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Introduction

This paper deals with the problem of existence and periodicity of weak
solutions of the initial-boundary value problem for the Navier-Stokes equations
in domains with smoothly moving boundaries. Hopf [5] proved the existence
of a global weak solution in a cylindrical domain by using the Faedo-Galerkin
approximation. On the other hand, Fujita-Sauer [4] and Lions [8] obtained
the same result in the case of time dependent domains with Lipschitz continuous
boundaries by a penalty method ([4]) or a singular perturbation method ([8]).
Our main purpose in this paper is to show that the method of Hopf [5] can be
applied with a slight modification to the case when the domain moves smoothly.
An advantage of Hopf's method is that we can show the existence of a periodic
solution when the domain moves periodically and the boundary data are small
enough.

To show the existence of a weak solution we reduce in Section 1 the given
problem to the one in a cylindrical domain, assuming the existence of a dif-
feomorphism which sends the given time dependent domain to a cylindrical one.
In doing so, the velocity and the pressure gradient will be transformed as vector
fields. Similar techniques are used in Bock [1] and in Inoue-Wakimoto [6],
where the existence of a unique local strong solution is proved by the Faedo-
Galerkin method ([!]) or the method of evolution equation in Hubert space ([6]).
However, Bock [1] does not regard the velocity and the pressure gradient as vector
fields, and so the calculation given in [1] is complicated. In [6] Inoue and
Wakimoto treat the velocity and the pressure gradient as vector fields, but they
assume that the Jacobian of the diflfeomorphism is equal to 1, which is a strong
limitation. In this paper we assume that the Jacobian of the diffeomorphism
depends only on time variable. As will be shown in Section 4, this assumption
for the Jacobian is of no restriction.

Section 2 deals with the construction and estimate of approxiamte solutions.
We first construct approximate solutions for the reduced problem by choosing a
suitable Galerkin basis, and then return to the original problem on a time de-
pendent domain to get an energy inequality, which together with a modification
of the compactness argument given in [5] enables us to choose a subsequence of
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the approximate solutions converging in L2 space to a weak solution. Further,
we shall show the uniqueness of our solutions in the case of two-dimensional flow.

Applying the argument in [9, pp. 483-486] to our construction, we show in
Section 3 the existence of a periodic solution. In the two-dimensional case, our
periodic solution seems to be unique and stable if the data are small enough.
This will be discussed in the forthcoming paper.

In solving the initial-boundary value problem for the Navier-Stokes equations
under nonhomogeneous boundary conditions one has to extend the given boundary
data to the whole of the space-time domain as divergence-free vector fields. So
we discuss in Section 4 the extensibility of the data representing the condition
that a fluid adheres to the (moving) boundary. We shall show that the boundary
data can be extended if and only if the volume of the moving domain is independent
of time.

We wish to express our hearty thanks to Professors A. Inoue and F-Y. Maeda
for helpful discussions and constant encouragement. In particular, Professor
Inoue has pointed out to us kindly the problem discussed in Section 4.

1. Formulation of the problem

Let βoo = V_y ί e KΩ(ί)x {t} be a noncylindrical space-time domain, each Ω(f)
being a bounded domain in Rn (n = 2, 3,4) with smooth boundary dΩ(f). In
Qoo we consider the initial-boundary value problem for the Navier-Stokes
equations :

dv/dt - Av + (v, P)υ=f- Vp, x e Ω(t\ t > 0,

= 0, xe Ω(t\ t > 0,
(1.1)

υ = β, xe dΩ(t\ t > 0,

v(x, 0) = t;0(x), xeΩ(O).

Here v = {vj(x, ί)}"=ι> P==P(X^ 0 denote respectively the unknown velocity and
pressure, while f={fj(x, 0}"=ι> vo=={vo(χ)}'j=ι denote respectively the given
external force and initial velocity; β = {βJ(x, ί)}J=ι is 8iven on the boundary
\JteR δΩ(t) x {t}. For Ω(t) and β we impose the following conditions :

(A.I) There exist a cylindrical domain Q00 = ΩxR and a level-preserving

C00 diffeomorphism Φ: (L-»2oc»

(y, s) = Φ(x, 0 = (φ\x9 t),..., φn(x, t\ t)

such that

(1.2) det [δ(/>f(x, *)/&c'] = J(ί)-1 > 0, for (x, ί) e Q^
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(A.2) β is the restriction to \JteR dΩ(f) x {t} of a C2 vector field ψ9 which is
divergence-free on each Ω(f) and bounded on Q^ together with its first and second
derivatives.

According to (A. 2) the problem (1.1) can be reduced to the case of zero bound-
ary values. Setting v = \l/ + u, we obtain from (1.1),

du/dt - Au + (u9 P)ψ + (ψ, Γ)u + (u9 P)u = F - Pp, x e Ω(t\ t > 0,

(1.1)' div u = 0, x e Ω(ί), t > 0,

u = 0, x e dΩ(t\ t > 0,

u(x, 0) = β(x), xeΩ(O),

where F=f+Δψ-(ψ9 P)ψ-dψ/δf, a(x) = υ0(x)-\l/(x, 0).
Our purpose in this paper is to show the existence of a global solution for

(1.1)' As in [6] we regard u, a, and F as vector fields and p a scalar field on
Ω(ί). So, if we set

0J(y, s) = ΣZ=ι (dyJldxk}uk(Φ-i(y, s))

and similarly for α, ,̂ F, and

then (1.1)' is transformed into the following problem on Q^ :

dύ/ds - Lύ •+ MM + N^ύ + N2ίι = F - F^p, j e Ω, s > 0,

div u = Σ"= i dujldyj = 0, y e Ω, s Ξ> 0,

δ = 0, ^eaΩ, s>0, u(y,Q) = a(y\ yeΩ,

where

and

jUi + (dyi/dxk)(d2xk/dsdyJ)uJ\

= dfr/dyJ + Γl

jku
k

9

gkl(dgn/dyJ + dgjjdy* -

2(dyk/dxl)(d2xl/dyίdyJ).
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Here and hereafter we use summation convention, i.e. take sum over repeated
indices; furthermore for each vector field w on β^, w will always mean a vector
field on Q^ obtained by the transformation

w%, s) = (dy*ldx*)w*(Φ-i(y9 s)),

and conversely.
Note that F, is the covariant differentiation with respect to the Riemannian

connection induced from the metric (gtj). From the assumption (A.I) it is easy
to see that

(1-3) (0")-1 = (0ιA dettoy) = J(02

It is to be noticed that because of (1.2) the divergence operator is left invariant
under the coordinate transformation. Finally we note that du/ds + Mu and Lu
correspond respectively to du/dt and Δu under the transformation Φ; see [6,
Th. 2.5] for the details.

2. Existence of weak solutions

Throughout this paper we shall denote by the letter C, with or without indices,
various constants; sometimes we shall denote different constants by the same
letter, whenever this will not lead to confusion.

We introduce some function spaces. By C£σ(Ω) we denote the space of all
smooth divergence-free vector fields with compact support in £2. Let H and V
be respectively the closures of C%σ(£ί) in (L2(Ω))n and in (Hl(Ω))n, and define
Ht and Vt similarly on Ω(f). H is a Hubert space with respect to any of the inner
products defined by

(2.1) <δ, vyt = fi flfy (y, tyu'

see (1.3). To Ht we give the usual inner product

(2.2) (ιι, υ\ = u'(x)vJ(x)dx.
JΩ(t)

For u, v e V their inner product in V is defined by

(2.3) < Γ,fi

Note that for any fixed t (2.1) is transformed into (2.2) by the coordinate trans-
formation Φ"1 and (2.3) is transformed into
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(2.4) (Pu, 7υ\ s ( (dui/dχJ)(dvi/dχJ)dx.
jΩ(t)

For each uεfϊ we set |w| f = <w, w>ί/2 and for each w e F \Pgu\t = (Γgu, Ϋgu)\12.
The norm corresponding to (2.2) is denoted by || - ||r. For each ί, Vf denotes

the dual space of Vt. The norm of/6 Vf is defined by \\f\\f = sup {</, u>r; i; e Vt9

||Fu||ί < 1}. Similarly we define the norm on V* and denote it by | |f*. Now we
define a weak solution of the problem (1.1)'.

DEFINITION 2.1. For aeH0 and FeL2(0, T; F*), Γ>0 being fixed, we

call a function weL2(0, T; F,) n L°°(0, T; #,) a weak solution of the problem

(1.1)', if and only if the following identity is satisfied:

(2.5) - Γ <β(f), V(i)\dt- Γ <β(f), Mv(t)\dt+ \T < rβu(t)9Jo Jo Jo

+ Γ <N1ίι(0 + N2fi(0, 8(0). * = <δ, £(0)>o + Γ <F(ί
Jo Jo

for any v(t) = h(t)ti such that w e V and h e Cl([Q, T] K), /ι(T) = 0.

In what follows we write

b(u, v9 w) = ((w, FX w)f = \
JJΩ(t)

where w, ϋ and w are elements of Vt. Since n<4, it follows from the Sobolev
imbedding theorem that the form b can be defined and estimated as follows:

(2.6) !&(«, v, w)| < IMIJI Γϋ|| f | |w||L4 < C|| Γιι||f|| Fϋ||f|| FwH,,

(see [11]). Note that since div u = 0, integration by parts gives

(2.7) b(u, v, υ) = 0.

THEOREM 2.2. Fix an arbitrary T>0. Then for each aeH0 and each

FeL2(0, T; F*) there exists a weak solution o/(l.l)' on [0, T].

We shall prove this in several steps. Let {φj} be a sequence of linearly
independent vectors in C^>σ(Ω) total in F, and {vv/y, ί)} be its Schmidt ortho-

gonalization with respect to the inner product (2.1). Note that w/ί) = Wj(y, i)

thus obtained is smooth in (y, t). In fact, it is a finite linear combination of

{$,.} with coefficients in C°°([0, T]; R).

We define approximate solutions wm(ί), m>l, by the following equations:

= <α, w/0)>0,
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where {hjm(t)} is defined by

(2.8) <δ;(0, w/OX = <Lδw(0, w/OX - <MflM(0, w/0>ί - <Nlum(ί)

+N2am(t), w/OX

It is easy to see that ύm(f) is determined uniquely by (2.8) in a neighborhood of

ί = 0. The proof of the next lemma guarantees that um(i) is defined on the whole

interval [0, T].

LEMMA 2.3. {um(i)} remains bounded in L°°(0, T; Ht) n L2(0, T; 7f).

PROOF. Multiplying (2.8) by /ι/m(f)> taking sum in j and returning to β^,
we obtain

(2.9) (d/Λ)||um(OII? + 2|| Γum(OII?= -2&(um(0, <KO, ttM(0) + 2(F(f), um(t))t.

Here we have used (2.7). By (A.2) there is a constant CΓ>0 such that

(2.10) \b(um(t\ ψ(t), t/m(0)l<supΩ(ί) I

Integrating (2.9) in ί, we obtain

(2.11) IMOII? + 2^11^(1)11^
Jo

< ||α||§ + 2CΓ Γ ||uM(τ)||?dτ + 2
Jo o

< ||α||§ + 2CT (' ||ιιm(τ)||?dτ + Γ \\F(τ)\\^dτ 4- Γ || Γnm(τ)||?dτ.
Jo Jo Jo

From this we have

(2.12) ||um(ί)||? < ||β||§ + 2CΓ |Mτ)||?
Jo

which brings the boundedness of (um(t)} in L°°(0, T; Ht) by GronwalΓs lemma.

Then from (2. 11)

(2.13) Γ || Γum(OII?Λ < \\a\\l + 2CT Γ ||ιιm(ί)||?Λ + Γ ||F(ί)||f 2Λ.
Jo Jo Jo

This shows the boundedness in L2(0, T; Ff), which completes the proof.

Next we shall prove

LEMMA 2.4. {um(f)} is precompact in L2(0, T; #f).

To do this we need the following lemma.
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LEMMA 2.5. For each ε>0 there exists a positive integer N = Nε

independent of t E [0, T] such that for any veVt we have

(2.14) INI?^Σ^ι(^wχo)? + β|IN?

PROOF OF LEMMA 2.4. Put pmj(t) = (um(t)9 w/ί)λ for m^J We shall show
that {pmj(t)}m^j is uniformly bounded and equicontinuous on [0, T] for each fixed
j. In fact, since there exists for each j a constant Mj such that

|w/x, ί)l < Mj, \ Fw/x, 01 < Mj, \(d/dt)wj(x, 01 < Mj,

for all x e Ω(t), t e [0, Γ] ,

it follows from Lemma 2.3 that

(2.15) \pmj(f)\

Furthermore, for t e [0, T) and s>0

(2.16) |p

t + s

t

t+s

t

(um, «„, w,)(τ)|dτ

|(um(τ),

+supt |

+ s x sup, I I 1 (̂011,

where CΊ is a constant depending only on n and Mj. So the equicontinuity is
obtained. Therefore, applying the diagonal argument we can choose a sequence

{mk} of positive integers such that {pmk,XO}mk^j converges uniformly on [0, T]
for each fixed j. Substituting v = umk — umι into (2.14) and integrating in ί, we
obtain
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Letting fc, /->oo,

lim sup Γ \\umic(t)-um,(t)\\tdt < 2ε supm Γ |
Jo Jo

Since ε>0 is arbitrary and {um} is bounded in L2(0, T; 7f), the proof is completed.

PROOF OF LEMMA 2.5. Obviously it is enough to show

(2.17) |δ |?^Σy=ι<β,

for all ί e V and all ί e [0, T]. Suppose that (2.17) is false. Then there exist a
(5>0 and sequences #m e V, tm e [0, T] such that

This shows that {#m} is bounded in F. Therefore we may assume, using Rellich's
lemma, that vm-+v0 e V weakly in V and strongly in ft, and further tm-+t0 e [0, T],
For each fixed k we have

(2.18) 1 = |0M|?m > Σ5 =ι <δm, w/ίj>?m + 51 W?m (™>fc)

Since {fif, /0} depends smoothly on ί, there exists a constant C>0 such that for
each t e [0, T]

C|Γ,S| ίo<ί|F,SU for all δ s f .

Since the norm | F^ |ίo is lower semicontinuous with respect to the weak topology
of V, by letting m->oo in (2.18) we obtain

1 = |δol?0 ^ Σ5-ι <^o, ff/f0)>?0 + aC|F.δ0|?0.

Since A: is arbitrary and {w7 (ί0)} is an orthonormal base in H with respect to the
inner product (2.1) at t = t0, we see that | Pgΰ0\to= \\ Pv0\\to = Q9 so that v0 is constant
on Ω(t0). But since v0eVto it follows that v0 = Q, which is absurd because
|£0|fo = 1 . This completes the proof.

PROOF OF THEOREM 2.2. By Lemmas 2.3 and 2.4 we may assume that there
exists a u in L°°(0, T; Ht) n L2(0, T; Fr) such that

t/m->M in the weak topology of L2(0, Γ; Ff) and in the weak-star topology of
L°°(0, Γ; #,); wm->W in L2(0, T; #,).

Take /z in (̂ ([0, T];^) with Λ(T) = 0 and set v(t) = h(t)Wj. Multiplying (2.8)
by ft, and returning to Q^, we obtain by integration by parts
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oαo,

, «m(0, t<0) + (f (0, «(0λ.

Integrating by parts, we obtain

- Γ(um(0, v'(t)\dt + Γ(Fum(0,
Jo Jo

+ Γ b(um, wm, r)(OΛ + Γ &("m, <A, ») (OΛ + Γ KΆ, «„, »
Jo Jo Jo

= (um(0),y(0))0+Γ(F(ί),ι;(0)(Λ.
Jo

Since wm(0)->α in #0, by letting m->oo we obtain

- Γ(ιι(ί), t 'COXdί + Γ(Γu(0, »XO)rΛ
Jo Jo

+ Γ b(M, M, ϋ)(ί)Λ + Γ b(u, ιA, t?)(ί)Λ + Γ b(ψ, ii, ϋ
Jo Jo Jo

The convergence of the nonlinear term is assured by the fact that

Γ b(um, «„, »)(0</ί = - (Tb(um, v, um}(f)dt
Jo Jo

and that v is smooth because of its construction; see [11, Chap. 3]. Expressing
the above equality in β^, we have

(2.19) - Γ <β(0, v'(t)\dt - (T <β(0, Mv(t)\dt + Γ
Jo Jo Jo

<Λf2fi(0,
o

By linearity this holds for δ=ΣJ=ι ft/0^/0* ^eCKCO, Γ; î ) with /ι/T) = 0.
Now let us recall our construction of {w;(ί)} Each $7 can be expressed as a
finite linear combination of (w^*)} whose coefficients are functions in Cl([Q,

T];Λ). So, in (2.19) we can take δ = ΣJ=ιΊ/θίj» ^ as above. Since
{φj} is total in F, we see that (2.5) holds for general φ in V and ft e C^ ,̂ T];
.R), h(T) = Q. Thus we have proved Theorem 2.2.
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REMARK 2.6. By taking φ e CJjζ σ(fi) and h e Q?((0, T)) in (3.5), we see that

in the sense of distribution

0, 0>f = <δ(0,

By the definition of M, JV t and the estimate (2.6), we see that the right-hand side

defines an element of 1̂ (0, Γ; 7*). By applying Lemma in [1J, Chap. 3, §1],
it follows that ύ'(i) exists as an element of 1̂ (0, T; F*) and so ύ is weakly conti-

nuous on [0, T] with values in H since weL°°(0, T; /?). Hence we have w(0) =
J in 5.

Furthermore, as will be indicated in the proof of Lemma 2.7 below, we have for
each φ e V,

), Mφ\.

Hence,

(2.20) <

Next we shall discuss the uniqueness of our solutions for two dimensional

flow. In this case the estimate (2.6) can be replaced by

(2.21) l&fo, f>2,w)|H&(t^w,t^^^

for vί9 ϋ2, w e F f; see [11]. From this it follows that the time derivative ύ' of a
weak solution w belongs to L2(0, T; F*) since ύ belongs to L°°(0, T; H).

LEMMA 2.7. 7/weL2(0, Γ; F) and ^'eL2(0, Γ; F*), ίΛen w 75 continuous
on [0. T] wίί/i values in H. Further we have

(2.22)

PROOF. We calculate directly (d/dt)\w\?, assuming weC^LO, T]; F).

For general w one has only to regularize it in t after defining w = 0 outside

(0, T); see [11, Chap. 3].
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J'(f) in /3 will be calculated as follows: Consider on Q^ the divergence-free
vector field "5/3ί" which is transformed by Φ* into (dyJ/dt)(d/dyJ) + (d/di) on
Q^. By claculating the divergence of the transformed vector field, we obtain

0 = J(trl{(dldyJ)(J(tWyJldty> + (d/dt}J(t)}

so that

J'(t)= -

Since w e F, substitution of this into /3 gives

Note that Γz is the covariant differentiation with respect to (g#(()), so Γzgfjk(ί) = 0,

Γ,J(ί) = 0. Therefore,

On the other hand, since

the integrand in 7\ is written as follows:

{(dW/dtdyJ) (dxlldyk)wJ(t)wk(t) + (d2xl/dtdykϊ (dxl

= 2(d2xlldtdym) (dxlldyk)wm(t)wk(i)J(t)

= 2gjk(t)(dyJ/dxl)(d2xl/dtdym)wm(t)wk(t)J(i) .

So we have

! = 2 f ^y

Adding these we have the desired equality; refer to the notations in Section 1.
We have also proved the absolute continuity of |vv| f. From this and the weak
continuity of w stated in Remark 2.6 it follows that w is continuous on [0, Γ]
with values in H.

THEOREM 2.8. When n = 2, the solution given in Theorem 2,2 is unique.
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PROOF. Let w, v be solutions for the same a and F. Setting w = w — v we
obtain from (2.20)

(2.23) <

+ <ΛΓ2w(0 - N2v(i), Φ>t = 0 for each Φ e V

and w(0) = 0. On the other hand,

(N2u)i - (N2v)i = uJ Pjfr - vJ Pjfr = uJ F W * - w > Vjo1,

so that, by (2.21)

|<N2fi(0-ΛΓ2δCO, ^(0X1 = \b(u, w, w)(ί) - 6(w, Ό, w)(ί)|

= |fe(w, t;, w)(ί)| < ClwίOUF^OU^WL.

Since w' eL2(0, Γ; F*) it follows from (2.23) and Lemma 2.7 that

- <N2u(i)-N2υ(t)9

By Schwarz's inequality,

(d/Λ) KOI?

Hence

Applying GronwalΓs lemma we obtain w = 0, which completes the proof.

3. Existence of periodic solutions

In this section we assume that the movement of Ω(t)9 the boundary data
ψ(x, t) and the diffeomorphism Φ(x, f) are periodic with period T>0. This

implies that the tensor (gtj(y, tj) is also periodic with period T. So, by our
construction, {w/y, t)} and {w/x, t)} are periodic with the same period.

THEOREM 3.1. Let Ω(t\ ψ(x, f) and Φ be as above. If max0<^r 11^^(0 l i t
is sufficiently small, then for each FeL2(0, T; F*) there exists a function u in

L°°(0, Γ; Hf)nL2(0, T; Vt) satisfying (2.5) with some a = u(0) = u(T) in H0.

PROOF. Take for each m > 1 a function w° arbitrarily from the subspace of

V spanned by {w/y, 0)}1^ <m, and then determine ύm(t) with wm(0) = w° by the

equation (2.8). Using (2.6), we obtain from (2.9)
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?|| rum(t)\\t - 2b(um, ψ, u

where X = max0<ί^Γ ||Γ^(ί)Hf and C is the constant in (2.6) which depends on the
size of Ω(f). Hence,

Now assume that

(3.2) CK<\.

Then, by the Poincare inequality we obtain

(d/doiωon? + c'iium(oιι? <
so that

(3.3) ec'τ\\um(T)\\$ < ||um(0)||§ + J V'||F(ί)||?2df.

If we choose r>0 so that

r2(l-e~c'τ) >
o

it follows from (3.3) that ||Mm(T)||τ<r if ||uTO(0)||0<r. On the other hand, it is
easily checked that the map: um(Q)*-+um(T) is continuous. Since by periodicity
both wm(0) and um(T) are in the finite dimensional linear span [w^x, 0),
..., wm(x, 0)] = [w1(x, T),..., wm(x, T)], the Brouwer fixed point theorem ensures
the existence of a um such that um(0) = um(T) and || wm(0) || 0 = || wm(T) || τ < r. From
now on we shall fix such r > 0 and um for each m. Since r is independent of m, the
arguments in the proofs of Lemmas 2.3 and 2.4 are applicable. So we may
assume that there exists a u in L°°(0, T; Ht) n L2(0, T; 7f) such that

wm-»u in the weak topology of L2(0, T; Ff) and in the weak-star topology of
L°°(0, T; #,); wm-^M in L2(0, T; Hf).

Mm(0) = wm(T) converges in the weak topology of H0 = HT to an element a.

Obviously u satisfies (2.5). Further, multiplying (2.8) by /leCKCO, T]; R) with
/ί(0) = 0, integrating in t and letting m-»oo, we see that ύ satisfies (2.19) with

<α, ί>(0)>o replaced by <α, #(T)>Γ. Since w(ί) is weakly continuous on [0, T]
with values in H, it follows that ύ(0) = ύ(T) = d. This completes the proof.

REMARK 3.2. By applying the method in [6] we can show the existence of a
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unique strong solution on [0, T] when n = 2, assuming a E H0 and F e

C([0» T~\ R). This seems to enable us to apply the result in Serrin [10], con-
cerning the uniqueness and stability of periodic solutions, to the two-dimensional

flow. This problem will be discussed in the forthcoming paper.

4. A remark on the assumptions (A.1)-(A.2)

In this paper we have discussed the solvability of the initial-boundary value

problem (1.1) assuming (A.1)-(A.2). In this section we first show that the con-

dition (1.2) in (A.I) is of no restriction. The techniques of the proof of this can
be applied to the discussion on the extensibility of the boundary data representing
the condition that a fluid adheres to the (moving) boundary, i.e., the so-called
no-slip condition. In fact, it will be shown that (A.2) holds for β corresponding

to the no-slip condition if and only if the volume \Ω(f)\ of Ω(f) is independent of
t. All of our arguments are based on the following result due to Ebin-Marsden
([2, Th. 8.6]).

LEMMA 4.1. Let ωt(te R) be a family of volume elements on Ω(0) depending
smoothly on t such that α>0 is the canonical volume element in Rn. Assume that

\ωt=\ωQ for all tεR.

Then there exist diffeomorphisms Φt: Ω(0)->ί2(0) with Φ0 = the identity such that

Φ*ωt = ω0for all t.

Using this we can prove

LEMMA 4.2. In Lemma 4.1 we can choose Φt which, moreover, satisfy Φt =

the identity on dΩ(Q).

PROOF. Let Φt be the diίfeomorphisms given in Lemma 4.1. If the dif-

feomorphisms μt: ί2(0)-»ί2(0) satisfy

(4.1) μ*ω0 = ω 0 ;μ f =ίr 1 on 3Ω(0),

then Φt = Φtoμt are the desired ones. We shall show that such μt exist. Let
Yt = (dΦ^1/dt)oφt be the vector fields which are tangential to dΩ(Q). It is known

(see [7]) that there exist vector fields Xt on ί2(0) such that div Xt = Q in Ω(0) and

Xt= Yt on dΩ(0). If we define μt(x), x e ί2(0), as the solution of the initial value
problem :

it is easy to see that μt actually satisfies (4.1). This completes the proof.
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We are now ready to prove the following which shows that condition (1.2)
is of no restriction.

THEOREM 4.3. Suppose we are given dijfeomorphisms φt: Ω(0)->Ω(ί), ίe jR,
such that φ0 = the identity. Let K(f) = \Ω(f)\ be the volume of Ω(t). Then there

exist dijfeomorphisms ψt: Ω(0)-»Ω(ί) with ψ0 = the identity such that

(i) \l/t = φt on dΩ(0), (ii) φfω0 = K(t)K(0)~^09

where ω0 is the canonical volume element in Rn.

PROOF. Choose linear transformations ζt on Rn depending smoothly on t

such that Co = the identity and ζ*ω0 = K(0)K(t)-1ωθ9 and set Ω'(i) = ζt(Ω(t)).

Then |O'(ί)l = |β(0)l f°r a^ *• So the volume elements ωt = φfω0 (φt = ζtoφt) on
Ω(0) satisfy the assumption of Lemma 4.1, and we can choose, by Lemma 4.2,

diίfeomorphisms Φt: Ω(Q)-+Ω(Q) such that Φfωt = ω0; Φ0 = the identity; Φf = the

identity on dΩ(Q). It is easy to see that the diffeomorphisms ψt = φt°Φt satisfy
the desired properties. This completes the proof.

Let us now discuss the extensibility of the boundary data representing the
no-slip condition, which is expressed as

(4.2) βi(x, t) = (dx^dt) (y(x, ί), 0, x e δO(ί)

where (y, ί) = Φ(x, t) = (φ^1(x), ί)e

THEOREM 4.4. For β defined by (4.2) we can choose ψ satisfying assumption

(A.2) if and only if |O(ί)| = |O(0)| for all t e R.

PROOF. Suppose that |O(f)| = |O(0)| for all t. By Theorem 4.3 there exist

diίfeomorphisms ξt: Ω(0)->Ω(0 such that ξfω0 = ω0 and ξt = φt on 3O(0). Thus,
the vector field

satisfies div ψ = 0 in each Ω(ί) and ψ = β on each

Conversely suppose that there exists ψ such that div^ = 0 in each Ω(f) and

ψ = β on each <3£2(ί). Define ,̂(3;), jeΩ(O), as the solution of the initial value
problem :

dz/dt = ψ(z, ί), z(ϋ) = y.

It is easy to see that Ψt = ηt: O(0)-»Ω(ί) satisfy ^*ω0 = ω0 and Ψt = φt on δO(0).
Hence |O(ί)| = |O(0)|, which completes the proof.
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