots j_{m}}\right)_{P}=$ const. $\left(H_{i_{1} \cdots i_{m}}, H_{j_{1} \cdots j_{m}}\right)_{Q}$. The constant is determined by calculating ($T_{1} \ldots 1$, $\left.T_{1 \cdots 1}\right)_{P}$ and $\left(H_{1 \cdots 1}, H_{1 \cdots 1}\right)_{Q}$.

Since P and Q are transversal, $\left(L^{P} \otimes L^{Q}\right) \otimes\left(L^{P} \otimes L^{Q}\right)$ is naturally isomorphic to the bundle $\wedge^{2 n}(M)$ of complex $2 n$-covectors tangent to M. The isomorphism is given by $(\nu \otimes \mu) \otimes(\nu \otimes \mu) \mapsto(\nu \otimes v) \wedge(\mu \underline{\otimes} \mu)=\Theta$. We shall choose $v \otimes \mu$ as an adjustment of L^{P} and L^{Q}. For the adjustment, see Gawedzki [3, Def. IV.4].

6. Fourier-like transformation

Let \boldsymbol{L}^{*} be the dual bundle of \boldsymbol{L} with a dual connection ∇^{*}. It has a nonvanishing section $\mathbf{1}^{*}=(\mathbf{1} \mid \cdot)$. Let $p_{i}: M \times M \rightarrow M, i=1,2$, be the projection onto the i-th factor. Let $\boldsymbol{W}=p_{1}^{*}\left(\boldsymbol{L} \otimes L^{P}\right) \otimes p_{2}^{*}\left(\boldsymbol{L}^{*} \otimes L^{Q}\right)$. Then \boldsymbol{W} has a non-vanishing section $\Xi:\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mapsto \mathbf{1}(x, y) \otimes v(x, y) \otimes \mathbf{1}^{*}\left(x^{\prime}, y^{\prime}\right) \otimes \mu\left(x^{\prime}, y^{\prime}\right)$. For each section $\mathscr{K}=\hbar \Xi, \hbar: M \times M \rightarrow \mathbf{C}$, of \boldsymbol{W}, and for each $(x, y) \in M$, sections of $\boldsymbol{L} \otimes L^{P}$ and $\boldsymbol{L}^{*} \otimes L^{Q}$ are defined by $\mathscr{K}_{\mathbf{P}}(\cdot,(x, y))=\hbar(\cdot,(x, y)) \mathbf{1} \otimes v$ and $\mathscr{K}_{Q}((x, y), \cdot)=$ $\not \hbar((x, y), \cdot) \mathbf{1}^{*} \otimes \mu$, respectively. By \mathscr{K}_{Δ} we shall denote a section of $L^{P} \otimes L^{Q}$ given by $\mathscr{K}_{\Delta}(x, y)=\hbar((x, y),(x, y)) v(x, y) \otimes \mu(x, y)$.

Definition. A not necessarily continuous section \mathscr{K} of \boldsymbol{W} will be called a distinguished kernel for the pair (P, Q) of polarizations if:
(i) for each $(x, y) \in M, \mathscr{K}_{P}(\cdot,(x, y))$ is P-horizontal,
(ii) for each $(x, y) \in M, \mathscr{K}_{Q}((x, y), \cdot)$ is Q-horizontal, and
(iii) $\mathscr{K}_{\triangle}=v \otimes \mu$ on $\cup M_{m}$.
(Cf. Gawedzki [3, Def. IV.5].)
From the definition, it follows that the support of a distinguished kernel \mathscr{K} is $\left(\cup M_{m}\right) \times M$.

Note that $\cup M_{m}$ and M is the "Bohr-Sommerfeld sets" for P and Q, respectively. (See Śniatycki and Toporowski [17, § 2].)

Lemma 4. There exists a unique distinguished kernel $\mathscr{K}=\hbar \Xi$ for (P, Q). th is given by

$$
\not \hbar\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\sum_{m \geqq 0} \sum_{i_{1}, \cdots, i_{m}}\left[\chi_{m} z_{i_{1}} \cdots z_{i_{m}}\right](x, y) h_{i_{1} \cdots i_{m}} \circ \pi\left(x^{\prime}, y^{\prime}\right) .
$$

Proof. For the existence, it is enough to show that $t_{\Delta}=1$ on M_{m}, where $h_{\Delta}(x, y)=\hbar((x, y),(x, y))$. For $1 \leqq j<k \leqq n+1$, we have

$$
\xi_{j k}\left(z_{i_{1}} \cdots z_{i_{m}}\right)=\sum_{a=1}^{m}\left(\delta_{i_{a} k} z_{i_{1}} \cdots \hat{z}_{i_{a}} \cdots z_{i_{m}} z_{j}-\delta_{i_{a} j} z_{i_{1}} \cdots \hat{z}_{i_{a}} \cdots z_{i_{m}} z_{k}\right)
$$

and

$$
\xi_{j k}\left(h_{i_{1} \cdots i_{m}} \circ \pi\right)=\sum_{a=1}^{m}\left(\delta_{i_{a} k} h_{i_{1} \cdots \hat{i}_{a} \cdots i_{m} j}-\delta_{i_{a j} j} h_{i_{1} \cdots \hat{i}_{a} \cdots i_{m} k}\right) \circ \pi .
$$

It follows that $\zeta_{j k}\left(c_{c}\right)=0$. Since $S O(n+1)$ acts on M_{m} transitively, we have $\hbar_{\Delta}=$ const. on M_{m}. Calculating $\hbar_{\Delta}(x, y)$ for $x=(1,0, \ldots, 0)$ and $y=\left(0,-r_{m}\right.$, $0, \ldots, 0$), we have $k_{\Delta}=1$ on M_{m}. The uniqueness follows from the fact that for each fixed $x \in S^{n}, \sum c_{i_{1} \cdots i_{m}} z_{i_{1}} \cdots z_{i_{m}}=0$ for all y such that $(x, y) \in M_{m}$ implies $c_{i_{1} \cdots i_{m}}=0$, where $c_{i_{1} \cdots i_{m}} \in \mathbf{C}$ are totally symmetric in all indices and with all pair traces zero.

Lemma 5. For each $(x, y) \in M$, we have

$$
\begin{aligned}
& \left(T_{i_{1} \cdots i_{m}}(\cdot), \mathscr{K}_{P}(\cdot,(x, y))\right)_{P} \\
& \quad=\varepsilon_{m} \delta_{m}((n+1)(n+3) \cdots(2 m+n-1))^{-1}(m!)\left|S^{n}\right| h_{i_{1} \cdots i_{m}} \circ \pi(x, y) .
\end{aligned}
$$

The lemma follows from Lemma 2 and Lemma 3.
Let $\delta: \boldsymbol{L}^{*} \otimes L^{Q} \rightarrow \boldsymbol{L} \otimes L^{Q}$ be the bundle anti-isomorphism defined by $\delta\left(c \mathbf{1}^{*} \otimes \mu\right)=\bar{c} \mathbf{1} \otimes \mu$ for $c \in \mathbf{C}$. Now, following Gawedzki [3, (176)], let us define a linear isomorphism $\mathscr{F}_{m}: \mathscr{H}_{m}^{\text {P }} \rightarrow \mathscr{H}_{m}^{Q}$ by

$$
\begin{aligned}
\mathscr{F}_{m}(\mathscr{T})(x, y) & =\delta\left(\left(\mathscr{T}(\cdot), \mathscr{K}_{P}(\cdot,(x, y))\right)_{P}\left(\mathbf{1}^{*} \otimes \mu\right)(x, y)\right) \\
& =\left(\mathscr{K}_{P}(\cdot,(x, y)), \mathscr{T}(\cdot)\right)_{P}(\mathbf{1} \otimes \mu)(x, y) .
\end{aligned}
$$

Lemma 6 (cf. Kowata and Okamoto [8]). $\quad \mathscr{F}_{m}$ is a unitary transformation if and only if

$$
\varepsilon_{m} \delta_{m}=((n+1)(n+3) \cdots(2 m+n-1))^{2}\left(m!\left|S^{n}\right|\right)^{-2}
$$

In this case, \mathscr{F}_{m} induces a unitary transformation $\mathscr{F}: \mathscr{H}^{\mathrm{P}} \rightarrow \mathscr{H}^{\mathrm{Q}}$, which gives a unitary equivalence between \mathscr{H}^{P} and \mathscr{H}^{Q}.

We call \mathscr{F} a Fourier-like transformation associated with the transversal polarizations P and Q.

Note that

$$
\mathscr{F}\left(T_{i_{1} \cdots i_{m}}\right)=(n+1)(n+3) \cdots(2 m+n-1)\left(m!\left|S^{n}\right|\right)^{-1} H_{i_{1} \cdots i_{m}} .
$$

7. Representation of the Poisson subalgebra (5)

By means of the polarization P, any function in the Poisson subalgebra spanned by $\left\{\phi_{j k} \mid 1 \leqq j<k \leqq n+1\right.$ or $\left.n+2 \leqq j<k \leqq n+3\right\}$ is geometrically quantized. (See [6].) The Hermitian operator $\hat{\phi}_{j k}^{P}$ on \mathscr{H}^{P} corresponding to $\phi_{j k}$ is given as follows:

$$
\hat{\phi}_{j k}^{P}\left(T_{i_{1} \cdots i_{m}}\right)=-(-1)^{1 / 2} \sum_{a=1}^{m}\left(\delta_{i_{a} k} T_{i_{1} \cdots \hat{i}_{a} \cdots i_{m} j}-\delta_{i_{a} j} T_{i_{1} \cdots \hat{i}_{a} \cdots i_{m} k}\right)
$$

for $1 \leqq j<k \leqq n+1$ and

$$
\hat{\phi}_{n+2, n+3}^{P}\left(T_{i_{1} \cdots i_{m}}\right)=(m+(n-1) / 2) T_{i_{1} \cdots i_{m}} .
$$

On the other hand, by means of the polarization Q, any function in the Poisson subalgebra spanned by $\left\{\phi_{j k} \mid 1 \leqq j<k \leqq n+2\right\}$ is geometrically quantized as follows: For any vector field ξ on M, whose integral flow preserves Q, a ξ-derivation $\mathscr{L}_{\xi}^{1 / 2}$ on $\Gamma\left(L^{Q}\right)$ is defined by $2\left(\mathscr{L}_{\xi}^{1 / 2} \mu\right) \otimes \mu=L_{\xi}(\mu \otimes \mu)$. (See Gawedzki [3, Prop. II. 6].)

Lemma 7. We have $\mathscr{L}_{\xi_{j k}^{1 / 2}}^{1} \mu=0$ for $1 \leqq j<k \leqq n+1$, and $\mathscr{L}_{\xi, n+2}^{1 / 2} \mu=-(n / 2) x_{j} \mu$ for $1 \leqq j \leqq n+1$.

Now, according to the usual method of geometric quantization, the Hermitian operators $\hat{\phi}_{j k}^{Q}(1 \leqq j<k \leqq n+2)$ on \mathscr{H}^{Q} corresponding to $\phi_{j k}$ are given by $\hat{\phi}_{j k}^{Q}=$ $-(-1)^{1 / 2}\left\{\left(\nabla_{\xi_{j k}}+(-1)^{1 / 2} \phi_{j k}\right) \otimes \mathscr{L}_{\xi_{j k}}^{1 / 2}\right\}$. They span a Lie algebra isomorphic to $\mathfrak{s p}(n+1,1)$.

Note that for any $f \in C^{\infty}\left(S^{n}\right)$,

$$
\hat{\phi}_{j k}^{O}(f \circ \pi \mathbf{1} \otimes \mu)=-(-1)^{1 / 2}\left\{\left(x_{j} X_{k}-x_{k} X_{j}\right) f\right\} \circ \pi 1 \otimes \mu
$$

for $1 \leqq j<k \leqq n+1$, and

$$
\hat{\phi}_{j, n+2}^{Q}(f \circ \pi \mathbf{1} \otimes \mu)=-(-1)^{1 / 2}\left\{\left(\sum_{i=1}^{n+1}\left(\delta_{i j}-x_{i} x_{j}\right) X_{i}-(n / 2) x_{j}\right) f\right\} \circ \pi \mathbf{1} \otimes \mu
$$

for $1 \leqq j \leqq n+1$. (See, for example, Śniatycki [16, (7.82)].)
Lemma 8. We have $\mathscr{F} \circ \hat{\phi}_{j k}^{P} \mathscr{F}^{-1}=\hat{\phi}_{j k}^{\varrho}$ for $1 \leqq j<k \leqq n+1$.
In the following, $\hat{\phi}_{j k}^{Q}$ is written simply by $\hat{\phi}_{j k}$ for $1 \leqq j<k \leqq n+1$. Now, let us define

$$
\hat{\phi}_{n+2, n+3}=\mathscr{F} \circ \hat{\phi}_{n+2, n+3^{P}}^{P} \mathscr{F}^{-1} .
$$

Then we have

$$
\hat{\phi}_{n+2, n+3}(f \circ \pi \mathbf{1} \otimes \mu)=\left(\left(\Delta+(n-1)^{2} / 4\right)^{1 / 2} f\right) \circ \pi \mathbf{1} \otimes \mu,
$$

where Δ is the Laplace-Beltrami operator on the unit sphere S^{n}. (Cf. Rawnsley [14].) $\hat{\phi}_{n+2, n+3}$ is a Hermitian, pseudo-differential operator of order one with principal symbol $\phi_{n+2, n+3}$. Since $\left(5\right.$ is generated by $\left\{\phi_{j k} \mid 1 \leqq j<k \leqq n+2\right.$ or $n+2 \leqq j<k \leqq n+3\}$, we expect that the Lie algebra generated by $\left\{(-1)^{1 / 2} \hat{\phi}_{j k} \mid\right.$ $1 \leqq j<k \leqq n+1$ or $n+2 \leqq j<k \leqq n+3\} \cup\left\{(-1)^{1 / 2} \hat{\phi}_{j, n+2}^{0} \mid 1 \leqq j \leqq n+1\right\}$ is naturally isomorphic to (5). But we have the following:

Proposition 9. For each fixed $\lambda \in \mathbf{C}$ and $1 \leqq j \leqq n+1$, define

$$
D_{j, n+2}^{\lambda}(f \circ \pi 1 \otimes \mu)=-(-1)^{1 / 2}\left\{\left(\sum_{i=1}^{n+1}\left(\delta_{i j}-x_{i} x_{j}\right) X_{i}+\lambda x_{j}\right) f\right\} \circ \pi \mathbf{1} \otimes \mu
$$

for any $f \in C^{\infty}\left(S^{n}\right)$, and

$$
D_{j, n+3}^{\lambda}=(-1)^{1 / 2}\left[D_{j, n+2}^{\lambda}, \hat{\phi}_{n+2, n+3}\right] .
$$

Then we have

$$
(-1)^{1 / 2}\left[D_{j, n+2}^{\lambda}, D_{k, n+3}^{\lambda}\right]=\delta_{j k} \hat{\phi}_{n+2, n+3}
$$

if and only if $\lambda=-(n \pm 1) / 2$.
So, we shall modify $\hat{\phi}_{j, n+2}^{O}(1 \leqq j \leqq n+1)$ to define an operator $\hat{\phi}_{j, n+2}$ on $\Gamma_{Q}\left(\boldsymbol{L} \otimes L^{Q}\right)$ by

$$
\hat{\phi}_{j, n+2}(f \circ \pi \mathbf{1} \otimes \mu)=-(-1)^{1 / 2}\left\{\left(\sum_{i=1}^{n+1}\left(\delta_{i j}-x_{i} x_{j}\right) X_{i}-((n-1) / 2) x_{j}\right) f\right\} \circ \pi \mathbf{1} \otimes \mu
$$

for any $f \in C^{\infty}\left(S^{n}\right)$. Then, by analogy with $\phi_{j, n+3}=\left\{\phi_{j, n+2}, \phi_{n+2, n+3}\right\}$, we shall define $\hat{\phi}_{j, n+3}=(-1)^{1 / 2}\left[\hat{\phi}_{j, n+2}, \hat{\phi}_{n+2, n+3}\right]$ for $1 \leqq j \leqq n+1$. It is a pseudodifferential operator of order one with principal symbol $\phi_{j, n+3}$.

Lemma 10. For $1 \leqq j \leqq n+1$, we have

$$
\begin{aligned}
\hat{\phi}_{j, n+2}\left(H_{i_{1} \cdots i_{m}}\right)= & (-1)^{1 / 2}\left\{(m+(n-1) / 2) H_{i_{1} \cdots i_{m j}}-2^{-1} \sum_{a=1}^{m} \delta_{i_{a} j} H_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}}\right. \\
& \left.+(2 m+n-3)^{-1} \sum_{1 \leqq a<b \leqq m} \delta_{i_{a} i_{b}} H_{i_{1} \cdots \hat{i}_{a} \cdots \hat{i}_{b} \cdots i_{m} j}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{\phi}_{j, n+3}\left(H_{i_{1} \cdots i_{m}}\right)= & (m+(n-1) / 2) H_{i_{1} \cdots i_{m} j}+2^{-1} \sum_{a=1}^{m} \delta_{i_{a} j} H_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}} \\
& -(2 m+n-3)^{-1} \sum_{1 \leqq a<b \leqq m} \delta_{i_{a} i_{b}} H_{i_{1} \cdots \hat{i}_{a} \cdots \hat{i}_{b} \cdots i_{m} j}
\end{aligned}
$$

Let $\hat{\mathfrak{G}}$ (resp. $\tilde{\mathfrak{G}}$) denote the linear space over \boldsymbol{R} spanned by the operators $\hat{\phi}_{j k}$ (resp. $\left.(-1)^{1 / 2} \hat{\phi}_{j k}\right)(1 \leqq j<k \leqq n+3)$, and $\rho:(\mathfrak{G} \rightarrow(\tilde{\mathfrak{G}}$ be the linear map given by $\phi_{j k} \mapsto(-1)^{1 / 2} \hat{\phi}_{j k}$.

Lemma 11. $\tilde{\mathfrak{G}}$ is a Lie algebra under the bracket operation. ρ is an isomorphism of $\mathfrak{5}$ onto $\tilde{\mathfrak{b}}$.

As operators on the Hilbert space $\mathscr{H}^{Q}, \hat{\phi}_{j k}(1 \leqq j \leqq n+1$ and $n+2 \leqq k \leqq n+3)$ are not Hermitian. To make them Hermitian, we shall modify $\left(\mathscr{H}^{Q},(\cdot, \cdot)_{Q}\right)$ as follows: Let $\langle\cdot, \cdot\rangle$ denote the inner product on $\Gamma_{Q}\left(\boldsymbol{L} \otimes L^{Q}\right)$ defined by

$$
\langle f \circ \pi \mathbf{1} \otimes \mu, g \circ \pi \mathbf{1} \otimes \mu\rangle=\left(f \circ \pi \mathbf{1} \otimes \mu, \hat{\phi}_{n+2, n+3}(g \circ \pi \mathbf{1} \otimes \mu)\right)_{Q}=\int_{S^{n}} f(\Lambda g) d S^{n},
$$

where $\Lambda=\left(\Delta+(n-1)^{2} / 4\right)^{1 / 2}$. We assume here $n \geqq 2$. Note that

$$
\left\langle H_{i_{1} \cdots i_{m}}, H_{j_{1} \cdots j_{m}}\right\rangle=(m+(n-1) / 2)\left(H_{i_{1} \cdots i_{m}}, H_{j_{1} \cdots j_{m}}\right)_{Q} .
$$

Let $H_{1 / 2}\left(S^{n}\right)$ be the Sobolev space on S^{n} with the inner product $\langle\cdot, \cdot\rangle$ given by

$$
\langle f, g\rangle=\int_{S^{n}} \bar{f}(\Lambda g) d S^{n}
$$

Then the completion of the pre-Hilbert space $\left(\Gamma_{Q}\left(\boldsymbol{L} \otimes L^{Q}\right),\langle\cdot, \cdot\rangle\right)$ is identified with ($\left.H_{1 / 2}\left(S^{n}\right),\langle\cdot, \cdot\rangle\right)$ under the correspondence $f \circ \pi \mathbf{1} \otimes \mu \rightarrow f$.

Lemma 12. Each element of $\hat{\mathfrak{F}}$ is a Hermitian operator on $H_{1 / 2}\left(S^{n}\right)$.
The lemma follows easily from Lemma 2.
Theorem. $\rho:(\mathfrak{G} \rightarrow(\tilde{\mathfrak{G}}$ provides an irreducible representation of the Lie algebra $\mathfrak{s o}(n+1,2)$ on the Sobolev space $H_{1 / 2}\left(S^{n}\right)$ by skew-Hermitian, pseudodifferential operators of order one.

The irreducibility follows from the fact that the restriction of ρ to a subalgebra isomorphic to $\mathfrak{s v}(n+1,1)$ is irreducible. (See Akyildiz [1] and Takahashi [21, §5].)

By integration, ρ gives rise to a "Fourier integral representation" of $S O(n+1,2)$ or its covering group. (Cf. Guillemin and Sternberg [5].) Note that the period of the geodesic flow generated by $\xi_{n+2, n+3}$ is 2π, while the period of the one-parameter group of unitary transformations generated by $(-1)^{1 / 2} \hat{\phi}_{n+2, n+3}$ is 2π for odd n and 4π for even n. (Compare with Souriau [20, §10].)

References

[1] Y. Akyildiz, On the dynamical symmetries of the Kepler problem, J. Math. Phys. 21 (1980), 665-670.
[2] J. Elhadad, Sur l'interprétation en géométrie symplectique des états quantiques de l'atome d'hydrogène, Symposia Math. 24 (1974), 259-291.
[3] K. Gawedzki, Fourier-like kernels in geometric quantization, Dissertationes Math. 128, Warszawa, 1976.
[4] V. Guillemin and S. Sternberg, Geometric asymptotics, Math. Surveys 14, Amer. Math. Soc., Providence, 1977.
[5] V. Guillemin and S. Sternberg, The metaplectic representation, Weyl operators and spectral theory, J. Func. Analysis 42 (1981), 128-225.
[6] K. Ii, Geometric quantization for the mechanics on spheres, Tōhoku Math. J. 33 (1981), 289-295.
[7] B. Kostant, Quantization and unitary representations, Lecture Notes in Math. 170, Springer-Verlag, Berlin-Heidelberg-New York, 1970, 87-208.
[8] A. Kowata and K. Okamoto, Harmonic functions and the Borel-Weil theorem, Hiroshima Math. J. 4 (1974), 89-97.
[9] H. Omori, Theory of infinite dimensional Lie groups, Sugaku Sōsho 15, Kinokuniya, Tokyo, 1978 (in Japanese).
[10] E. Onofri, $S O(n, 2)$-singular orbits and their quantization, Colloques Internat. du CNRS 237 (1975), 155-161.
[11] E. Onofri, Dynamical quantization of the Kepler manifold, J. Math. Phys. 17 (1976), 401-408.
[12] H. Ozeki and M. Wakimoto, On polarizations of certain homogeneous spaces, Hiroshima Math. J. 2 (1972), 445-482.
[13] J. H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford 28 (1977), 403-415.
[14] J. H. Rawnsley, A nonunitary pairing of polarizations for the Kepler problem, Trans. Amer. Math. Soc. 250 (1979), 167-180.
[15] D. J. Simms and N. M. J. Woodhouse, Lectures on geometric quantization, Lecture Notes in Phys. 53, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[16] J. Śniatycki, Geometric quantization and quantum mechanics, Applied Math. Sci. 30, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[17] J. Śniatycki and S. Toporowski, On representation spaces in geometric quantization, Intern. J. Theor. Phys. 16 (1977), 615-633.
[18] J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970.
[19] J.-M. Souriau, Sur la variété de Kepler, Symposia Math. 14, Academic Press, London, 1974, 343-360.
[20] J.-M. Souriau, Construction explicite de l'indice de Maslov. Applications, Lecture Notes in Phys. 50, Springer-Verlag, Berlin-Heidelberg-New York, 1976, 117-148.
[21] R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289-433.
[22] M. Wakimoto, Polarizations of certain homogeneous spaces and most continuous principal series, Hiroshima Math. J. 2 (1972), 483-533.
[23] A. Weinstein, Lectures on symplectic manifolds, Regional Conference Series in Math. 29, Amer. Math. Soc., Providence, 1977.
[24] J. A. Wolf, Conformal group, quantization, and the Kepler problem, Lecture Notes in Phys. 50, Springer-Verlag, Berlin-Heidelberg-New York, 1976, 217-222.
[25] J. A. Wolf, Representation associated to minimal co-adjoint orbits, Lecture Notes in Math. 676, Springer-Verlag, Berlin-Heidelberg-New York, 1978, 327-349.
[26] N. Woodhouse, Geometric quantization, Math. Monographs, Oxford Univ. Press, New York, 1980.

Department of Mathematics, Yamagata University

