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Introduction

In the previous paper [6] we proved an analogue of the Peter-Weyl theorem
for the infinite dimensional rotation group O(E) (for the definition see [6]). In
this paper we shall prove the analogue of Peter-Weyl theorem for U(E) (for the
definition see §1). In the paper [6], for a proof of the irreducibility of the
representation m, , we used the results of A. M. Vershik, I. M. Gel’fand and M.
1. Graev [9] in which they used the results of A. A. Kirillov [4]. In this paper
we shall prove the irreducibility of the representation n,, ,; where the method
of proof also works for m,,. Thus the arguments in our previous papers [5]
and [6] are complete in our framework. It is plausible that the representations
U,,q.0.6 of the group of diffeomorphisms on a compact riemannian manifold would
be able to be constructed in such a way that they should correspond to the
representations U, , (for the definition see [6]) given by A. M. Vershik, I. M.
Gel’fand and M. 1. Graev.

§1. Irreducibility of representations n, , , ;

Let M be a compact riemannian manifold. We denote by C*(M, R) the
space of all real valued C*-functions on M and L?(M, R) the Hilbert space of
all square integrable real valued functions on M. We denote by C*(M, R)*
the dual space of C*(M, R). Let C*(M) be the space of all complex valued C*-
functions on M. We denote by L?(M) the Hilbert space of all square integrable
complex valued functions on M. We write E, H and E* instead of C*(M),
L2(M) and C®(M)* respectively, where C®(M)* denotes the dual space of
C®(M). We denote by U(E) the group of all linear homeomorphisms of E
which are isometries of H. Let L2(M x --- x M) be the Hilbert space of all square
integrable complex valued functions on M x --- x M (r-times). We write simply
L2(M: r) instead of L2(M x ---x M). Let V be a finite dimensional vector space
with an inner product and L2(M x ---x M, V) the Hilbert space of all V-valued
functions f on M x :-- x M (r-times) such that

-
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We also write simply L2(M: r, V) instead of LZ(Mx --- x M, V).
As in the previous paper [6], we shall consider a Gel’fand triple

C™(M x M) = LA(M x M) = C*(M x M)*.

We can identify C*(M x M), LM x M) and C®(M x M)* with EQE, HQH
and (EQE)* respectively, where EQE and H®H denote the completion of
EQ®E and H®H respectively. Then we get a complex Gaussian measure v on
(EQE)* such that for any { in EQE

e‘”;”z =S K(Z; C)dv(z), K(Z; C) —_ ei(<z,C>+(<z,€>)‘),
(]

where Q=(E®E)*, (for a function f on Q we often use the notation (f(z))~
instead of the complex conjugation of f(z)). Let N be the set of all positive
integers. For any p and g in N U {0}, we consider the complex Hermite poly-
nomial;

+
H, i)=(—l)P+‘1e”£§—a;e‘“ (teC).

In the following we fix, once for all, an orthonormal basis {¢;; je N} of L*(M)
such that ;e C*(M, R) for any je N. Then {{;®¢;; i, je N} is an orthonormal
basis contained in C*(M, R)® C*(M, R). We put

B, ,=17=1 (pij!qij!)—l/zHg.-,j,qg,j(<Z’ &®ED, Kz, &L®ED)7);
28i=1Pij=Ps 25j=14:;=4}-

Then it is known that \Uj_o (\J 4 4=, B,,,) is an orthonormal basis of L*(Q, v).
We denote by $,, the closed subspace spanned by 8B,,. Then we have

L22,v) = Y520 D X pig=n D Dpg (Wiener-It6 decomposition) .
We denote by P, , the orthogonal projection of L%, v) onto ,,. We consider
the transformation 7 defined by

THO = SQ K(z; O(f(2))dv(z)  (feL*L, ), (cEQE),

(see [2]). And we define a transformation 7, by
(Te)Q) = eV i Z s gen T (P ) (D)

Then 7 is injective. In case 7, f=¢, we write f=¢@*.
For any g in U(E) we can define linear mappings L, and R, of EQ®E into
itself by

L,(¢®n) = (9O)®n, R (E®n) = {®(g9n).
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We denote by gz and zg the dual actions of U(E) on Q defined by
92, > =<z, Li-i0), <29,0) =<z, RL) ((eEQE).
For each g in U(E) we shall identify g with the linear form on EQE defined by
LG®& (& 9s) (G, jeN).

Thus we regard the group U(E) as a subset of Q. Let C[X;;, X5 i, j, k, [e N]
be the polynomial ring of infinite variables X;;, X), over C. Let C(Q) be the
set of all continuous functions on Q. We denote by C(U(E)) the set of functions
given by the restriction of functions in C(Q) to U(E). We consider the mapping
from C[X;;, Xy i, j, k, [€ N] to C(Q) defined by the map: F—f, where F((X;,
Xw) € C[Xyj Xus iy J, k, 1e N] and f(2)=F((Kz, &®ED, (K2, &@®E)7). We
shall denote by F(Q) the image of this mapping. We call functions in F(Q)
polynomials on Q. We put F(UE))=F(Q)|yx. We also call functions in
F(U(E)) polynomials on U(E). Itis easy to see that the restriction mapping is
injective. Hence for each polynomial f on U(E) there exists a unique poly-

nomial f on Q such that f=f|U(E). In the following we use the same notation
f instead of f. Since

gi; = (9&;, &) = ({9, &LERXED),
gi; can be regarded as a function on U(E) which is clearly a restriction to U(E))
of the function g;(z)=({z, {®@&;>)” on Q. As
T i, Hp 00 (<5 E®ED, (-5 GREM)N() =TT, (6:®E, OPi(C, E® &)
= I, ((gi;(O))Pu(gi ()4 = (T (: )7 (9:) %) (D),

we have

(TL,; (@:)P(g: )% ) (2) = Ti; Hp,y 0., (<25 E®ED, (K2, EREN)T).

Let &, be the group of all permutations of {1,..., r}. Let (p, V,) and (3, V;)
be irreducible unitary finite dimensional representations of €, and &, respec-
tively. We denote by S, the set of all equivalence classes of irreducible unitary

representations of &,. The group S,x &, acts on M x---xM ((p+q)-times)
on the right by

(Urseens Upy Opsenns 0) (0, T) = (Ug(ryseees Ug(pys Va(1ys--+» Vr(g)) -

We write simply u-0 and v-t instead of (#,(1),..., Ug(p)) ANA (Vy(1)seees Vyqqy) TE-
spectively. The right action of &,x &, induces an action (o, t) on L2(M: p+
q) defined by

Mo, D), v) = fu-0,0-7)  (feLXM: p+q)).
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For any irreducible unitary representations (p, V,) of &, and (6, V;) of &,, we
denote by Hom (¥}, V,) the space of all linear mappings of V; to V,. We give the
space Hom (¥}, V,) the natural inner product induced by those of V, and V.
We put

Hopaps = 1f€LX(M: p + g, Hom (V,, V,));
fw-o,v-1) = p(6) " f(u, 1)é(r), 0 €S, T€S,}.
By the canonical isomorphism ¢ we have
LXM: p+q) = LAM)®--®LXAM)  ((p+q)-times).
For any g in U(E) we define a unitary operator #, (g) on LA(M)®---® L% M) by
Rpo(9) (@ ®E, B8, ® - ®Ey,) = (9:)® - ®(9E:,)®(9*4k ) ® - ®(9*E,) »

where g* denotes the adjoint operator of g. We denote by 7, ,(g) the unitary
operator on L?*(M: p+q) which corresponds to #,,(g9). For any ¢ in &, and
1 in &, we define the action A(6)®A(1) on L*(M)®---®@ LM) by

(A(U)®/1(T))(€i,®"'®‘fip®fk,®“'®fkq)=fi,(l)®"‘®€i,(m®ék,(,)®“' ®5k,(q)-

We denote by 7, ®I the unitary representation of U(E) on L%(M: p+¢)®
Hom (V;, V,), where I denotes the identity operator on Hom (¥, V,). Using the
canonical isomorphism we have

LX(M: p+q, Hom (V;, V,)) = LM : p+q) ® Hom (V;, V,).

Hence we obtain the unitary representation #,,,; of U(E) on L*(M: p+gq,
Hom (V;, V,)) which corresponds to the representation 7, ,®I. Since 7, (9)®1
commutes with A(o, 1)®I, Hpaps 15 Tpq,s(U(E))-invariant. So that we get
the subrepresentation n,,,; of U(E) on ,,,; We put (Mx--xM)'=
{(ugye.su)eMx--xM; u,#u, (m#n)}, and write simply (M: r)’ instead of
(M x .- x M) (r-times). It is easy to see that there exist open subsets F, in M x
XM (p-times) and F, in M x---x M (q-times) which satisfy the following

conditions. The mapping ¢:
F,xF,xG,x&,3(u,v,0,7) — (u-0,v-1)e(M: p)’x(M: q)
is injective and
HF,xF,xG,xS) = (M: p)x(M: q).

Let L?(S,) be the space of all functions on G,. We introduce an inner product
defined by the normalized Haar measure on S,. Then by the Peter-Weyl theorem
for &,, we have
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LX) =Z,V,0V3,
where Y, is taken over all p in é,. We note that
rl =dim (L&) = ¥, (dim V,)?
which we need in the proof of Theorem 1. Now we obtain the following

LXM:p+q) = LAF,xF,xS,x8)) = (LA(F)®LA(S,))Q(LAF )R LX(S,))
= (T, LA(FY®V,®VNB(Z; LAF)®V,®V})
=Y, 2 (LAF)QLAF)RV,RVHRVI®V,
=Y, >s LA(F,xF, Hom (V;, V,)QVi®V;.
Hence we get
LZ(M: P+q) = Zp Z& fp,q,p,&@ V’:®V6
For any d in N we put Ny;={1,...,d}, (Ngx N =(Ngx Nj) X -+ x (IN; %
N,) (r-times). As for elements in (IN;x N,)? x (IN;x N,;)? we often use the sym-

bolical expression ((i, j), (k, 1)) instead of ((i1, j1)---> (ips jp)s (k15 11)s--es (Kgs 1)-
S, and &, act on (N, x N,)? x (N, x N;)? on the right by

((l g, .] : 0)9 (k T I T)) =((ia(1)a ja‘(l))i' ey (ia(p)’ ja'(p))a (kt(l)s lr(l))r“’ (kr(q)’ lt(q)) s

where 6 e S, and 1€ S,. We denote by Z,(r) the set of all d x d matrices a=
(o) Which satisfy the following conditions;

Ly € NU {0} (m’ ne Nd) ’ Efn,n=1 Oyn = T

For each (i, ))=((iy, j1)s---> (iy» j)) €(INgx N we assign an element o=(a,,)€
Zr) by the following rule and we put T,(i, j)=«. a,, is the number of the com-
ponents (i, j) (s=1,..., r) such that i;z=m and j;=n. And we define the mapping
T,x Ty from (N;x Np)? x (Nyx Np)? to Z(p) x Z«(q) by (T, T)((, j), (k, D)=
(T,(i, j), Tk, D). In case T,(i, j))=T(i', j') we write (i, j)~(i’, j'). Itis easy to
show the following lemma.

LemMa 1. (i, j)~(i', j') holds if and only if there exists a ¢ in S, such
that (il, ]I)=(l 0, .] : 0'), Where (la .])s (i,a .],) € (Nd X Nd)r'

From this lemma we see that the number of elements of T;1(x) is equal to
(T8 n=1 %maD)™'. We put N'=Nx---x N (r-times). For any i in N? and k
in N4 we write simply ¢;®¢, instead of {; ®-®¢; ®&,®-+- @&, in LAM)® -
®L2(M). Then for any g in U(E). and for any j in N? and I in N4, we have

ﬁp,q(g)(éj@)él) = (gfj)®(9*él) = géh@"'®g€jl,®g*£h®”'®g*élq

= ik (giljl"'gipjpgklh'"gkqlq)€i®ék9
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where 3;, means Y 3_i-XP-; Y= 2k,=1- In the following we write
symbolically g;;G,; instead of g;,;,-**9,,;,k,1,"**Tx,1,- FOranyi,jin N?and k, |
in N4, we denote by max {i, j, k, I} a maximum number included in the set {i,,...,
Ips Jiseees Jpo Kisees Ky 1iseees I}, We put d=max{i, j, k, I}, T,(i, j)=a and
T(k, )=pB, where ae€Z,(p) and feZ,q). Since (9;;G1)*(2)=ITt n=1 H,, . po
Kz, ,®&, Kz, £,®&,>)), the following lemma is obvious.

LEMMA 2. For any i, j, i’,j' in NP and for any k, 1, k', ' in N4 let d=
max {i, j, k, I, ', j’, k', I'}, (o, B)=(T,(i, j), Ty(k, D)) and (', B)=(T,(¥', j')s
T(K', ). Then it follows that

39 (950 (Gr 1Gi) @)d(2)

[ mon=1 ! Brun ! Brnn) (6 N~ (5 §) and (k, D~(K', 1)),
0 (@, (@', j) or (k, D~ (K, I)).

THEOREM 1. 1) If p and 6 are both irreducible, then (n,, , s #p 48 IS
irreducible.

2) Two representations (m,, ,s #pqps) ANAd Ty g o5 Hp g prs) GTE
equivalent if and only if p=p’, q=q', p~p’, 6=~0'.

ProOF. We denote by Homyg) (L%(M: p+q), LA(M: p+q)) the space of
all intertwining operators on L2(M: p+q). Using the isometry ¢: L2(M: p+q)—
LA(M)®---®LA(M)((p+ q)-times), for any 4 in Homyg, (LAM: p+q), LA(M:
p+q)) there exists an operator A on LAM)®---®@L*(M) such that A-c=¢-A.
We put

A®EY = 2 a}’iéj@éb

where i, je N? and k, e N%. For any g in U(E) by definition of #, ,(g9) we have
A-R, (9)=%,,9)-A. Then we have

ﬁp,q(g)A(gi@)ék) = 7"Ep,.q(g)(Zj,l aﬁf;@él)
=2 ai";(géj@g*fz) =2t Zj,l ai"fﬂsjérlf;@én

where se N? and te N4. On the other hand we have

Aty (9) (E:i®8&) = A(gE;®9*E) = A X mn ImiT kem®@En)
= ZS,t Zm,n a;';ngmignkés®ét’

where meN? and neN4. Since A4-#%,,(9)=1%,,(9)- A, we conclude that for
any s and ¢

k. o= _
ZJ'J a;'lgsjgtl = Zm,n A" Imi nk:
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Fix any j' in N? and I’ in N4 then we have
[, (5410%0.18.°) (02 @) dv(2)
= (S 20,802 (0,300 ().

For any s=(sy,..., s,) and t=(ty,..., t,) such that s, #s, (h#h’) and 1, # 1, (h#h'),
from Lemma 2, we get

athe = (5004050 (@ G @) dW(2)
- SQ (B O Giln)*(2) (GG 0) () dV(2) = T, am,

where 3! , means the summation which is taken over m and » such that (m, i)~
(s,j") and (n, k)~(t, I'’). From Lemma 1 this implies that a’%;, =0 unless there
exist o and 7 such that j'=i-o and I'=k-7. Thus we obtain

ik — 2 (50~ )(ter~1) 2
a;"l’ - Za,r as? ‘ te - Za,tafg-o')(t--z)’

where >°2  means the summation which is taken over ¢ and 7 such that j'=i-o
and I'=k-7. Now we assume that i=(iy,..., i,) and k=(k,,..., k,) satisfy the
following conditions;

iy # iy (h#h) and Kk, #k, (h#h).

Then we have

ik —_
A(i.o)(k-v) = Ais.0) 1.1y

so that we can write

ik —_
Ali-o)y(kr) = Qg
Thus for any i and k we get
a;’; = Zi.:aa,n

where Y3 . means the summation which is taken over ¢ and 7 such that j=i-o
and I=k-t. It follows that

A(é:@ék) = Zj,l aﬁé;@fl = Za’,t aa,r&i*a’@ék'r'

Hence we conclude that
A=3,.0,M0)QN1),

where Y, . is taken over all ¢ in €, and 7 in &, We denote by .#, , the space
of all operators on LA(M)®---®L(M) ((p+ q)-times) spanned by the set {1(d)®
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M1); 0€E,, 1€ S} over C. Then for any g in U(E) it is clear that A-#, ,(9)=
#,49)-A. Thus we obtain

Homy g, (L*(M: p+q), LAM: p+q)) = 5,
This implies that

dim Homy,g) (L%(M: p+q), LA(M: p+q)) = plq..

We remark that LX(M: p+q)=3, 35 #,,,,:0V5®V;, and that 37, 3, (dim V}
®V5)*=(X,(dim V,)?) (X ;(dim V;)?)=p!q!. Now the assertion of the theorem
follows immediately from the following lemma.

LEMMA 3. Let (n, /) be a unitary representation (of a group G) such that
H# is a direct sum of closed invariant irreducible subspaces. Suppose that
H =Y %-, mW, (orthogonal decomposition) where mW,=W,+---+ W, (my-
times) and W, (k=1,...,s) are closed invariant subspaces. Further assume
that dim Homg (o#, #)=Y35_, (m)?. Then W, (k=1,..., s) are irreducible and
W, is equivalent to W,. if and only if k is equal to k'.

ProOOF. Let Vi,..., V; be the representatives of irreducible subspaces which
occur in #. We put

W, = Tl ntV;
where n¥e N\U {0}. Then we have

H =2 (Zh=1 mn) V.
Thus we get

it (Zi=mynb)? = Thoy 2ii=1 Zho=1 MM, (nf1) (1))
= dim Homg (o, o) = Xj-; (m)>
Since m, (k=1,..., s) are positive integers, we have the following
= ()2 =1 (ky=ky), Xl (i)(@?) =0 (k1 #ky).

Hence [ is equal to s and W, (k=1,..., s) are irreducible and W, is not equivalent
to W, (k#Kk').

§2. Peter-Weyl theorem for U(E)

We denote by L2 (M x M: p+q)~ the Hilbert space of all square integrable
functions F on (M x M) x --- x (M x M) ((p+ q)-times) such that for any ¢ in &,
and 7in &,
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F((u;(l)’ ug(l))s"" (u}:(p)s “3(1:)), (03(1), U%(1))w-, (Utl(q)a Utz(q)))
= F((u}, u}),..., (up, ud), (vi, v}),..., (v}, VD).

For any fin §, , there exists a unique F in L2(M x M : p+q)” such that

('7*f)(C)=g F((ul, u}),..., (up u3), (v}, v]),..., (v} D)

(MXM)X:-X(MXM)

x (L(ut, ud)™ (L (up, up)) (0], v]) -+ {(v], v]) duidui---dvidv], (see [2]).

As is easily seen the measure v is U(E)-invariant. For any g in U(E) we
define

(@) (@) =f(g7'2), (mr(9)N)(2) = f(z9),

where fe LA, v). Then n, and mg are unitary representations of U(E). For
any (g4,, g,) in U(E) x U(E) we put

(04(91, 92)1)(2) = f(g1'2g,).

Then w, is a unitary representation of U(E) x U(E). Clearly 9, , is w4 (U(E) x
U(E))-invariant. We obtain a unitary subrepresentation (w,,, 9,,) of U(E)x
U(E).

THEOREM 2 (Peter-Weyl theorem for U(E)). The unitary representation
wy of U(E) x U(E) is decomposed as follows:
LZ(Q’ V) = ;1.0=0 @ Zp+q=n @ Zp Z& '%p,q,p,éé‘}f:,q,p,és

where w, (g, g,) corresponds to n, , , (9:)®7} . , 5(g2) for each (g, g,) in U(E)
x U(E).

Proor. We put $, ={fe LA(M: p+q)Q@L*(M: p+q); (A(c, )® (0, 1)) f=
fi(0,7)€eS,xS,;}. Then we have the canonical isomorphism ¢, ,: LM x M:
P+q9) " —=9,, Aswe saw in the previous section, we have

LAM: p+q) = ¥, X5 Hp,0psQVEQV 5.

We remark that the unitary operator (e, t) corresponds to I®p*(c)®d(r)

where I denotes the identiry operator on 5, , ;. Thus we have

S:)p,q%' 5;#1 = {}’ € zm 251 zpz Zt’z ('}fp,q,m,éx ® sz ® Vél)c;)(‘%mq,ﬂz.ﬁz@) V:2® Véz);
(I®pH(0)®6,()RIp3(0)D (=7, 0 € S,, 7,68}

Using the Schur’s lemma we obtain the following
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dim {we V} ®@V; ®@VE®V;,; (p¥(0)®0,(1)®@p3(0)R6(D)w=w, 0 € S, 1€ S}

0  (py#ps or Of#6,),
I (py~p3 and of ~9,).

Hence we get

35,,,4 = zp s H p,0,0,8QH p o400 = 2, s '}fp,q,pﬁ@‘}f:ft,q,p.ﬁ'

§3 Polynomial representations of discrete class

Let (7, $) be a unitary representation of U(E). For v and w in § we define
a function ¢7 ,(g) on U(E) by

5.w(9) = (v, w(g)w).

We call (%, $) a polynomial representation of U(E) if there exists an orthonormal
basis {v;; ie N} of $ such that ¢7 (g9)=(v;, n(g)v;)(i, je N) are polynomials.
We denote by 9, the space of all finite linear combinations of v;(ie N). We call
(n, ©) of discrete class if the multilinear functional B:

9, % B, %9, % 9,3 (v, W, V', W) —> SQ % ,(2) (65 A2))dW(z) €€

is continuous. The following proposition can be proved similarly to the case of
O(E), (see [6], Proposition 3).

PrOPOSITION 1. 1) Let (m, ) be an irreducible unitary polynomial
representation of discrete class. Then there exists a positive constant ¢ such
that

SQ ;‘f’w(z)((ﬁ’;?,w/(z))‘dv(z) = C(Ua D’)(W’ W,) (Ua w, U’, W' eg)f)-

2) Let (n, ) and (7', 9') be irreducible unitary polynomial representa-
tions of discrete class. If n and n' are non-equivalent, then

[ #1@@r @ dE =0 ©wes, v, v es).

THEOREM 3. For any p and q in NU {0} and for any irreducible unitary
representations (p, V,) of €, and (3, V;) of S,, (4.6 #p,q,p,8) 15 an irreducible
unitary polynomial representation of discrete class. Conversely for any ir-
reducible unitary polynomial representation of discrete class (n, §), there exist
p and q in NU {0} and irreducible unitary representations (p, V,) of €, and
(6, V5) of S, such that (m, D) is equivalent to (n,, , 55 Hpg.0.6)-
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ProOOF. Let {e,,..., e} be an orthonormal basis of V, and {f;,...,f;} an
orthonormal basis of V}. Then we have an orthonomal basis B,,,;=
{£,@ Q& R, ® ®&,®€;,®fios ir-s iy Kosory kg N} of LAM)@-+®
LAM)®V,@V%. It is easy to see that 3, A(0)@AU1)®p(c) ' ®I(7) defines the
orthogonal projection of L2(M)®---®LA(M)®V,®V¥ onto the subspace which
is equivalent to &, , , ;. Hence for the proof of “only if”’ part of the theorem it
is sufficient to prove that #, ®I®I is a polynomial representation of discrete
class. We put

U = €i1®"'®fi,,®ékl®"‘®§kq®eio®fko,
V= €j1®“'®§jp®§ll®'“®élq®ejo®ﬁo,

gi.l.h = th gmhjhémh’ g*iln = Znn g"h’hé"h’
And we put

i 1(9) = Vi, (7, (RIRDvy).

Then we have
i, (9) = 5ioj05kologi1j1"'giqugkll{“gkqlq’

where 0, ;, and 6§, are Kronecker’s 6. Thus ¢;.; is a polynomial on U(E).
Next we shall prove that the functional B is continuous. For any v, w, v’, w’
in L2(M)®--QL2(M)®V,® V¥ we put

V=i, W= Xjabyvy, V=35 v, W= div.
Then we have
Pol9) = (0, (R, (DRIRDW) = 3, 3, 5iojo5kozoaikbﬂgi,jl"‘gi,,j,,gku““é—iquq
=ik 2.1 %i0joOkole@ikb 19T -
It follows that
[, @) @1y ) @) () = 0

unless (i, j)~(i’, j') and (k, )~ (k', I').
We put

d = max {i, j, k, l, i’, j,, k’, l’; a,-k, bjl’ ci'k'? dj'l' # 0} .
Using the Schwarz inequality we have
1B, w, o', W)l = || 82,29} W) )

= Zi,k Zj,l Zi’,k' Zj’,l’ 5ioj05k0105i6j55k61(,|aik" bjl”ci’k’ndj’l’l
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%|{, @330 @0y @y )
S Yo s Xt Zhulaulcullbylld (T ) (TT5.0 B

(where ¥, and ¥, mean the summations which are taken over all « in Z,(p) and
B in Z,(q) respectively, 3¢, and ¥# 6 mean the summations which are taken
over (i, k) in T,%(a) and (j, I) in T;!(p) respectively,)

= 2o Zp (P T L o DXLk ah) VA (Xf k ch) 2}

x {g! ([T, B ) (X5, 030228 502} (T i s D (T, Bn )

Splg{(Xinal) (Xiw et} ?{(Z;,105)(Z;,145)}1?

=plg!ivll Iwll lo"Il lw'll.
Thus we have

[B(v, w, v', w)| = plg!floll [wil o'l W]l

Conversely let (%, ) be an irreducible unitary polynomial representation of
discrete class. Then by definition, there exists an orthonormal basis {v;; ie N}
of $ which satisfies the following conditions; @7 (g)=(v;, n(g)v;)(i, je N) are
polynomials and B:

Dy X9, x9r x93, w, v, W) — gn shw(2) (93 w(2))"dv(z) e C
is continuous. From Proposition 1 there exists a positive constant ¢ such that
B(v, w, v', w') = c(v, v')(w, ),

where v, w, v', w' €9,. Now we fix vy, and for any v in H, we define a linear
operator A by

(Av)(2) = ¢57,(2) -

Since B is continuous, A defines a bounded linear operator of § into L2(Q, v).
As is easily seen we get the following

(An(g)v) (2) = Pitg),0(2) = $To(9712) = (m(9)40) (2).

This implies that A is an intertwining operator of § into L%(2, v). Thus (%, H)
is equivalent to a subrepresentation of (n,, L%(2, v)). On the other hand, from
Theorem 2, we can prove that any subrepresentation of (n,, L?(Q, v)) is equiva-
lent to (7,4 5,50 #p,q,0.5) fOr some p and ¢ in NU {0} and p in @p, d in éq. This
completes the proof of the theorem.

ReEMARK. Using the similar argument we improve on the inequality:
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|B(v, w, v, w)l < (nD2|o]l [wll lv"]l Iw']l ,
in the proof of Theorem 2 in [6] as follows:

[B(v, w, v/, w)| = nlllof [w]l o]l fIw]l.
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