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1. Introduction

In the half space D={x=(x,,..., X,); x,>0}, n=2, let G, be the Green
function of order «, that is,

[x—yle" — |x=y|*~" incase 0<a<n,
Gy(x, y) =

log (|X — yl/Ix—yD in case o = n,

where X =(xy,..., X,-1, —X,) for x=(xy,..., X,_1, X,). We say that u is a Green
potential of order « in D if there is a non-negative measure u on D such that

u(®) = Gx, 1) = | Gu(x, )u(y) # .
We say that a function u on D has limit zero in L? at £ dD if
lim, o r—" S |u(x)[Pdx=0,
B+ (&,r)

where B.(¢, r)={xeD; |x—¢|<r}. Letting xr, denote the characteristic
function of a cone I'(¢, a)={x=(X1,..., X,); |x—¢| <ax,}, we say that u has non-
tangential limit zero in L? at { € dD if for any a>1, uyr, has limit zero in L?
at £. In case a=2, it is known (see [S] and [7]) that any Green potential has
non-tangential limit zero in LP, 1 < p<n/(n—2), at almost every £ € 0D.

Next we shall define the minimal a-semi-thinness at £ e dD of a set EcD.
For this purpose we consider the function

ka(x’ }’) = lim inf(){,Y)—v(x,y),()(,Y)erD X;IY;IGa(Xa Y)$ X,y eDU aD

Note here that k,(x, y)=d,|x—y|* "2 for x and yedD, where d,=2(n—a) if
a<n and =2 if a=n. Define a capacity C;, by

Ce(E) =supu(D), EcD,

where the supremum is taken over all non-negative measures u on D such that
S, (the support of u) is included in E and
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ko (x, p) = Ska(x, ydu(y) =1 for every xeD.

A Borel set E in D is called minimally a-semi-thin at £ € 0D if
lim, o r*="=2C, (E n B.(&, 1)) = 0.

We note here that C, (rd)=r""**2C, (A4)for r>0and AcD and C, (B, (¢, 1))>0,
where rA={rx; xe A}. A function u on D is said to have minimally a-semi-fine
limit zero at £ € dD if there exists a Borel set E in D which is minimally «-semi-
thin at ¢ and for which lim,_,; ,p_ g u(x)=0.

Finally we shall say that a sequence {x())} in D is admissible (cf. [1]) if
lim;,x()=0 and there exist a>1 and ¢>0 such that x()el(0, a) and
[xU*D| > ¢|x()] for every j.

The aim of this note is to prove the following theorem.

THEOREM. Let a<3 and u be a Green potential of order o in D. Then the
following statements are equivalent:
(i) For 1=p<n/(n—a), x,|x[*"*u(x) has limit zero in L? at O.
(ii) There is an admissible sequence {x‘)} in D such that

lim;, o [x()]272y(x()) =0.
(iii) The function x;!|x|3~*u(x) has minimally a-semi-fine limit zero at O.

In case a=2, this theorem was proved partly by Lelong-Ferrand [3] and
Rippon [4].

2. Proof of the theorem

The following lemma can be proved by elementary calculation.

LEMMA 1. There exist positive constants c,, ¢, and c(e), 0<e<1, such that

XnYn <G < Xn) n i
c L <G,(x, y) ¢ Tl in case o < n,
CTemplrer—yr = G0 V) S et
XnVn < < XnYn
Cyq Ig_ylz =Gn(X,)’)=C(8) ]x_ylglx-_ylz—e

for x=(x4,..., x,) and y=(y,,..., y,) in D.

For a Green potential u=G,(-, p), we set

uy(x) = § Gu(x, V)du(y),

{yeD; [x—y| 2|x|/2}

uz(x) = g Ga(x’ J’)d#(.V) .

{yeD; |x—y|<|x|/2}
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LemMMaA 2. Leta<3. If

(A) fim, , rl‘”S
B+ (O

+

" yndﬂ(y) =0,
then lim,_,q x;1|x|3~%u,(x) = 0.

PrOOF. For §>0, set &(6)=supy<,<s rl‘"g ) Yndu(y). Thenby Lemma 1,

B+ (0

i 2Ux[3 < i - du(y)
lim sup,_,o x;!|x[3~*u(x) < const. lim sup,_¢ |x|3 aS __ynaply)
px O “*n I | 1( ) px OI | B.(0,5) (le ; |y|)n_¢+2

< const. &©)
for 6>0, which implies that lim,_,, x; !|x|37*u,(x)=0.

LemMMA 3. If (A) in the above lemma holds, then x,|x|'~%u,(x) has limit
zero in L?, 1< p<n/(n—a), at O.

ProOF. We shall prove only the case a<n, because the case a=n can be
proved similarly. It sufficies to show that

nm,mr—"gB D1, (x)]Pdx =0,
()]

where B(r)=B, (0, r)—B.(0, r/2). By Lemma 1 and Minkowski’s inequality
([6; Appendices A.1]), we obtain

1/p
e el )17
B(r)

1/

< cpieipmemn | ( o=y lry i () ) dx}

B(r) \)B+(0,2r)
< epaiimstpi-emin | {1, 1x=yiremaxt 5 auey)
= B+(0,2r) LUEB®m) "

< const. r“"g yadu(y),
B+ (0,2r)

which tends to zero as r | 0 by (A).

LEMMA 4. If (A) in Lemma 2 hods, then x;|x|37%u,(x) has minimally
a-semi-fine limit zero at O.

Proor. Consider the sets
E; ={xeD; 277 £ |x| < 27/, x;lu,(x) = a712/G-=}

for j=1, 2,..., where {a;} is a sequence of positive numbers such thatlim;,, a;=
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oo but lim;_, aj2f("‘1)g , yadu(y)=0. If v is a non-negative measure
B4+(0,277+2)

on D such that S,cE; and k,(x, v)<1 for x e D, then we have
S dv(x) < aj2‘f(3'“)5x;1u2(x)dv(x)
D

< apie | K, V)

B+(0,277%2

< aj2‘f(3‘“’g C Yadu(y).
B+ (0,277+2)

Hence by the definition of C, ,

C(E) < a,-z-m-«)g Padi().
B+(0,277%2)

so that
limj_.m 2j(n_a+2)ck¢(Ej) = 0-

Setting E=\U%-, E;, we see that E is minimally a-semi-thin at O on account of
the countable subadditivity of C,_, and

im SUpP,—0 rep— X5 X137 %u,(x) < lim sup;.,, 2137%la5! = 0.
The proof of our lemma is thus completed.
We are now ready to prove the theorem.

PROOF OF THE THEOREM. If the statement (i) holds, then for any a>1,
we can find a sequence {x()} such that x> e I'(0, a) n B,(0, 2=/*1)—B_,(0, 27J)
and lim;_, ,|x()|2-*y(x())=0. Since the sequence {x(/)} is admissible, (ii) follows.

If the statement (ii) holds, then Lemma 1 gives

xop=n | yadiu(y) S const. [x(D2-zu(x),
B+(0,]x)

so that

lim_, , |x 1—nS d =0,

im; e X s’ u(y)
which implies (A) since {x())} is admissible. Thus (ii) implies (iii) by Lemmas 2
and 4, and (i) by Lemmas 2 and 3.

To prove that (iii) implies (ii), it sufficies to note that C,_(4(a, r)—4(a, r/2))

=rn=**2C, (A(a, 1)—A4(a, 1/2)) and 0<C, (4(a, 1)—4(a, 1/2))<o for any
a>1 and r>0, where 4(a, r)=I(0, a) n B,(O, r).
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3. Remarks
(a) Each of (i), (ii) and (iii) in the theorem is equivalent to condition (A).

(b) Let0<pf=2and f<a<3. Then each of (A), (i), (ii) and (iii) is equiva-
lent to the following:

(i) For p, 1=<p<n/(n—a+p), xi~P|x|**#~*u(x) has limit zero in L? at O.
For this it suffices to show the next lemma.

Lemma 3. If (A) holds, then x1=B|x|'*F~*u,(x) has limit zero in L?, 1<
p<n/(n—o+p), at O.

Lemma 3’ can be proved in the same way as Lemma 3, if one notes

{S XP(2-5) P }llp
— — X
B4(0,r) |X—y[P("D|X —y|?P

1/p
< const. {S lel"““’"")dx} = const. r2~Antnip,
B+(0,r)

(c) Ifa<3and G,(-, u)F oo, then lim,,;,r!~ "SB V.du(y)=0 for almost
(

&)
every £e€dD, so that x,|x—&|17*G,(x, u) has limit zero in L?, 1< p<n/(n—a),
at almost every & € 0D.

In fact, define a measure 1; on R*~1 by
As(e) = S Yadu(y) for a Borel set e = R*~1
ex(0,8)

and note, by a well-known theorem from the theory of integration, that
lim, o, ri="A;({x" € R"1; [x'=&'| < r})

exists and is finite for almost every £’ € R"~!. From Fatou’s theorem it follows
that for almost every & € R*™1,

limg, o lim, o r1™"A;({x' € R"L; |x'=¢| < r}) =0
which implies that lim,; r1~" S Y. du(y)=0, £=(&, 0).
B+ (&,r)
(d) If a Borel set E in D is minimally 2-semi-thin at O, then we can find a

positive superharmonic function u in D such that lim,_ g X, |x|u(x)=co and
liminf, o rcr(0.q) #(x)=0 for any a> 1.
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To show this, we need the following lemma, which can be proved by using
[2: Théoréme 7.8].
LEMMA 5. For a Borel set A in D, we have
G, (A) = inf (D),
where the infimum is taken over all non-negative measures A on D such that
k4, )= S k(x, y)dA(x)=1 for every y € A.

Let E be a Borel set in D which is minimally 2-semi-thin at O, and take a
sequence {a;} of positive numbers such that lim;_,, a;=co and

lim;_,,, ;27 C, (E;) = 0,

where E;=EnNB,(0,2i*)—-B,(0,277). By Lemma 5, for each j we can
find a non-negative measure A; on D such that A;(D)<C,(E;)+aj227"/ and
k,(4;, z2)21 for ze E;. Denoting by A; the restriction of 1; to the set {x€D;
27771 <|x|<277*2}, we have for z€ E;,

kD 216 | — z|"d2; (x)

{Ix[£2-7-1}u {|x|22-7+2}

[\

1 — c,4"{2"Cy,(E;) + aj?}.
Set A=3X%. a;2/4}, and define u(z)=z,k,(4, z), ze D. Then
liminf, ¢, g z,'|zlu(z) Z liminf;,, a;{1 —c,4"(2"IC\,(E;) + aj?)} = .
Further we note the following properties:
(d,) The function u satisfies that u % co, and is of the form
u(z) = G,(z, p) + a Poisson integral,

so that u is superharmonic in D.

(d,) lim, ,, 1= S di(x) = 0.

IxI=
From (d,) and the proof of the theorem, it follows that for any a>1,
liminf,_¢ ;cr0.q #(z)=0. Thus u has the required properties.

If E is a Borel subset of a cone I'(0, a) which is minimally 2-semi-thin at O,
then there exists a Green potential G,(-, p) such that lim,_ g G,(x, p)=o0.
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