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Introduction

In the previous paper [6] we proved an analogue of the Peter-Weyl theorem
for the infinite dimensional rotation group 0(E) (for the definition see [6]). In
this paper we shall prove the analogue of Peter-Weyl theorem for U(E) (for the
definition see § 1). In the paper [6], for a proof of the irreducibility of the
representation πn>p we used the results of A. M. Vershik, I. M. GeΓfand and M.

I. Graev [9] in which they used the results of A. A. Kirillov [4]. In this paper
we shall prove the irreducibility of the representation πptq)f))δ, where the method
of proof also works for πn>p. Thus the arguments in our previous papers [5]

and [6] are complete in our framework. It is plausible that the representations

Up,<i,p,fi °f tf16 gΓOUP °f diffeomorphisms on a compact riemannian manifold would
be able to be constructed in such a way that they should correspond to the
representations Un>p (for the definition see [6]) given by A. M. Vershik, I. M.

GeΓfand and M. I. Graev.

§ 1. Irreducibility of representations np>q)ptδ

Let M be a compact riemannian manifold. We denote by C°°(M, R) the
space of all real valued C°°-functions on M and L2(M, K) the Hubert space of

all square integrable real valued functions on M. We denote by C°°(M, ϋ)*
the dual space of C°°(M, R). Let C°°(M) be the space of all complex valued C°°-

functions on M. We denote by L2(M) the Hubert space of all square integrable

complex valued functions on M. We write E, H and E* instead of C°°(M),
L2(M) and C°°(M)* respectively, where C°°(M)* denotes the dual space of

C°°(M). We denote by U(E) the group of all linear homeomorphisms of E

which are isometrics of H. Let L2(M x x M) be the Hubert space of all square

integrable complex valued functions on M X ••• xM (r-times). We write simply
L2(M: r) instead of L2(M x ••• x M). Let V be a finite dimensional vector space
with an inner product and L2(M x x M, V) the Hubert space of all F-valued

functions / on M x x M (r-times) such that

= \
J M X XM

+ 00.
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We also write simply L2(M: r, V) instead of L2(Mx ••• x M, V).
As in the previous paper [6], we shall consider a GeΓfand triple

C°°(M x M) c L2(M x M) c C°°(M x M)*.

We can identify C°°(M x M), L2(M x M) and C^MxM)* with E®E,H®H

and (E®E)* respectively, where E&E and H®H denote the completion of

E®E and H®H respectively. Then we get a complex Gaussian measure v on
(E®EY such that for any ζ in E®E

where Ω = (E(x)E)*, (for a function / on Ω we often use the notation (/(z))~
instead of the complex conjugation of /(z)). Let N be the set of all positive
integers. For any p and q in T V u {0}, we consider the complex Hermite poly-
nomial;

In the following we fix, once for all, an orthonormal basis {ξji j eN} of L2(M)
such that ξj e C°°(M, K) for any j e N. Then {ξ^ξji i, j e JV} is an orthonormal
basis contained in C°°(M, Λ)®C°°(M, Λ). We put

Then it is known that \J™=o(Vp+q=n&p,^) is ^n orthonormal basis of L2(Ω, v).
We denote by §Λί the closed subspace spanned by ®p>€. Then we have

L2(Ω, v) = Σ"=o θ ΣP+q=n ® SPiβ (Wiener-Itό decomposition) .

We denote by Pp>q the orthogonal projection of L2(Ω, v) onto δp>r We consider
the transformation £Γ defined by

(see [2]). And we define a transformation ̂  by

Then ̂  is injective. In case ^f=φ, we write f=φ*.
For any # in l/(E) we can define linear mappings L^ and Rg of E®E into

itself by
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We denote by gz and zg the dual actions of U(E) on Ω defined by

<0z, O = <z, V iζ), <z0, C> = <z, Rgζy (C 6 E<g>E) .

For each g in £/(]£) we shall identify g with the linear form on E<S>E defined by

Thus we regard the group U(E) as a subset of Ω. Let C[Xij9 Xkϊ\ i, j, fc, /eΛΓ]
be the polynomial ring of infinite variables Xij9 Xkl over C. Let C(£2) be the
set of all continuous functions on Ω. We denote by C((7(E)) the set of functions
given by the restriction of functions in C(Ω) to U(E). We consider the mapping

from C[Xί7 , XM\ i,j, k, ί eJV] to C(Ω) defined by the map: Fι->/, where F((Xij9

Xkl)) E C[_Xtj, Xklι ϊ, 7, k, ϊ e ΛΓ] and /(z) = F((<z, £®^>, «z, ίk® {,»"))- We
shall denote by F(Ω) the image of this mapping. We call functions in F(Ω)
polynomials on Ω. We put F(U(EJ) = F(Ω)\U(E). We also call functions in
F(U(EJ) polynomials on U(E). It is easy to see that the restriction mapping is

injective. Hence for each polynomial / on U(E) there exists a unique poly-

nomial / on Ω such that f=f\u(E) In the following we use the same notation
/ instead of /. Since

gtj = (gξj9 Q = «0, ^® ,̂»-,

gtj can be regarded as a function on U(E) which is clearly a restriction to U(EJ)

of the function g i(z) = «z, £i®£»~ on Ω. As

we have

Let ®Γ be the group of all permutations of {!,..., r}. Let (p, Vp) and ((5, Fd)

be irreducible unitary finite dimensional representations of Sp and ®g respec-

tively. We denote by 6r the set of all equivalence classes of irreducible unitary
representations of Sr. The group Sp x <5q acts on M x x M ((p + ̂ )-times)
on the right by

(«!,..., up, t? lv.., vq) (σ, τ) = (wσ(1),..., Mσ(p), ϋτ(1),..., ϋτ(β)).

We write simply w σ and ι? τ instead of (uσ(1),..., ιισ(p)) and (t?t(1),..., ϋτ(ί)) re-
spectively. The right action of 3px Θ^ induces an action I(σ, τ) on L2(M: p +

g) defined by

(l(σ, τ)/) (u, ι;) = /(ιι - σ, i? - τ) (/e L2(M :
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For any irreducible unitary representations (p, Vp) of Sp and (δ, Vδ) of β ,̂ we

denote by Horn (Vδ, Vp) the space of all linear mappings of Vδ to Vp. We give the

space Hom(Fδ, Fp) the natural inner product induced by those of Vp and Vδ.

We put

: p + <?, Hom(K» Fp));

/(ιι σ, i; τ) = p(σ)- ̂ M, ι;)<5(τ), σ e ©„ τ e SJ .

By the canonical isomorphism £ we have

L2(M : p + 4) s L2(M)® - - ® L2(M) ((p + g)-times) .

For any g in l/(E) we define a unitary operator πp>q(g) on L2(M)® ®L2(M) by

where #* denotes the adjoint operator of #. We denote by πpfq(g) the unitary

operator on L2(M: p + ̂ ) which corresponds to fipt9(g). For any σ in Sp and

τ in ®q we define the action λ(σ)®λ(τ) on L2(M)® (g)L2(M) by

..̂ ^

We denote by πptq®I the unitary representation of U(E) on L2(M:

Hom(F^, Fp), where / denotes the identity operator on Hom(Fd, Fp). Using the

canonical isomorphism we have

L2(M: p + q, Hom(Vδ, Fp)) s L2(M: p + ̂ ) ® Hom(F,, Fp).

Hence we obtain the unitary representation π p f q i f ) ί δ of ί/(E) on L2(M:
Hom(F5, Fp)) which corresponds to the representation πptq®I. Since πptq(g)®I

commutes with I(σ, τ)®7, ^PΛtp^ is πpjg>p>δ([/(E))-in variant. So that we get

the subrepresentation πptqtfltδ of (7(JF) on 3fpiqiptδ. We put (Mx xM)' =
{(«!,..., w r)eM x ••• xM; um^un (ra^n)}, and write simply (M: r)' instead of
(M x ••• x M)' (r-times). Tt is easy to see that there exist open subsets Fp in M x
~-xM (p-times) and Fq in M x x M (g-times) which satisfy the following

conditions. The mapping φ :

FpxFqx&px&q3(u, v, σ, τ) I - > ( w σ, t? τ)e(M: p)'x(M: q)'

is injective and

φ(FpxFqx®px&q) = (M: p)' x(M: q)'.

Let L2(Sr) be the space of all functions on Sr. We introduce an inner product
defined by the normalized Haar measure on Sr. Then by the Peter- Weyl theorem

for ®r, we have
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where Σp is taken over all p in Sr. We note that

r!=dim(L2(S,))=Σp(dimFp)2

which we need in the proof of Theorem 1. Now we obtain the following

L2(M: p + q) s L2(Fp x Fq x Sp x ®β) s (L^F^βL^S^βί

- (Σp Wp)® Fp® F*)® (Σa L W® F,® F£)

= ΣP Σa WpxF,, Hom(F,, F,))®F*®F5.

Hence we get

L2(M: p + q) * ΣP Σt^P,q,P,*®V*p®Vδ.

For any d in W we put Nd = {l,...,d}9 (Nd xNd)
r = (Nd xNd)x ••• x(Ndx

Nd) (r-times). As for elements in (Nd x Nd)
p x (Nd x ]Vd)« we often use the sym-

bolical expression ((i,j), (fe, /)) instead of ((iiJJ,..., (ip9jp), (kί9 IJ,..., (kq, lqj).
6p and Sβ act on (ΛΓd x NdY x (JYd x ΛΓd)« on the right by

((i σ, j σ), (fe τ, / τ)) = ((iσ(1),7σ(1)),..., (iσ(p),jσ(p)), (fcτ(1), /τ( t }),..., (fet(β), ίτ(g)),

where σ e Sp and τ e Sg. We denote by Zd(r) the set of all J x d matrices α =

(αmπ) which satisfy the following conditions;

α™eΛΓw{0} (m, n e / V d ) , Σl«=ιαmπ = r.

For each (iJ) = ( ( i ί 9 j 1 ) , . . . , ( i r , j r ) ) e ( P r d x f f d y r we assign an element α = (αmπ)e
Zd(r) by the following rule and we put TΓ(ί, j) = α αmn is the number of the com-
ponents (is9 js)(s = l,...9 r)suchthat is = manάjs — n. And we define the mapping

Tp x Tq from (Nέ x tfd)* x (Nd x ΛΓd)« to Zd(p) x Zd(^) by (Tp x Tβ) ((i, 7), (fc, 0) =
(Tp(ι, 7), T^fc, /)). In case Tr(ϊ, 7) = Tr(i', /) we write (i, 7) - (i;, /). It is easy to
show the following lemma.

LEMMA 1. ( i , j ) ~ ( i ' , j f ) holds if and only if there exists a σ in Sr such

that (i', /) = (i - σ, 7 σ), where (i, 7), (i', /) e (ΛΓd x

From this lemma we see that the number of elements of T'^α) is equal to

^i α^!)-1. We put Nr = Nx - xN (r-times). For any i in NP and k

in Nq we write simply ξι®ξk instead of ξ ί l® ®ξίp®ξkl® ®ξfcq in L2(M)® •••

®L2(M). Then for any g in U(E). and for any j in Np and / in Nq, we have
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where Σί,k means ΣTl=ι"'ΣTp=ιΣkί=ι'"Σkq=ί' In the following we write
symbolically gtjgkl instead of 9iιj,'~9ipjp9k,iι'~9kqιq F°r any z, j in N* and fc, /
in Nq, we denote by max {iJ9 k, 1} a maximum number included in the set {z1?...,

*'ι» 7ι> >./P> fci' > fc4> ΊV-J lq} We put d = max{z, 7, fc, /}, Tp(i, j) = α and
Tq(k,l) = β, where αεZ/p) and /ϊeZ^). Since (^«)«(z) = Πl»βι H«™.,mιs

«z, ^m(x)^M>, «z, ξm®£n»~), the following lemma is obvious.

LEMMA 2. For αnj 1,7, z',/ in ]Vp ίznd /or any fe, /, A:', /' in Nq let d =

max {i, 7, fc, /, z", /, fc', /'}', (α, β) = (Tp(ί, j), Tq(k, /)) α«d (α', β'} = (Tp(if, /),
Tή(fer, /'))• T'ften it follows that

\ Πif»-ι Krt!jβmw!α^!^!) ((i, Λ-O",/) «^ (fc, 0-(fe', 0),

"I 0 ((i,JW,nor(k,l)~(k'9l'y).

THEOREM 1. 1) 7/p and δ are both irreducible, then (πp)q>ptδ9 ^p,q,P,δ) is

irreducible.

2) Two representations (πp>qίp>δ, ^pq,p>δ) and (πp Λ,tp,tδ 9 #??,„•#•#) are

equivalent if and only if p = pf, q = q', P — p', δ~δ'.

PROOF. We denote by HomC7(E)(L2(M: p + q), L2(M: p + q)) the space of
all intertwining operators on L2(M : p + q). Using the isometry c : L2(M : p + q)->
L2(M)® ®L2(M)((]? + ̂ )-times), for any Ijn Homϋ(JΪ) (L

2(M : p + q), L2(M :
p + q)) there exists an operator A on L2(M)(g) ®L2(M) such that A ι = t Ά.

We put

where z, jeNp and fc, / e N*. For any r̂ in U(E) by definition of Apfβ(^f) we have

^Λβ^) ' ̂ ' Then we have

τtp,q(g)A(ξi®ξk) = Λ

where s e Np and teNq. On the other hand we have

where meNp and neNq. Since A ftpfq(g) = ίtptq(g) A9 we conclude that for
any s and t

ΣΛΪ flίϊ^fZ = Σm,» a™n9mι9nk'
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Fix any / in Np and /' in Nq then we have

(Σj.ι a^jg^z) ((

= \Ω (Σm.» «Sn0*i0,*

For any s = (s1,..., sp) and ί = (ίί,..., ί€) such that sh=£sh, (h^hf) and
from Lemma 2, we get

αft = (Σy,ι *W«

where Σm,« means the summation which is taken over m and n such that (m, z)~
(5, /) and (π, fc)^(ί, /')• From Lemma 1 this implies that α}V=0 unless there
exist σ and τ such that / = i σ and Γ = k τ. Thus we obtain

where Σ^>τ means the summation which is taken over σ and τ such that / = i - σ
and Γ = k-τ. Now we assume that ί = (z'1,..., zp) and fc = (fc1,..., feg) satisfy the
following conditions

, ̂ ίfc, ( f c ^ f c ' ) and k f c ^ k Λ , ( f c ^ Λ ' )

Then we have

so that we can write

Thus for any i and k we get

<*Jl =

where Σσ,τ πieans the summation which is taken over σ and τ such that j — i σ
and / = fc τ. It follows that

Hence we conclude that

where Σ f f )τ is taken over all σ in Sp and τ in Sβ. We denote by JPΛ the space
of all operators on L2(M)® ®L2(M) ((pH-^)-times) spanned by the set {/l(σ)®
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λ(τ)\ σ e Sp, τ e ®β} over C. Then for any g in U(E) it is clear that A ftptq(g) =

τtp>q(g) A. Thus we obtain

)9 L2(M: p + q)) s >M.

This implies that

dimHomϋW(L2(M: p + «), L2(M:

We remark that L2(M: Jp + ̂ f)=ΣP Σa #'Λβ.p.*®r*®K,, and that ΣP Σa(dim 7*
®^)2 = (ΣP(dim Fp)

2)(Σa(dim *a)2) = p!tf!. Now the assertion of the theorem
follows immediately from the following lemma.

LEMMA 3. Let (π, j f ) be a unitary representation (of a group G) such that
3? is a direct sum of closed invariant irreducible subspaces. Suppose that

Jf = Σl=ι^fc^fc (orthogonal decomposition) where nιkWk=Wk-\ ----- \-Wk (mk-
times) and Wk (fc=l,...,s) are closed invariant subspaces. Further assume

that dimHomG(^f , ̂ )=Σl=ι (mfc)2 Then Wk (/c=l,..., s) are irreducible and
Wk is equivalent to Wk, if and only if k is equal to k'.

PROOF. Let Vl9...9 Vl be the representatives of irreducible subspaces which
occur in 3F . We put

Wk = Σί=ι

where n\ e N W {0}. Then we have

^ = Σ

Thus we get

Σί=ι (Σs

fc=ι

= dimHomG (jf, JP) = Σl=ι (™k)2-

Since mk (/c=l,..., s) are positive integers, we have the following

Σί=ι W1)2 = 1 (k,=k2)9 Σί=ι W0(/ιϊa) = 0 (

Hence / is equal to s and Wk (fe = l,..., 5) are irreducible and Wk is not equivalent
to Wk,(k^k'}.

§ 2. Peter- Weyl theorem for U(E)

We denote by L2(MxM: p + q)* the Hubert space of all square integrable
functions F on (M x M) x x (M x M) ((/? + g)-times) such that for any σ in Sp

and τ in 6
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For any /in §pjί there exists a unique F in L2(MxM: /> + #Γ such that

l, «f),..., (*4> K2,), (vl υΐ),...9 (i J, t;2

(3fxM)x x(MxM)

x(ζ(κ}, ι/?))- (C(ι/i,ι<5))-C(ι>^^ (see [2]).

As is easily seen the measure v is C7(F)-in variant. For any g in U(E) we

define

where /e L2(ί2, v). Then πL and πκ are unitary representations of V(E). For
any (gl9 g2) in l/(E) x U(E) we put

Then ω% is a unitary representation of U(E) x U(E). Clearly ξ>pt(] is ω#(U(E) x
(7(E))-invariant. We obtain a unitary subrepresentation (ωp>€, §p>9) of U(E) x

THEOREM 2 (Peter-Weyl theorem for U(E)). The unitary representation
ω# of U(E) x U(E) is decomposed as follows:

L (Ω9 V) = 2-in=o © Σp + q=n © Σp Σί ^p,q,p,δ®^ p,q,ptδ)

where ωp>q(gί9 g2) corresponds to πpίqip>δ(g1)®n*)qtpίδ(g2) for each (gl9 g2) in U(E)
x U(E).

PROOF. We put <r£β = {/eL2(M: /? + ̂ )®L2(M:p + ̂ );(I(σ,τ)®l(σ, τ))/=
/, (σ, τ)eSpx®9}. Then we have the canonical isomorphism CPΛ: L2(MxM:

p + q)~-+ξ)^,q> As we saw in the previous section, we have

L2(M: p + q) * ΣP Σδ^P,q,P,δ®V*p®Vδ.

We remark that the unitary operator I(σ, τ) corresponds to /®p*(σ)(χ)(5(τ)

where / denotes the identiry operator on 3fp,q>p,δ. Thus we have

a, ΣP2 Σδ2(^P>q,Pίtδl®v*pl®vδί)®^^

σ)®δ2(τ))7 = y, σ e Sp, τ^eSJ .

Using the Schur's lemma we obtain the following
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dim{\vEV^®Vδί®V*2^Vδ2ι (p?(σ)®51(τ)®pί(σ)®52(τ))w = w, σe <5P,

f 0 (P! g & p ϊ or 5?gέ5 2 ),

"I 1 (P^P2* and <5*^<5 2).

Hence we get

Sp,4 = Σp Σδ3Pptqtp,δ®^ptqtp*,δ* = Σp Σ<5 ^p,qtp,δ®^ p,q,ptδ

§ 3 Polynomial representations of discrete class

Let (π, §) be a unitary representation of U(E). For u and w in § we define

a function </>J)W(#) on l/(l£) by

We call (π, §) a polynomial representation of U(E) if there exists an orthonormal

basis {̂  iεN} of § such that <£?,/#) = (t>;, π(g)Vj)(i, jεN) are polynomials.
We denote by §j the space of all finite linear combinations of υi (i ε N). We call

(π, §) of discrete class if the multilinear functional B:

ξ>f x £f x §7 x &f 3 (υ, w, v', w') I—

is continuous. The following proposition can be proved similarly to the case of

), (see [6], Proposition 3).

PROPOSITION 1. 1) Lei (π, §) fre an irreducible unitary polynomial

representation of discrete class. Then there exists a positive constant c such

that

(z) (Φl*.» (z)rdv(z) = φ, 17') (W, W') (0, W, V', W' 6 ξ)f) .

2) Let (π, §) αnί/ (π', §') 6e irreducible unitary polynomial representa-

tions of discrete class. If π and π' are non-equivalent, then

Φπ

v*w(z)(φϊ*^(z)Γdv(z) = 0 (t;, we§ / ? v', w'eδ».

THEOREM 3. For any p anJ q in No {0} and for any irreducible unitary

representations (p, Kp) o/ 6p and (<J, Fδ) o/ ©g, (πp>qιpfί, Jfp,q,pj) is an irreducible
unitary polynomial representation of discrete class. Conversely for any ir-

reducible unitary polynomial representation of discrete class (π, §), there exist

p and q in No {0} and irreducible unitary representations (p, Vp) of 6p and

(δ, Vδ) of &q such that (π, §) is equivalent to (π^ ,̂
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PROOF. Let {e1?...,es} be an orthonormal basis of Vp and {/ι,. >/ί} an

orthonormal basis of Ff. Then we have an orthonomal basis ^pq,p)δ —

{ξiί®-'®ξip®ξkί®'~®ξkq®eio®fk0'> io. * ip> fco,-, kqeN} of L2(M)®. .®
L2(M)®FP®F£. It is easy to see that ΣσftΛ.(σ)®^(τ)®P(σ)~1®5(τ) defines the
orthogonal projection of L2(M)® ®L2(M)®Fp®F| onto the subspace which

is equivalent to ̂ PΛtp^ Hence for the proof of "only if" part of the theorem it

is sufficient to prove that π^®/®/ is a polynomial representation of discrete

class. We put

vik =

υjι =

ζlh ~ ^nh 9 nhlhζnh

And we put

Then we have

where δίojo and δkolo are Kronecker's ^. Thus φίk.ji is a polynomial on U(E).

Next we shall prove that the functional B is continuous. For any 0, w, ι/, wr

in L2(M)® ®L2(M)®FP®F| we put

Then we have

' = Σj',r drvυrv.

It follows that

unless (i,j)~(i',n and (fc, 0-(fc', /')•
We put

d = max {ί, j, fc, /, i', /, fc', /';

Using the Schwarz inequality we have

\B(υ, w, υ'9 wOl =

= 0

, cvk.9 djτ ^ 0} .
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g Σα Σf Σf.*

(where Σα and Σ/» mean the summations which are taken over all α in Zd(p) and

β in Zd(g) respectively, Σf>t

 and Σli mean the summations which are taken

over (i, fe) in Γ '(α) and (j, Z) in T-^) respectively,)

= Σ. Σ,

=/»!?! II e|| IMI ||»ΊI

Thus we have

Conversely let (π, §) be an irreducible unitary polynomial representation of
discrete class. Then by definition, there exists an orthonormal basis {̂  ieN}

of § which satisfies the following conditions; Φ^j(g) = (vl9 n(g)Vj) (i, j e N) are
polynomials and B :

&f x §r x S/ x §/ a (ι?, w, ϋ', w') I — > β 0;fw(z) (ψ f w<z))-dv(z) e C

is continuous. From Proposition 1 there exists a positive constant c such that

B(v, w, f/, w') = φ, t?')(w, w'),

where t?, w, ι/, w' e Sy. Now we fix vθ9 and for any υ in §y we define a linear
operator A by

Since 5 is continuous, A defines a bounded linear operator of § into L2(Ω, v).
As is easily seen we get the following

(Aπ(g}υ)(z) = ψ'̂ .Jz) = φ**OQ(g-*z) = (πL(g)Aύ)(z).

This implies that A is an intertwining operator of § into L2(ί2, v). Thus (π, §)
is equivalent to a subrepresentation of (πL, L

2(£2, v)). On the other hand, from
Theorem 2, we can prove that any subrepresentation of (πL, L

2(Ω, v)) is equiva-

lent to (πpίq>pίδ, ^p,q,ptδ) for some p and q in ΛΓ U {0} and p in ® p, <5 in ©q. This
completes the proof of the theorem.

REMARK. Using the similar argument we improve on the inequality:



An Analogue of Peter- Weyl Theorem 541

in the proof of Theorem 2 in [6] as follows :

\B(v, w , f / , w ' ) | ^π !
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