Minimally semi-fine limits of Green potentials of general order

Dedicated to Professor Makoto Ohtsuka on the occation of his 60th birthday

Yoshihiro MIZUTA (Received April 7, 1982)

1. Introduction

In the half space $D = \{x = (x_1, ..., x_n); x_n > 0\}$, $n \ge 2$, let G_α be the Green function of order α , that is,

$$G_{\alpha}(x, y) = \begin{cases} |x - y|^{\alpha - n} - |\overline{x} - y|^{\alpha - n} & \text{in case } 0 < \alpha < n, \\ \log(|\overline{x} - y|/|x - y|) & \text{in case } \alpha = n, \end{cases}$$

where $\bar{x} = (x_1, ..., x_{n-1}, -x_n)$ for $x = (x_1, ..., x_{n-1}, x_n)$. We say that u is a Green potential of order α in D if there is a non-negative measure μ on D such that

$$u(x) = G_{\alpha}(x, \mu) = \int_{D} G_{\alpha}(x, y) d\mu(y) \neq \infty.$$

We say that a function u on D has limit zero in L^p at $\xi \in \partial D$ if

$$\lim_{r\downarrow 0} r^{-n} \int_{B_+(\xi,r)} |u(x)|^p dx = 0,$$

where $B_+(\xi, r) = \{x \in D; |x - \xi| < r\}$. Letting $\chi_{\Gamma(\xi, a)}$ denote the characteristic function of a cone $\Gamma(\xi, a) = \{x = (x_1, ..., x_n); |x - \xi| < ax_n\}$, we say that u has non-tangential limit zero in L^p at $\xi \in \partial D$ if for any a > 1, $u\chi_{\Gamma(\xi, a)}$ has limit zero in L^p at ξ . In case $\alpha = 2$, it is known (see [5] and [7]) that any Green potential has non-tangential limit zero in L^p , $1 \le p < n/(n-2)$, at almost every $\xi \in \partial D$.

Next we shall define the minimal α -semi-thinness at $\xi \in \partial D$ of a set $E \subset D$. For this purpose we consider the function

$$k_{\alpha}(x, y) = \lim \inf_{(X,Y) \to (x,y), (X,Y) \in D \times D} X_n^{-1} Y_n^{-1} G_{\alpha}(X, Y), \quad x, y \in D \cup \partial D.$$

Note here that $k_{\alpha}(x, y) = d_{\alpha}|x - y|^{\alpha - n - 2}$ for x and $y \in \partial D$, where $d_{\alpha} = 2(n - \alpha)$ if $\alpha < n$ and $\alpha < n$ and $\alpha < n$. Define a capacity $C_{k_{\alpha}}$ by

$$C_{k_{\alpha}}(E) = \sup \mu(D), \qquad E \subset D,$$

where the supremum is taken over all non-negative measures μ on D such that S_{μ} (the support of μ) is included in E and

$$k_{\alpha}(x, \mu) = \int k_{\alpha}(x, y) d\mu(y) \le 1$$
 for every $x \in D$.

A Borel set E in D is called minimally α -semi-thin at $\xi \in \partial D$ if

$$\lim_{r\downarrow 0} r^{\alpha-n-2}C_{k\alpha}(E\cap B_+(\xi,r))=0.$$

We note here that $C_{k_{\alpha}}(rA) = r^{n-\alpha+2}C_{k_{\alpha}}(A)$ for r > 0 and $A \subset D$ and $C_{k_{\alpha}}(B_{+}(\xi, 1)) > 0$, where $rA = \{rx; x \in A\}$. A function u on D is said to have minimally α -semi-fine limit zero at $\xi \in \partial D$ if there exists a Borel set E in D which is minimally α -semi-thin at ξ and for which $\lim_{x \to \xi, x \in D - E} u(x) = 0$.

Finally we shall say that a sequence $\{x^{(j)}\}$ in D is admissible (cf. [1]) if $\lim_{j\to\infty}x^{(j)}=0$ and there exist a>1 and c>0 such that $x^{(j)}\in\Gamma(O,a)$ and $|x^{(j+1)}|>c|x^{(j)}|$ for every j.

The aim of this note is to prove the following theorem.

THEOREM. Let $\alpha < 3$ and u be a Green potential of order α in D. Then the following statements are equivalent:

- (i) For $1 \le p < n/(n-\alpha)$, $x_n|x|^{1-\alpha}u(x)$ has limit zero in L^p at O.
- (ii) There is an admissible sequence $\{x^{(j)}\}\$ in D such that

$$\lim_{i\to\infty} |x^{(j)}|^{2-\alpha} u(x^{(j)}) = 0.$$

(iii) The function $x_n^{-1}|x|^{3-\alpha}u(x)$ has minimally α -semi-fine limit zero at O.

In case $\alpha = 2$, this theorem was proved partly by Lelong-Ferrand [3] and Rippon [4].

2. Proof of the theorem

The following lemma can be proved by elementary calculation.

LEMMA 1. There exist positive constants c_1 , c_2 and $c(\varepsilon)$, $0 < \varepsilon < 1$, such that

$$c_1 \frac{x_n y_n}{|x-y|^{n-\alpha}|\overline{x}-y|^2} \le G_{\alpha}(x, y) \le c_2 \frac{x_n y_n}{|x-y|^{n-\alpha}|\overline{x}-y|^2} \quad \text{in case } \alpha < n,$$

$$c_1 \frac{x_n y_n}{|\overline{x}-y|^2} \le G_n(x, y) \le c(\varepsilon) \frac{x_n y_n}{|x-y|^{\varepsilon}|\overline{x}-y|^{2-\varepsilon}}$$

for $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ in D.

For a Green potential $u = G_{\alpha}(\cdot, \mu)$, we set

$$u_1(x) = \int_{\{y \in D; |x-y| \ge |x|/2\}} G_{\alpha}(x, y) d\mu(y),$$

$$u_2(x) = \int_{\{y \in D; |x-y| \le |x|/2\}} G_{\alpha}(x, y) d\mu(y).$$

LEMMA 2. Let $\alpha < 3$. If

(A)
$$\lim_{r \downarrow 0} r^{1-n} \int_{B_{+}(Q,r)} y_{n} d\mu(y) = 0,$$

then $\lim_{x\to 0} x_n^{-1} |x|^{3-\alpha} u_1(x) = 0$.

PROOF. For $\delta > 0$, set $\varepsilon(\delta) = \sup_{0 < r \le \delta} r^{1-n} \int_{B_+(O,r)} y_n d\mu(y)$. Then by Lemma 1,

$$\limsup_{x \to 0} x_n^{-1} |x|^{3-\alpha} u_1(x) \le \text{const. } \lim \sup_{x \to 0} |x|^{3-\alpha} \int_{B_+(O,\delta)} \frac{y_n d\mu(y)}{(|x|+|y|)^{n-\alpha+2}}$$
$$\le \text{const. } \varepsilon(\delta)$$

for $\delta > 0$, which implies that $\lim_{x\to 0} x_n^{-1} |x|^{3-\alpha} u_1(x) = 0$.

LEMMA 3. If (A) in the above lemma holds, then $x_n|x|^{1-\alpha}u_2(x)$ has limit zero in L^p , $1 \le p < n/(n-\alpha)$, at O.

PROOF. We shall prove only the case $\alpha < n$, because the case $\alpha = n$ can be proved similarly. It sufficies to show that

$$\lim_{r \downarrow 0} r^{-n} \int_{B(r)} [x_n | x |^{1-\alpha} u_2(x)]^p dx = 0,$$

where $\tilde{B}(r) = B_{+}(0, r) - B_{+}(0, r/2)$. By Lemma 1 and Minkowski's inequality ([6; Appendices A.1]), we obtain

$$\begin{split} \left\{ r^{-n} \int_{B(r)} \left[x_n |x|^{1-\alpha} u_2(x) \right]^p dx \right\}^{1/p} \\ & \leq c_2 2^{|1-\alpha|} r^{1-\alpha-n/p} \left\{ \int_{B(r)} \left(\int_{B_+(0,2r)} |x-y|^{\alpha-n} y_n d\mu(y) \right)^p dx \right\}^{1/p} \\ & \leq c_2 2^{|1-\alpha|} r^{1-\alpha-n/p} \int_{B_+(0,2r)} \left\{ \int_{B(r)} |x-y|^{p(\alpha-n)} dx \right\}^{1/p} y_n d\mu(y) \\ & \leq \text{const. } r^{1-n} \int_{B_+(0,2r)} y_n d\mu(y), \end{split}$$

which tends to zero as $r \downarrow 0$ by (A).

LEMMA 4. If (A) in Lemma 2 hods, then $x_n^{-1}|x|^{3-\alpha}u_2(x)$ has minimally α -semi-fine limit zero at O.

PROOF. Consider the sets

$$E_j = \{x \in D; \, 2^{-j} \leqq |x| < 2^{-j+1}, \, x_n^{-1} u_2(x) \geqq a_j^{-1} 2^{j(3-\alpha)} \}$$

for j = 1, 2, ..., where $\{a_j\}$ is a sequence of positive numbers such that $\lim_{j \to \infty} a_j =$

 ∞ but $\lim_{j\to\infty} a_j 2^{j(n-1)} \int_{B_+(O,2^{-j+2})} y_n d\mu(y) = 0$. If ν is a non-negative measure

on D such that $S_v \subset E_i$ and $k_\alpha(x, v) \leq 1$ for $x \in D$, then we have

$$\int_{D} dv(x) \leq a_{j} 2^{-j(3-\alpha)} \int x_{n}^{-1} u_{2}(x) dv(x)$$

$$\leq a_{j} 2^{-j(3-\alpha)} \int_{B_{+}(0,2^{-j+2})} k_{\alpha}(y, v) y_{n} d\mu(y)$$

$$\leq a_{j} 2^{-j(3-\alpha)} \int_{B_{+}(0,2^{-j+2})} y_{n} d\mu(y).$$

Hence by the definition of $C_{k_{\alpha}}$,

$$C_{k_{\alpha}}(E_j) \leq a_j 2^{-j(3-\alpha)} \int_{B_{+}(0,2^{-j+2})} y_n d\mu(y),$$

so that

$$\lim_{i\to\infty} 2^{j(n-\alpha+2)}C_{k_{\alpha}}(E_i)=0.$$

Setting $E = \bigcup_{j=1}^{\infty} E_j$, we see that E is minimally α -semi-thin at O on account of the countable subadditivity of $C_{k_{\alpha}}$, and

$$\lim \sup_{x \to 0, x \in D - E} x_n^{-1} |x|^{3 - \alpha} u_2(x) \le \lim \sup_{j \to \infty} 2^{|3 - \alpha|} a_j^{-1} = 0.$$

The proof of our lemma is thus completed.

We are now ready to prove the theorem.

PROOF OF THE THEOREM. If the statement (i) holds, then for any a>1, we can find a sequence $\{x^{(j)}\}$ such that $x^{(j)} \in \Gamma(0, a) \cap B_+(0, 2^{-j+1}) - B_+(0, 2^{-j})$ and $\lim_{j\to\infty}|x^{(j)}|^{2-\alpha}u(x^{(j)})=0$. Since the sequence $\{x^{(j)}\}$ is admissible, (ii) follows.

If the statement (ii) holds, then Lemma 1 gives

$$|x^{(j)}|^{1-n} \int_{B_+(O,|x^{(j)}|)} y_n d\mu(y) \le \text{const.} |x^{(j)}|^{2-\alpha} u(x^{(j)}),$$

so that

$$\lim_{j\to\infty} |x^{(j)}|^{1-n} \int_{B_+(O,|x^{(j)}|)} y_n d\mu(y) = 0,$$

which implies (A) since $\{x^{(j)}\}\$ is admissible. Thus (ii) implies (iii) by Lemmas 2 and 4, and (i) by Lemmas 2 and 3.

To prove that (iii) implies (ii), it sufficies to note that $C_{k_{\alpha}}(\Delta(a, r) - \Delta(a, r/2)) = r^{n-\alpha+2}C_{k_{\alpha}}(\Delta(a, 1) - \Delta(a, 1/2))$ and $0 < C_{k_{\alpha}}(\Delta(a, 1) - \Delta(a, 1/2)) < \infty$ for any a > 1 and r > 0, where $\Delta(a, r) = \Gamma(O, a) \cap B_{+}(O, r)$.

3. Remarks

- (a) Each of (i), (ii) and (iii) in the theorem is equivalent to condition (A).
- (b) Let $0 \le \beta \le 2$ and $\beta < \alpha < 3$. Then each of (A), (i), (ii) and (iii) is equivalent to the following:
 - (i)' For $p, 1 \le p < n/(n-\alpha+\beta)$, $x_n^{1-\beta}|x|^{1+\beta-\alpha}u(x)$ has limit zero in L^p at O. For this it suffices to show the next lemma.

LEMMA 3'. If (A) holds, then $x_n^{1-\beta}|x|^{1+\beta-\alpha}u_2(x)$ has limit zero in L^p , $1 \le p < n/(n-\alpha+\beta)$, at O.

Lemma 3' can be proved in the same way as Lemma 3, if one notes

$$\left\{ \int_{B_{+}(O,r)} \frac{x_{n}^{p(2-\beta)}}{|x-y|^{p(n-\alpha)}|\bar{x}-y|^{2p}} dx \right\}^{1/p} \\
\leq \text{const.} \left\{ \int_{B_{+}(O,r)} |x|^{p(\alpha-\beta-n)} dx \right\}^{1/p} = \text{const. } r^{\alpha-\beta-n+n/p}.$$

(c) If $\alpha < 3$ and $G_{\alpha}(\cdot, \mu) \not\equiv \infty$, then $\lim_{r \downarrow 0} r^{1-n} \int_{B_{+}(\xi, r)} y_{n} d\mu(y) = 0$ for almost every $\xi \in \partial D$, so that $x_{n} |x - \xi|^{1-\alpha} G_{\alpha}(x, \mu)$ has limit zero in L^{p} , $1 \leq p < n/(n-\alpha)$, at almost every $\xi \in \partial D$.

In fact, define a measure λ_{δ} on \mathbb{R}^{n-1} by

$$\lambda_{\delta}(e) = \int_{e^{\times}(0,\delta)} y_n d\mu(y)$$
 for a Borel set $e \subset R^{n-1}$

and note, by a well-known theorem from the theory of integration, that

$$\lim_{r \to 0} r^{1-n} \lambda_{\delta}(\{x' \in \mathbb{R}^{n-1}; |x' - \xi'| < r\})$$

exists and is finite for almost every $\xi' \in R^{n-1}$. From Fatou's theorem it follows that for almost every $\xi' \in R^{n-1}$,

$$\lim_{\delta \downarrow 0} \lim_{r \downarrow 0} r^{1-n} \lambda_{\delta}(\{x' \in R^{n-1}; \, |x' - \xi'| < r\}) = 0,$$

which implies that $\lim_{r\downarrow 0} r^{1-n} \int_{B_+(\xi,r)} y_n d\mu(y) = 0$, $\xi = (\xi', 0)$.

(d) If a Borel set E in D is minimally 2-semi-thin at O, then we can find a positive superharmonic function u in D such that $\lim_{x\to O, x\in E} x_n^{-1}|x|u(x)=\infty$ and $\lim\inf_{x\to O, x\in F(O,a)} u(x)=0$ for any a>1.

To show this, we need the following lemma, which can be proved by using [2: Théorème 7.8].

LEMMA 5. For a Borel set A in D, we have

$$C_{k_{\alpha}}(A) = \inf \lambda(\overline{D}),$$

where the infimum is taken over all non-negative measures λ on \overline{D} such that $k_{\alpha}(\lambda, y) = \int k_{\alpha}(x, y) d\lambda(x) \ge 1$ for every $y \in A$.

Let E be a Borel set in D which is minimally 2-semi-thin at O, and take a sequence $\{a_i\}$ of positive numbers such that $\lim_{j\to\infty} a_j = \infty$ and

$$\lim_{j\to\infty}a_j2^{nj}C_{k_2}(E_j)=0,$$

where $E_j = E \cap B_+(O, 2^{-j+1}) - B_+(O, 2^{-j})$. By Lemma 5, for each j we can find a non-negative measure λ_j on \overline{D} such that $\lambda_j(\overline{D}) < C_{k_2}(E_j) + a_j^{-2}2^{-nj}$ and $k_2(\lambda_j, z) \ge 1$ for $z \in E_j$. Denoting by λ'_j the restriction of λ_j to the set $\{x \in \overline{D}; 2^{-j-1} < |x| < 2^{-j+2}\}$, we have for $z \in E_j$,

$$\begin{split} k_2(\lambda_j', z) & \geq 1 - c_2 \int_{\{|x| \leq 2^{-j-1}\} \cup \{|x| \geq 2^{-j+2}\}} |x - z|^{-n} d\lambda_j(x) \\ & \geq 1 - c_2 4^n \{ 2^{nj} C_{k_2}(E_j) + a_j^{-2} \}. \end{split}$$

Set $\lambda = \sum_{j=1}^{\infty} a_j 2^j \lambda'_j$, and define $u(z) = z_n k_2(\lambda, z)$, $z \in D$. Then

$$\lim \inf_{z \to Q, z \in E} z_n^{-1} |z| u(z) \ge \lim \inf_{i \to \infty} a_i \{1 - c_2 4^n (2^{nj} C_{k_2}(E_i) + a_i^{-2})\} = \infty.$$

Further we note the following properties:

(d₁) The function u satisfies that $u \neq \infty$, and is of the form

$$u(z) = G_2(z, \mu) + a$$
 Poisson integral,

so that u is superharmonic in D.

$$\lim_{r \downarrow 0} r^{1-n} \int_{|x| \le r} d\lambda(x) = 0.$$

From (d_2) and the proof of the theorem, it follows that for any a>1, $\lim \inf_{z\to 0, z\in\Gamma(0,a)} u(z)=0$. Thus u has the required properties.

If E is a Borel subset of a cone $\Gamma(O, a)$ which is minimally 2-semi-thin at O, then there exists a Green potential $G_2(\cdot, \mu)$ such that $\lim_{x\to O, x\in E} G_2(x, \mu) = \infty$.

References

- [1] A. F. Beardon, Montel's theorem for subharmonic functions and solutions of partial differential equations, Proc. Cambrigde Philos. Soc. 69 (1971), 123-150.
- [2] B. Fuglede, Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier 15 (1965), 65-88.
- [3] J. Lelong-Ferrand, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup. 66 (1949), 125–159.
- [4] P. J. Rippon, Semi-fine limits of Green potentials, Bull. London Math. Soc. 11 (1979), 259–264.
- [5] M. L. Silverstein and R. L. Wheeden, Superharmonic functions on Lipschitz domains, Studia Math. 39 (1971), 191–198.
- [6] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
- [7] L. Ziomek, On the boundary behavior in the metric L^p of superharmonic functions, Studia Math. 29 (1967), 97-105.

Department of Mathematics,
Faculty of Integrated Arts and Sciences,
Hiroshima University